Statistical Graphics

Jordan Brace

- "Above all else, show the data"
- Edward Tufte
" "The graph retains the information of the data"
- W. Edwards Deming

Space Shuttle Challenger O-Rings

College Enrollment by Age

Year	\% Under 25
1972	72.0
1973	70.8
1974	67.2
1975	66.4
1976	67.0

Model of Graph Perception

- Encoding: process by which a graph is constructed from data.
- Decoding: process by which graph is converted back into data by viewer.
- If visual decoding is not possible, the graph is a failure.
- Two types of information displayed in a graph
- Scale information: The data being communicated to the viewer
- Physical information: Information used to communicate scale information
- Decoding is the process of receiving the scale and physical information encoded in the graph.

Model of Graph Perception

- Decoding physical information is pattern perception
- Detection: recognition of a geometric aspect of graph that encodes a physical value
" Assembly: visual grouping of detected elements
- Estimation: discrimination, ranking, ratioing.

Model of Graph Perception

- Decoding scale information is table look-up
- Scanning from point to axis
- Interpolate value based on tick lines
- Matching: decoding scale information presented in other elements of the graph than axes, such as legend.

Applying the Model of Graph Perception

- Color and Texture

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Applying the Model of Graph Perception

Tufte's Recommendations

$$
\begin{aligned}
\text { Data-ink ratio } & =\frac{\text { data-ink }}{\text { total ink used to print the graphic }} \\
& =\begin{array}{l}
\text { proportion of a graphic's ink devoted to the } \\
\text { non-redundant display of data-information }
\end{array} \\
& =\begin{array}{l}
1.0-\text { proportion of a graphic that can be erased } \\
\text { without loss of data-information. }
\end{array}
\end{aligned}
$$

Tufte's Recommendations

- Erasing principles
- Erase non-data ink, within reason
- Erase redundant ink, within reason

Tufte's Recommendations

Tufte's Recommendations

A. Average Probabilities of W from $N(1,1)$
with $n=10$

Tufte's Recommendations

Tufte's Recommendations

Tufte's Graphics

Pop Charts

- Pie Charts

Pop Charts

- Divided bar graphs

