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APPENDIX A: THE MODEL OF SPATIAL VARIABILITY  21 

THE BASELINE MODEL 22 

There are four genetically distinct types of organisms: (1) social learners (linearly frequency-23 

dependent, UT), (2) conforming social learners (disproportionately frequency-dependent, CT), 24 

(3) payoff-biased social learners (PT), and (4) individual learners (IL).  25 

 UT acquire their phenotypes by copying a random member of the parental generation in 26 

the site they occupy (oblique transmission). 27 

 CT acquire their phenotypes by copying the most common behavior of the parental 28 

generation in the site they occupy, but suffer a mortality cost d. 29 

 PT acquire their phenotypes by copying the behavior of the parental generation with the 30 

highest payoff in the site they occupy, but suffer a mortality cost g. 31 

 IL always acquire the phenotype that is adapted to the environment of the site they 32 

occupy, but suffer a cost c due to mistakes made before the mature behavior is realized. 33 

We assume 10  cgd . 34 

Organisms may occupy any of n sites in a spatially heterogeneous world. Each site has a 35 

different environment. We distinguish n phenotypes, each of which is locally adapted to one 36 

particular environment, but maladaptive in the 1n  other environments. Phenotypes that are 37 

maladaptive in all n environments are not incorporated into the dynamics. Let ijX  ( ni 1 , 38 

nj 1 ) be the number of UT at site i that are adapted to the environment of site j. Then, at site 39 

i there are  


n

j iji XX
1

 UT in all, of which iiX  are behaving adaptively (UTC, for short) and 40 

iii XX   are behaving maladaptively (UTW, for short). Similarly, let ijU  and ijV  be the number 41 

of CT and PT at site i that are adapted to the environment of site j. Then, at site i there are 42 

 


n

j iji UU
1

 CT and  


n

j iji VV
1

 PT in all, of which iiU  and iiV  are behaving adaptively (CTC 43 

and PTC, for short), and iii UU   and iii VV   are behaving maladaptively (CTW and PTW, for 44 

short). Moreover, let iZ  ( ni 1 ) be the number of IL at site i. By assumption, IL always 45 

acquire the phenotype that is adapted to the environment of the site they occupy, but suffer a cost 46 
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due to mistakes made before the mature behavior is realized. Therefore iiiii ZVUXN 
 
is 47 

the total population at site i. These numbers are enumerated at the adult stage just prior to 48 

reproduction.  49 

 The life cycle begins with reproduction, where each organism gives birth asexually to )( iNb  50 

offspring according to the discrete logistic equation 51 

  )/1(1)( KNrNb ii  . (A.1) 52 

Here, 0r  and 0K  are assumed to be the same for all sites. Since the offspring are 53 

genetically identical to their parents, the numbers of UT, CT, PT, and IL among the newborns at 54 

site i are )( ii NbX , )( ii NbU , )( ii NbV , and )( ii NbZ , respectively.  55 

 At the second step of the life cycle, UL, CT, and PT acquire their phenotypes by copying a 56 

behavior of the parental generation. All members of the parental generation die immediately 57 

afterward. As a result, the number of UT at site i that are adapted to the environment of site j 58 

becomes 59 

  iijiijijijii NZVUXNbX /))((  ,  (A.2) 60 

where ij  is Kronecker’s delta ( 1ij  when ji   and 0 otherwise). The number of CT at site i 61 

that are adapted to the environment of site j becomes 62 

  ijii NbUd )()1(    (A.3) 63 

where  64 

  

 





n

k

a

iikiikikik

a

iijiijijij

ij

NZVUX

NZVUX

1
]/)[(

]/)[(




  (A.4) 65 

Here, a is the strength of conformist bias, and CT always imitate the most common behavior 66 

when a . The number of PT at site i that are adapted to the environment of site j becomes 67 

  ijii NbVg )()1(    (A.5) 68 
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because we assume there are organisms behaving adaptively in the parental generation. The 69 

number of individual learners remains the same.  70 

 The third step of the lifecycle is migration, where a fixed fraction of the organisms at each 71 

site emigrate (constant forward migration rate). For the island model, we assume reciprocal 72 

migration between all pairs of sites at rate )1/( nm  ( 2/10  m ). 73 

 In the fourth step of the life cycle, IL acquire the phenotype suitable to their new 74 

environment but suffer a fixed mortality cost c. Finally, viability selection occurs, and all 75 

organisms behaving adaptively (UTC, CTC, PTC, IL), and a fraction s1  of organisms 76 

behaving maladaptively (UTW, CTW, PTW) survive. We assume 10  scgd .  77 

RECURSIONS  78 

 Based on the above assumptions, we generate the following recursions: 79 

  
k

kikiki
k

n

ik k

i

iiiiiii
iiii

N

VUX
NbX

n

m

N

ZVUX
NbXmX







  

)(
1

)()1( , (A.6a) 80 
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N
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NbX

n
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N

ZVUX
NbX

n

m

N

VUX
NbXm

sX

)(
1

)(
1

)()1(

)1(

,

, (A.6b) 81 

 82 

  


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




   kik

n

ik kiiiiii NbU
n

m
NbUmdU  )(

1
)()1()1( , (A.6c) 83 

  









   kjk

n

ik kijiiij NbU
n

m
NbUmsdU  )(

1
)()1()1)(1(  (A.6d) 84 

 85 

  )()1)(1( iiii NbVmgV  , (A.6e) 86 



   

Page | 5  
 

  
1

)()1)(1(




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n

NbmVsg
V

jj

ij  (A.6f) 87 

  









  

)(
1

)()1()1( k
n

ik kiii NbZ
n

m
NbZmcZ , (A.6g) 88 

where ni 1 , nj 1 , and ij   in Eqs. (A.6b), (A.6d), and (A.6f). 89 

STABILITY OF CT EQUILIBRIUM 90 

 When )1)(1/()]1)(1(1[ msdmsdr  , a CT equilibrium exists where other social 91 

learners (UT, PT) and IL are absent, and CT occur in equal numbers at each site; formally, 92 

  
0ˆˆˆ  iijij ZVX ,   93 

  

)(]
)1)(1(

)1)(1(1
1[

)1)(1(

)1(ˆ],
)1)(1(

)1)(1(1
1[

1

)1(ˆ ji
msdr

msd

nms

sKm
U

msdr

msd

ms

mK
U ijii 



















   (A.7)

  

94 

for ni 1 , nj 1 . 95 

When the recursion (A.6) is linearized at this equilibrium in the variables ijX , ijij UU ˆ , ijV  and 96 

iZ , the coefficient matrix becomes a )3()3( 22 nnnn   matrix as follows: 97 

 98 

  












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  
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ik kiii X
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ms
Xm

msd
X
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2
2

2 )1(

)1(
)1(

)1)(1(

1
, (A.8a) 99 
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




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


  

n

jik kjiij X
n

ms
XmXsm

msnd

ms
X
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)1(
)1()1)(1(

)1)(1)(1(

)1(
, (A.8b) 100 

 101 

  )ˆ)](1)(1)(1(2[
1

1ˆ
iiiiii UUmsdr

ms

m
UU 




 , (A.8c) 102 



   

Page | 6  
 

  )ˆ)](1)(1)(1(2[
)1)(1(

)1(ˆ
jjijij UUmsdr

nms

ms
UU 




 , (A.8d) 103 

 104 

  iii V
msd

mg
V

)1)(1(

)1)(1(




 , (A.8e) 105 

  jij V
nmsd

msg
V

)1)(1)(1(

)1)(1(




 , (A.8f) 106 

 107 
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
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


  

n

ik kii Z
n

m
Zm

msd

c
Z

1
)1(

)1)(1(

1
. (A.8g) 108 

The matrix is reducible into four submatrices. The coefficient matrix of Eq. (A.8a) and (A.8b) 109 

has n sets of identical columns each of multiplicity n, which entails that (at least) )1( nn  110 

eigenvalues are equal to 0. Moreover, the transformed variables  


n

j iji XX
1

 ( ni 1 ) 111 

satisfy  112 
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
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

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

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



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n

ms
ms

n

ms
Xmmsm

msd
X

1
1

1
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1 2
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 (A.9a) 113 

i.e., 114 
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where  116 
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2

n
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 . (A.9c) 117 

Since  118 

 119 
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, (A.10) 120 

 121 

the coefficient submatrix of the linearized recursions in the variables ijX  yields the maximal 122 

eigenvalue  123 

 124 
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 126 

Similarly, since 127 
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the coefficient submatrix of the linearized recursions in the variables ijij UU ˆ  yields the maximal 129 

eigenvalue )1)(1)(1(2 msdr  , and since   130 
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 133 

the coefficient submatrix of the linearized recursions in the variables ijV  yields the maximal 134 

eigenvalue )1/()1( dg  . Moreover, from (A.8g), the coefficient submatrix of the linearized 135 

recursions in the variables iZ  yields the maximal eigenvalue 
)1)(1(

1

msd

c




. If all of these 136 

maximal eigenvalues have their absolute values smaller than unity, then the CT equilibrium is 137 

stable. Since 1)1/()1(  dg , the condition is 138 
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  1)1)(1)(1(2  msdr , (A.14b) 140 

and 141 
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 (A.14c) 142 

When CT suffer no additional learning cost (i.e., 0d ), the condition becomes 143 
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  )1)(1(1 msr  , (A.15b) 145 

and 146 

  .1
1
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


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c
 (A.15c) 147 

Since 2n  and 2/10  m , (A.15a) is always satisfied. Therefore, the CT equilibrium is 148 

stable against invasion with any combinations of NT, CT, PT and IL when cms  and 149 

)1/( rrms  . 150 

 Here we consider CT with strongest conformity bias ( a ). As shown below, even when 151 

we consider CT with intermediate strength of conformity bias (CTI) (  a1 ), the CT 152 

(strongest) equilibrium is stable. Let ijT  ( ni 1 , nj 1 ) be the number of CTI at site i that 153 

are adapted to the environment of site j.  154 
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so that the coefficient submatrix of the linearized recursions in the variables ijT  yields the 161 

maximal eigenvalue 162 

    ])1)(1[()1(
1

1
msnsms

ms



. (A.18a) 163 

Since 1)1(   n , (A.18a) can be rewritten as 164 

  

 

1
1

])1)(1[(
1

])1)(1[(])1(1)[1(
1

1










ms

mmns

msnsnms
ms





 (A.18b) 165 

so that the CT (strongest) equilibrium is stable even when we consider the invasion of CT with 166 

intermediate strength of conformity bias (CTI).  167 

STABILITY OF IL EQUILIBRIUM 168 

 When )1/( ccr  , an IL equilibrium exists where social learners (UT, CT, PT) are absent 169 

and IL occur in equal numbers at each site, formally, 170 

 171 

)]1(/1[ˆˆ,0ˆˆˆ crcKZZVUX iijijij   for ni 1 , nj 1 . (A.19) 172 
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As expected, Ẑ  monotonically decreases in c. When the recursion (A.6) is linearized at this 173 

equilibrium in the variables ijX , ijU , ijV  and ZZi
ˆ , the coefficient matrix becomes a 174 

)3()3( 22 nnnn   matrix as follows. 175 

   iii X
c

m
X






1

1
, (A.20a) 176 

  jij X
nc

ms
X

)1)(1(

)1(




 , (A.20b) 177 

  iii U
c

md
U






1

)1)(1(
, (A.20c) 178 

  jij U
nc

msd
U

)1)(1(

)1)(1(




 , (A.20d) 179 

  iii V
c

mg
V






1

)1)(1(
, (A.20e) 180 

  jij V
nc

msg
V

)1)(1(

)1)(1(




 , (A.20f) 181 

  











  
)ˆ(

1
)ˆ)(1()]1(1[ˆ ZZ

n

m
ZZmcrcZZ

n

ik kii , (A.20g) 182 

The matrix is reducible into four submatrices. The coefficient matrix of Eq. (A.20a) and (A.20b) 183 

has n sets of identical columns each of multiplicity n, which entails that (at least) )1( nn  184 

eigenvalues are equal to 0. Moreover, the transformed variables  


n

j iji XX
1

 ( ni 1 ) 185 

satisfy  186 

    









n

ij jii X
nc

ms
X

c

m
X

)1)(1(

)1(

1

1
. (A.21) 187 

Solving these linear equations, the coefficient submatrix of the linearized recursions in the 188 

variables ijX  yields the maximal eigenvalue )1/()1( cms  . Similarly, the variables ijU  and ijV  189 
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yield the maximal eigenvalues )1/()1)(1( cmsd   and )1/()1)(1( cmsg  , respectively. On 190 

the other hand, the coefficient submatrix of the linearized recursions in the variables ZZi
ˆ  191 

yields the maximal eigenvalue )1(1 crc  . If all of these maximal eigenvalues have their 192 

absolute values smaller than unity, then the IL equilibrium is stable. The condition is 193 

  1
1

1
1 






c

ms
  and  1)1(11  crc   (A.22a)  194 

yielding 195 

  msc    and  
c

c
r

c

c






 1

2

1
. (A.22b) 196 

STABILITY OF UT EQUILIBRIUM 197 

 0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  for ni 1 , nj 1 . A mixture of UTC 198 

and UTW occur at each site. Each site is occupied by X̂  UTC (which are adapted to that site) 199 

and Yn ˆ)1(   UTW (which are adapted to the environments of the 1n  other sites). There are no 200 

CT, PT, and IL. Clearly, the population of each site is YnXNNi
ˆ)1(ˆˆˆ  , and hence an 201 

equilibrium of this kind is completely symmetric (the structure of the equilibrium is identical at 202 

all sites). Let XY ˆ/ˆ . Substituting 0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  in Eqs. 203 

(A.6a) and (A.6b) and dividing the latter by the former, we find that   is the larger and positive 204 

root of the quadratic equation 205 

  0)1(
1

)1(
1 





















 

n

ms

m

s
m . (A.23) 206 

Solving Eq. (A.23) explicitly yields 207 

  m
n

ms

n

ms
sm

n

ms
sm 2/

1

)1(
4

1

)1(

1

)1( 22




































 .  (A.24) 208 
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Note: 1/1  ms  and s1 . When n , ms /1  if  ms   and 0  if ms  . 209 

Equation (1) entails that 0ˆ N  if and only if rbNb  1ˆ)ˆ(ˆ . Since Eq. (A.1) reduces to 210 

  
)1(1

1ˆ



m

b , (A.25) 211 

this equilibrium exists if and only if 212 

  )]1(1/[)1(   mmr . (A.26) 213 

Solving as above, since 214 

  iii U
m

md
U

)1(1

)1)(1(




 , (A.27a) 215 

  jij U
nm

msd
U

)1)](1(1[

)1)(1(







, (A.27b) 216 

 217 

  iii V
m

mg
V

)1(1

)1)(1(




 , (A.27c) 218 

  jij V
nm

msg
V

)1)](1(1[

)1)(1(







, (A.27d) 219 

 220 

  














  

n

ik kii Z
n

m
Zm

m

c
Z

1
)1(

)1(1

1


, (A.27e) 221 

the coefficient submatrix of the linearized recursions in the variables ijU , ijV , and iZ  yields the 222 

maximal eigenvalues 
)1(1

)1)(1(





m

msd
, 

)1(1

)1)(1(





m

msg
, and 

)1(1

1





m

c
, respectively. If all of 223 

these maximal eigenvalues have their absolute values smaller than unity, then the UT 224 

equilibrium is stable. Since gd  , the condition is 225 
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 226 

  )1(1)1)(1(  mmsd ,  (A.28a) 227 

  )1( mc ,   (A.28b) 228 

and (A.26).  229 

STABILITY OF PT EQUILIBRIUM 230 

 Next, let us consider the stability of PT equilibrium, formally, 231 

   232 

  0ˆˆˆ  iijij ZUX ,  233 

  )(]
)1)(1(

)1)(1(1
1[

)1)(1(

)1(ˆ],
)1)(1(

)1)(1(1
1[

1

)1(ˆ ji
msgr

msg

nms

sKm
V

msgr

msg

ms

mK
V ijii 



















  (A.29) 234 

for ni 1 , nj 1 . 235 

When the recursion (A.6) is linearized at PT equilibrium,  236 

  iii U
msg

md
U

)1)(1(

)1)(1(




 , (A.30a) 237 

  jij U
nmsg

msd
U

)1)(1)(1(

)1)(1(




 , (A.30b) 238 

so that  239 

  
















  

n

ik kii U
n

ms
Um

msg

d
U

1

)1(
)1(

)1)(1(

1
. (A.30c) 240 

Therefore, the coefficient submatrix of the linearized recursions in the variables ijU  yields the 241 

maximal eigenvalue )1/()1( gd  . Since dg  , this eigenvalue is always larger than unity, so 242 

that PT equilibrium is always unstable.  243 
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POLYMORPHIC EQUILIBRIUM OF IL AND CT 244 

 Assume that polymorphic equilibrium of IL and CT (and others) exist. Then IL and CT occur 245 

in equal numbers at each site, formally, UUii
ˆˆ  , )(ˆˆ jiUUij  , ZZi

ˆˆ  , and NNi
ˆˆ  . From 246 

the recursion (A.6), they satisfy  247 

 248 

  )ˆ(]ˆ)1(ˆ)[1)(1(ˆ NbUnUmdU  , (A.31a) 249 

  )ˆ(]ˆ)1(ˆ[
1

)1)(1(ˆ NbUnU
n

m
sdU 


 , (A.31b) 250 

  )ˆ(ˆ)1(
1

ˆ)1()1(ˆ NbZn
n

m
ZmcZ












 . (A.31c) 251 

From (A.31a) and (A.31b), 
)1)(1(

1
)ˆ(

msd
Nb


 , and from (A.31c), 

c
Nb




1

1
)ˆ( . Therefore, 252 

this type of equilibrium can exist only if )1)(1(1 msdc  , i.e., polymorphic equilibrium of 253 

IL and CT (and others) never exist when )1)(1(1 msdc   or )1)(1(1 msdc  .  254 

 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and 255 

others) never exist.  256 

RESULTS SUMMARY  257 

 The conditions for the existence and stability of equilibria can be mapped onto six regions of 258 

the ),( cm -parameter space. First, if msc   and )1/()2()1/( ccrcc  , fixation of IL is the 259 

unique stable equilibrium (region I). Second, if )]1)(1(1),1(min[ msdmcms    where  260 

  m
n

ms

n

ms
sm

n

ms
sm 2/

1

)1(
4

1

)1(

1

)1( 22




































 , (A.24) 261 
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polymorphism of IL and UT is the unique stable equilibrium provided )1/( ccr   (region II). 262 

Third, if )1( mc  and )1)(1(1)1( msdm  , fixation of UT is the unique stable 263 

equilibrium provided )]1(1/[)1(   mmr  (region III). Fourth, if )1)(1(1 msdc   and 264 

2
2

2 )1)(1(
1

)1(
)1()1)(1( msd

n

sms
smmsm 




 , fixation of CT is the unique stable 265 

equilibrium provided )1)(1/()]1)(1(1[ msdmsdr   (region IV). Fifth, if 266 

)1)(1(1 msdc   and 
)1)(1(

)1(

1

)1(
1)1)(1()1(1

22

msn

sms

ms

sm
mmsdm









  , 267 

polymorphism of UT and CT is the unique stable equilibrium provided 268 

)1)(1/()]1)(1(1[ msdmsdr   (region V). Sixth, if 269 

)}1)(1/()]1)(1(1[)],1(1/[)1(min{ msdmsdmmr    and )1/( ccr  , extinction 270 

is the unique stable equilibrium (region VI). Provided the cost of PT is larger than that of CT (i.e., 271 

dg  ), PT never evolve. When CT suffer no cost (i.e., 0d ), fixation of IL, fixation of CT, 272 

and extinction are the possible stable equilibria (UT and PT never evolve).  273 

INCREASING TRAIT NUMBER AND THE REGION OF CT 274 

 We show that the region for fixation of UT decreases and that for fixation of CT increases as 275 

n increases. Since the (necessary) condition for fixation of UT is  276 

  )1)(1(1)1( msdm  , (A.32) 277 

i.e., 
m

d
ds

m

mmsd



 )1(1

)1()1)(1(
 , and   decreases as n increases, the region for 278 

fixation of UT decreases as n increases. When 0d , (A.32) is always satisfied at 0m , and 279 

(A.32) can be violated when m exceeds a threshold value, which we write CTUTUTm  . Since 280 




)1(1 ds

d
m CTUTUT , and   decreases as n increases, CTUTUTm   decreases as n 281 

increases.  282 

 Moreover, since the (necessary) condition for fixation of CT is  283 
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  2
2

2 )1)(1(
1

)1(
)1()1)(1( msd

n

sms
smmsm 




 ,  (A.33) 284 

i.e., 
2

22

)1(

)1()1)(1()1)(1(

1

1

sms

smmsmmsd

n 





, the region for fixation of CT increases 285 

as n increases. When 0d , (A.33) is always unsatisfied at 0m , and (A.33) can be satisfied 286 

when m exceeds a threshold value, which we write CTCTUTm  . CTCTUTm   is, if it exists, the 287 

smaller root of the quadratic equation  288 

  0)1)(1(
1

)1(
)1()1)(1( 2

2
2 




 msd

n

sms
smmsm , (A.34) 289 

and the necessary condition for the existence of CTCTUTm   is 0)
1

1
1(4)1( 




n
sdss . 290 

Since the coefficient of quadratic term decreases as n increases, CTCTUTm   decreases as n 291 

increases.  292 

INCREASING THE COSTS OF NON-ADAPTIVE BEHAVIOR AND THE REGION OF CT 293 

 When the costs of non-adaptive behavior (s) increases, from (A.14b) and (A.14c), CT 294 

equilibrium decreases because of the extinction and the invasion of IL. When n is large ( n ) 295 

or d is small ( 1d ), from (A.28a), UT equilibrium is less likely to be invaded by CT. Overall, 296 

the region where CT can evolve (regions UT+CT and CT) decreases when s increases.  297 

WHEN IL LEARN BEFORE MIGRATION 298 

 RECURSIONS  299 

 When IL learn before migration, IL do not always have correct behavior. Let ijZ  ( ni 1 , 300 

nj 1 ) be the number of IL at site i that are adapted to the environment of site j, and 301 

 


n

j iji ZZ
1

. Then, the recursions is written as 302 

 303 
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k
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j
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N
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N
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NbX

n
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1
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,

, (A.35b) 305 

 306 

  









   kik

n

ik kiiiiii NbU
n

m
NbUmdU  )(

1
)()1()1( , (A.35c) 307 

  









   kjk

n

ik kijiiij NbU
n

m
NbUmsdU  )(

1
)()1()1)(1( , (A.35d) 308 

where  309 

 310 

  

 





n

k

a

iikikikik

a

iijijijij

ij

NZVUX

NZVUX

1
]/)[(

]/)[(


 

(A.4)’ 311 

 312 

  )()1)(1( iiii NbVmgV  , (A.35e) 313 

  
1

)()1)(1(






n

NbmVsg
V

jj

ij , (A.35f) 314 

  )()1)(1( iiii NbZmcZ  , (A.35g) 315 

  
1

)()1)(1(






n

NbmZsc
Z

jj

ij , (A.35h) 316 

where ni 1 , nj 1 , and ij   in Eqs. (A.35b), (A.35d), (A.35f), and (A.35h). 317 

 318 
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When IL learn before migration, the stability of CT equilibrium becomes as follows.  319 

Let ijZ  ( ni 1 , nj 1 ) be the number of IL at site i that are adapted to the environment of 320 

site j. When the recursion (A.35) is linearized at CT equilibrium,  321 

 322 

  iii Z
msd

mc
Z

)1)(1(

)1)(1(




 , (A.36a) 323 

  jij Z
nmsd

msc
Z

)1)(1)(1(

)1)(1(




 , (A.36b) 324 

so that  325 
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1
. (A.36c) 326 

Therefore, the coefficient submatrix of the linearized recursions in the variables ijZ  yields the 327 

maximal eigenvalue )1/()1( dc  . Since dc  , this eigenvalue is always smaller than unity, so 328 

that IL cannot invade CT equilibrium. Therefore, the condition for CT equilibrium to be stable is 329 

  1
1

)1(
)1()1)(1(

)1)(1(

1 2
2
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
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 n
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,  (A.14a) 330 

  1)1)(1)(1(  msdr , (A.14b)’ 331 

 Next, let us consider the stability of IL equilibrium, formally, 332 

 333 

  0ˆˆˆ  ijijij VUX ,  334 
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for ni 1 , nj 1 . 336 
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When the recursion (A.35) is linearized at IL equilibrium,  337 
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so that  340 
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Therefore, the coefficient submatrix of the linearized recursions in the variables ijU  yields the 342 

maximal eigenvalue )1/()1( cd  . Since dc  , this eigenvalue is always larger than unity, so 343 

that IL equilibrium is always unstable.  344 

 Next, let us consider the stability of UT equilibrium, formally, 345 

  0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  for ni 1 , nj 1 .  (A.39) 346 

When the recursion (A.35) is linearized at UT equilibrium,  347 
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Therefore, the coefficient submatrix of the linearized recursions in the variables ijZ  yields the 352 

maximal eigenvalue 
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



m

msc
. Since recursions of CT and PT are the same as (A.27), the 353 
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coefficient submatrix of the linearized recursions in the variables ijU , ijV , and ijZ  yields the 354 

maximal eigenvalues 
)1(1

)1)(1(





m

msd
, 
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m

msg
, and 

)1(1
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

m

msc
, respectively. Since 355 

cgd  , the conditions for UT equilibrium to be stable are  356 

  )1(1)1)(1(  mmsd   (A.28a) 357 

and   358 

  )]1(1/[)1(   mmr . (A.26) 359 

 Just as in the condition where IL learn after migration, PT equilibrium is always unstable 360 

when IL learn before migration.  361 

 Moreover, if polymorphic equilibrium of IL and CT (and others) exist, equilibrium values 362 

UUii
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ˆˆ  , )(ˆˆ jiZZij  , and NNi
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From (A.41a) and (A.41b), 
)1)(1(

1
)ˆ(

msd
Nb


 , and from (A.41c) and (A.41d), 369 

)1)(1(

1
)ˆ(

msc
Nb


 . Since dc  , these conditions are never satisfied simultaneously so that 370 

polymorphic equilibrium of IL and CT (and others) never exist.  371 
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 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and 372 

others) never exist.  373 

RESULTS SUMMARY  374 

 The conditions for the existence and stability of equilibria can be mapped on to four regions 375 

of the ),( cm -parameter space. First, if )1)(1(1)1( msdm  , fixation of UT is the unique 376 

stable equilibrium provided )]1(1/[)1(   mmr  (region I). Second, if 377 

2
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
  , polymorphism of UT and CT is 380 

the unique stable equilibrium provided )1)(1/()]1)(1(1[ msdmsdr   (region III). Fourth, 381 

if )}1)(1/()]1)(1(1[)],1(1/[)1(min{ msdmsdmmr   , extinction is the unique 382 

stable equilibrium (region IV). Provided the cost of IL and PT are larger than that of CT (i.e., 383 

dgc  ), IL and PT never evolve. When CT suffer no cost (i.e., 0d ), fixation of CT and 384 

extinction are the only possible stable equilibria (UT,PT, and IL never evolve) . 385 

WHAT HAPPENS IF THE NUMBER OF TRAITS AND SITES DIFFER? 386 

 Here we consider an infinite number of islands and n behavior model, where each behavior is 387 

adapted to the same number of sites. In this situation, we can regard the sites where the same 388 

behavior is adaptive as one site, so this situation is almost the same as normal island model with 389 

n site but migration rate is different. That is, we can ignore the migration between sites where the 390 

same behavior is adaptive, so effective migration rate in this model is   391 

  
n

mn
m

)1(* 
 . (A.42) 392 

Therefore, the conditions for fixation of UT, those for CT, etc. are basically the same as in the 393 

above model, but *mm . The threshold values of m for CTUTUT   and CTCTUT   394 
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are 
1n

n
 times as large as those in the normal n island model. Since both the threshold values in 395 

the normal model and 
1n

n
 decrease as n increases, the threshold values in this model also 396 

decrease as n increases.  397 

APPENDIX B: A MODEL OF TEMPORAL VARIABILITY WITH PURE 398 

LEARNING STRATEGIES  399 

 The method of numerical simulation for the evolution of learning in temporally changing 400 

environment is as follows. We assume that the number of possible environmental states is 401 

infinite so that when the environment changes it never reverts to an earlier state (infinite 402 

environmental states model). Corresponding to each environmental state, there is one optimal 403 

(correct) behavior (fitness: 1). All other behaviors are equally maladaptive (fitness: s1 ; i.e. the 404 

cost of maladaptive behavior is s). The environment changes every   generations ( 1 ), so that 405 

one post-change generation experiences a different environmental state to the previous 406 

generation, and 1  subsequent generations experience the same state as that post-change 407 

generation. That is, larger values of   imply more environmental stability.  408 

 We assume a population of haploid asexual organisms. A tetra-allelic locus determines 409 

whether an organism is an individual learner, a social learner with unbiased transmission, a 410 

social learner with conformist transmission, and a social learner with payoff-biased transmission 411 

(abbreviated IL, UT, CT, and PT, respectively). IL always achieves the optimal (correct) 412 

behavior by individual learning, but suffers a fixed cost c. Social learners (UT, CT, PT) copy a 413 

behavior of the previous generation. So, when the environment changes, social learners always 414 

copy a maladaptive (wrong) behavior and only IL behaves correctly. UT acquire their 415 

phenotypes by copying a random member of the parental generation in the site they occupy 416 

(oblique transmission). CT suffer a mortality cost d to acquire their phenotypes. Here we assume 417 

CT with a conformity bias a. Therefore, the probability that CT imitates a behavior j with the 418 

frequency jb  in the previous generation can be expressed as 419 
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where 210 ,, bbb  are the frequencies of organisms with the behavior 0, 1, 2  respectively. PT 421 

acquire their phenotypes by copying the behavior of the parental generation with the highest 422 

payoff, but suffer a mortality cost g. Provided IL exist in the population, PT can copy optimal 423 

(correct) behavior in every generation except post-change generations. In post-change 424 

generations, PT copy a behavior that is optimal in the previous generation.  425 

 The fitness of IL is c1 , that of social learners (UT, CT, PT) behaving correctly (UTC, CTC, 426 

PTC) is 1, d1 , and g1 , respectively, and that of social learners behaving incorrectly (UTW, 427 

CTW, PTW) is s1 , )1)(1( sd  , and )1)(1( sg  , respectively ( 10  scgd ).  428 

 We set the initial condition such that the environment is in state 0 in generation 0 and all 429 

members have behavior 0. In the next generation (generation 1) the environment changes to state 430 

1 and behavior 1 becomes optimal. We suppose that behavior i is optimal in state i. In a 431 

periodically changing environment, the environment changes every   generations so that the 432 

environment changes from state i to state i+1 between generation i  and generation 1i . 433 

 Suppose that the population is now in generation k and the environment is state n. Let the 434 

frequency of UT, CT, PT, and IL after natural selection be )(kx , )(ku , )(kv , and )(kz  435 
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where 444 
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 Since the fitness of social learners over one cycle (   generations) is always smaller than 446 

ss   11)1( 11 
 and that of IL over one cycle is 

)1( c , IL equilibrium is stable when  447 
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It can also be shown that IL and PT never coexist at stable equilibrium, except when  449 
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When IL exist, the fitness of IL over one cycle is 
)1( c , and that of other coexisting strategies 451 

must be the same fitness. However, when IL do not exist, the fitness of PT over one cycle is 452 

)1)(1( gs  . Therefore, IL and PT coexist at stable equilibrium only when 453 
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population of IL (and others). When 
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, the frequency of IL decreases, but 455 

if IL go extinct, the fitness of PT over one cycle becomes 
 )1()1( gs  . Since sc  , IL can 456 

invade this equilibrium population of PT (and others), but when IL invades, the fitness of PT 457 

over one cycle becomes 
)1)(1( gs   again, so the frequency of IL decreases again. Assuming 458 

that the frequency of IL never becomes 0 because of low frequency mutation, the frequency of 459 

IL is almost 0 at equilibrium when 
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equilibrium (with low frequency IL) is stable if and only if  461 
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because when the frequency of PT is almost 1, the fitness of UT over one cycle is 
2)1( s  and 463 

that of CT over one cycle is 
22 )1()1()1( sds  
 because they learn the wrong behavior in 464 

post-change generation and the next generation, but learn correct one in other generations. When 465 

)1ln(
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
, polymorphism of PT and other social learning 466 

strategy (UT and/or CT) will be achieved. These analytical results are confirmed by the 467 

numerical simulation.  468 

 For Figure 6B, we set the initial frequencies of UT, CT, PT, and IL be 0.25. Parameters are 469 

5.0s , 3.0c , 1.0g , 0d , 5 , and 10a . For Figure 5, we obtain the equilibrium 470 

frequencies of UT, CT, PT, and IL from several initial frequencies of them. Parameters are 471 

5.0s , 1.0g , 05.0d , and 10a . Note 10a  is sufficiently strong such that it can be 472 

assumed to be almost infinite. 473 
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IL LEARN BEFORE THE ENVIRONMENTAL CHANGE 474 

 If IL learn before environmental change, IL also have a wrong behavior in post-change 475 

generations. Then, all members have a wrong behavior in post-change generations, so social 476 

learners (UT, CT, PT) always copy a wrong behavior in the next generation of the post-change 477 

generation. Therefore, the fitness of social learners over one cycle (   generations) is always 478 

smaller than 
222 )1(1)1( ss  
, that of IL over one cycle is 

)1)(1( cs  , and that of PT over 479 

one cycle is 
)1()1( 2 gs  . Thus, IL equilibrium is stable when 
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, IL and PT never 480 

coexist except when 
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, and PT equilibrium (with low frequency IL) is 481 

stable if and only if 
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 are satisfied. That is, the results 482 

are basically the same as in the case that IL learn after environmental change.  483 

 484 
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ABSTRACT 33 

Long before the origins of agriculture human ancestors had expanded across the globe into an 34 

immense variety of environments, from Australian deserts to Siberian tundra. Survival in these 35 

environments did not principally depend on genetic adaptations, but instead on evolved learning 36 

strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop 37 

hypotheses about these learning strategies, we have modeled the evolution of learning strategies 38 

to assess what conditions and constraints favor which kinds of strategies. To build on prior work, 39 

we focus on clarifying how spatial variability, temporal variability, and the number of cultural 40 

traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased 41 

social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a 42 

combination of analytic and simulation methods, we show that spatial—but not temporal—43 

variation strongly favors the emergence of conformist transmission. This effect intensifies when 44 

migration rates are relatively high and individual learning is costly. We also show that increasing 45 

the number of cultural traits above two favors the evolution of conformist transmission, which 46 

suggests that the assumption of only two traits in many models has been conservative. We close 47 

by discussing how (1) spatial variability represents only one way of introducing the low-level, 48 

non-adaptive phenotypic trait variation that so favors conformist transmission, the other obvious 49 

way being learning errors, and (2) our findings apply to the evolution of conformist transmission 50 

in social interactions. Throughout we emphasize how our models generate empirical predictions 51 

suitable for laboratory testing.  52 

 53 

Keywords: Learning strategies; Individual learning; Social learning; Conformist transmission; 54 

Payoff-biased transmission 55 

  56 
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1. INTRODUCTION 57 

The application of evolutionary principles to understanding the origin and operation of social 58 

learning in humans has generated a wide range of insights, as well as vibrant debates. Rooted in 59 

the seminal modeling work of Boyd and Richerson (1985),  much theoretical work has explored 60 

the conditions and contexts favoring the evolution of social learning, often generating hypotheses 61 

about adaptive learning mechanisms using cues related to success, payoffs, trait content (direct 62 

bias), credibility, ethnic markers, adoption rates, and conformity (Kendal, Giraldeau, & Laland, 63 

2009; R. McElreath et al., 2008; R. McElreath, Boyd, & Richerson, 2003; Richard McElreath & 64 

Strimling, 2008; Rendell, Hoppitt, & Kendall, 2007; Schlag, 1998, 1999; Wakano & Aoki, 2006; 65 

Wakano, Aoki, & Feldman, 2004). Such theoretical work indicates that social learning 66 

mechanisms interact competitively and synergistically with each other, and with individual 67 

learning, at the population level. In addition to informing our understanding of how cultural 68 

abilities evolve in humans, and more recently in other species, such models provide disciplined 69 

theoretical foundations for generating specific evolutionary predictions about the contexts in 70 

which various learning strategies should be deployed, and the kind of cues likely to activate 71 

them. 72 

While still in its gestational stage, the empirical testing of psychological and behavioral 73 

hypotheses generated by these evolutionary models has been surprisingly successful, in both 74 

humans and other species, with evidence coming from Economics, Psychology, Biology and 75 

Anthropology (e.g., J. Henrich & McElreath, 2007; Laland, 2004; R. McElreath, et al., 2008). 76 

Recently, confirming earlier predictions, a blossoming of experimental studies in young children 77 

and infants is revealing solid evidence for imitative biases related to prestige, success, 78 

competence (reliability), dialect, and age (Chudek, Heller, Birch, & Henrich, 2012; Harris & 79 

Corriveau, 2011; Stenberg, 2009), most of which have previously been demonstrated in Western 80 

adults (Mesoudi, 2009). Field evidence is also beginning to show converging lines of evidence 81 

for these adaptive biases in small-scale societies, and in economically important domains (J. 82 

Henrich & Broesch, forthcoming). Some work has even connected these learning biases to the 83 

generation and maintenance of stable, adaptive cultural patterns in small-scale societies (J. 84 

Henrich & Henrich, 2010). Finally, in non-human social learners, some of the best experimental 85 
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tests of these models comes from work with rats (Galef & Whiskin, 2008)  and fish (Laland, 86 

Atton, & Webster, 2011).  87 

Among the proposed social learning biases in this adaptive psychological suite is frequency-88 

dependent biased transmission (Boyd & Richerson, 1985: Chapter 7). Because there is useful 89 

information stored implicitly in the relative frequency of different cultural traits, learners might 90 

use the frequency of a trait in the population to more effectively select locally adaptive cultural 91 

traits, or at least avoid adopting maladaptive traits. Conformist transmission is a sub-category of 92 

frequency-dependent biased transmission in which individuals use the frequency of the most 93 

common trait, in a personal sample or the local population, as a cue in figuring out which trait to 94 

adopt, potentially integrating it with other information, such as personal experience, the relative 95 

success of those with different traits, and self-similarity (N. Henrich & Henrich, 2007: Chapter 2; 96 

Rendell et al., 2011). Conformist biases are adaptive to the degree that they can help learners 97 

integrate information gleaned from other members of their community, while allowing them to 98 

filter the errors that inevitably creep into the pathways of cultural transmission (J. Henrich & 99 

Boyd, 2002). The basic logic underpinning conformist transmission is enshrined in the 100 

Condorcet Jury Theorem. Central to defining and identifying conformist transmission is 101 

recognizing that it requires a non-linear increase in the likelihood of adopting a trait with 102 

increases in the frequency of that cultural trait. This distinguishes conformist biased strategies 103 

from unbiased transmission, in which learners acquire a particular trait in proportion to that 104 

trait’s current frequency in the population (which, for example, occurs if learners copy a random 105 

person in the population). 106 

Boyd and Richerson’s (1985) initial efforts suggested that conformist transmission could 107 

outcompete unbiased transmission in a spatially variable environment. This model, however, was 108 

limited because it did not consider (a) a cost for conformist transmission, (b) any individual 109 

learning, (c) more than two traits or environments, or (d) temporally varying environments. To 110 

address some of these limitations, Henrich and Boyd (1998) constructed a simulation model 111 

involving a large mix of strategies involving combinations of individual learning, unbiased 112 

transmission, and conformist transmission in which learners had to adapt to a spatially and 113 

temporally varying environment. Later, Kameda and Nakanishi (2002) augmented Henrich and 114 

Boyd’s code to consider conditions under which individual learning was costly, and tested these 115 
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predictions in a laboratory experiment. These simulations were limited in considering only two 116 

cultural traits and two different environments. Overall, this early work suggested that conformist 117 

transmission would outcompete unbiased transmission under a wide range of conditions, though 118 

not if the environment changed too frequently or individual learning was too inaccurate.  119 

More recently, several authors have developed a combination of analytical and simulation work 120 

on temporally varying environments that both confirm and challenge earlier conclusions 121 

(Erikksson, Enquist, & Ghirlanda, 2007; Kandler & Laland, 2009; Kendal, et al., 2009; R. 122 

McElreath, et al., 2008; Nakahashi, 2007a; Wakano & Aoki, 2007; Whitehead, 2007). Some of 123 

this work suggests that in temporally varying environments both unbiased and payoff-biased 124 

transmission can dominate or even eliminate conformist transmission, reducing the range of 125 

conditions in which we expect conformist transmission. During roughly the same time period, 126 

work exploring the impact of spatially variable environments on the evolution of social learning 127 

considered only unbiased transmission (Aoki, 2010; Aoki & Nakahashi, 2008). Here we bring 128 

these two strands of modeling together.  129 

While these prior efforts make important contributions to understanding the evolutionary-130 

theoretic hypotheses that should drive empirical inquiry, we think the focus on modeling (1) only 131 

two (distinguishable) cultural traits, (2) temporally varying environments, and (3) error-free 132 

cultural transmission has actually obscured some of the conditions most favorable to the 133 

evolution of conformist transmission. Our goal here is twofold. First, we develop an n-trait (n ≥ 134 

2) model in a spatially varying environment to illustrate how these two elements influence the 135 

evolution of conformist biased learning strategies vis-à-vis unbiased transmission, pay-off biased 136 

transmission, and individual learning. While we do not explicitly model transmission error here, 137 

we argue below that spatial mixing creates a selective environment similar to that produced by 138 

transmission errors. Second, to most effectively illustrate the contrast between the effects of 139 

temporal vs. spatial variation on favored learning strategies, we draw on and in some cases 140 

further develop results from two parallel models that focus only on temporal variation.  141 

We first present our baseline model of the evolution of social learning strategies for n different 142 

cultural traits in a spatially varying environment, and we introduce the two parallel models for 143 

temporally varying environments. We then present the baseline results for the simplest cases. We 144 

then incrementally add complexity to this baseline case by (a) adding a fitness cost for using 145 
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conformist transmission, (b) analyzing how the number of cultural traits impacts the outcomes, 146 

(c) including payoff-biased learning strategies, and (d) modifying the life cycle such that 147 

individual learners can only learn before migration to a new site. Throughout the paper, we 148 

develop the models and present the results in the main text, leaving the derivations themselves in 149 

the online supplemental materials. We have done this in an effort to most effectively 150 

communicate with empirically-oriented evolutionary researchers who might test these 151 

hypotheses about learning strategies. We close by itemizing the empirical predictions, and by 152 

relating our findings to the effects of transmission error and the evolution of social behavior in 153 

contexts of cooperation, coordination, and complementarity.  154 

2. COMPARABLE SPATIAL AND TEMPORAL MODELS OF THE 155 

EVOLUTION 156 

Here we develop parallel models of the evolution of different social learning strategies in both 157 

spatially and temporally varying environments. The spatially varying model is developed in full 158 

in this paper by extending Aoki and Nakahashi (2008), and is solved analytically. To compare 159 

the effects of spatial vs. temporal variability, we draw on findings from two similar models of 160 

temporal variability: one developed here that most closely parallels our spatial model in using 161 

pure strategies, and a second previously published model (Nakahashi, 2007a) that uses mixed 162 

strategies similar to those explored by Henrich and Boyd (1998). We use both models because 163 

neither one can be fully solved analytically, so we draw on analytical results where possible and 164 

otherwise rely on simulations for comparisons. Nakahashi (2007b) has previously shown that 165 

these two models of temporal variability generate similar results under most conditions. 166 

Comparing results across these similar models allows us to illuminate the differential impacts of 167 

spatial vs. temporal variation on the evolution of social learning in general, and on conformist 168 

transmission specifically. 169 

2.1. THE BASELINE SPATIAL MODEL   170 

 In our structured population, individuals may occupy any of n different sites in a spatially 171 

heterogeneous world. Each site has a different environment with a specific corresponding 172 

cultural trait (learnable phenotype) that is adaptive at that site. Thus, we distinguish n 173 
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traits/phenotypes, each of which is locally adapted to one particular environment but maladaptive 174 

in the n-1 other environments. Traits that are maladaptive in all n environments are not 175 

incorporated into the dynamics. 176 

Individuals are of three genetically distinct types: unbiased social learners (UT: unbiased 177 

transmission is linearly frequency-dependent), conformist-biased social learners (CT: conformist 178 

transmission is non-linearly frequency-dependent), and individual learners (IL). Later, we add 179 

payoff-biased social learners (PT: payoff-biased transmission copies according to payoff 180 

differences). UT acquire their cultural traits by copying a random member of the previous or 181 

parental generation in the site they occupy (oblique transmission: Cavalli-Sforza & Feldman 182 

(1981)). CT acquire their traits by copying the most common trait in the previous generation at 183 

their sites, but suffer a mortality cost d due to abilities or activities associated with figuring out 184 

the most common trait. IL always acquire the trait that is adapted to the environment of the site 185 

they currently occupy, but suffer a cost c due to mistakes made before the mature behavior is 186 

realized. The parameter s is the selective cost of not acquiring the locally adaptive trait. We 187 

typically assume that: 0 1d c s    , meaning that individual learning is the most costly (c) 188 

strategy, followed by conformist transmission (d), and then unbiased social learning (which costs 189 

zero). The parameter s can be thought of as the fitness consequences of not figuring out what the 190 

locally adaptive thing to do is. Traits with high s have relatively larger fitness consequences. 191 

To track the numbers of individuals with each of our three different strategies, we use capitalized 192 

letters (Xij, Uij, Zij), indexed by i and j to respectively mark the current site in which the 193 

individuals live, and the current phenotypic trait exhibited by those individuals. Let ijX  (194 

ni 1 , nj 1 ) be the number of UT at site i that are adapted to the environment of site j. 195 

Then, at site i there are  


n

j iji XX
1

 UT in all, of which iiX  possess the locally adaptive trait 196 

and iii XX   possess one of the locally non-adaptive traits.  Similarly, let ijU  be the number of 197 

CT at site i that are adapted to the environment of site j. Then, at site i there are  


n

j iji UU
1

 198 

CT, of which iiU  possess the locally adaptive trait, and iii UU   possess one of the locally non-199 

adaptive traits. Let iZ  ( ni 1 ) be the number of IL at site i. IL always acquire the trait that is 200 

adapted to the environment of the site they occupy, but they suffer a cost from the efforts and 201 



   

Page | 8  

 

accidents of trial and error learning. The total population size at site i is i i i iN X U Z   . These 202 

numbers are enumerated at the adult stage just prior to reproduction.   203 

2.1.1. THE LIFE CYCLE 204 

The life cycle begins with reproduction, where each individual gives birth asexually to )( iNb  205 

offspring according to the discrete logistic equation: 206 

  
)/1(1)( KNrNb ii   (1) 207 

Here, 0r  and 0K  are assumed to be the same for each site.  Since the offspring are 208 

genetically identical to their parents, the numbers of UT, CT, and IL among the newborns at site 209 

i are )( ii NbX , )( ii NbU , and )( ii NbZ , respectively.  210 

 At the second step of the life cycle social learning occurs, either unbiased or conformist-211 

biased, as UT and CT acquire their traits by copying the parental generation. All members of the 212 

parental generation die immediately afterward. As a result, the number of UT at site i that are 213 

adapted to the environment of site j becomes 214 

  iijiijijii NZUXNbX /))((   (2) 215 

where ij  is Kronecker’s delta ( 1ij  when ji   and 0 otherwise).   216 

The number of CT at site i that are adapted to the environment of site j becomes 217 

  ijii NbUd )()1(   (3) 218 

where   219 

  

 





n

k

a

iikiikik

a

iijiijij

ij

NZUX

NZUX

1
]/)[(

]/)[(




   (4)    220 

Here, a is the strength of conformist bias, and CT always imitate the most common trait when221 

a . Developed in Nakahashi (2007a), this formulation of conformist transmission guarantees 222 
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that the probability of acquiring the most common trait in a local population is greater than the 223 

frequency of that trait in the population (assuming a > 1).   224 

 The third and fourth events in the life cycle are migration followed by individual learning for 225 

IL. For migration, a fixed fraction of the individuals at each site emigrate, yielding a constant 226 

forward migration rate. Here we use an island model with reciprocal migration between all pairs 227 

of sites at rate )1/( nm  )2/10( m . After migration, IL acquire the cultural trait suitable to 228 

their new (post-migration) environment, but they suffer a fixed mortality cost, c. Note that this 229 

assumption gives IL an advantage over the social learning strategies, which do not update their 230 

trait after migration. Below, we show that this assumption is crucial for the survival of individual 231 

learning, and works against the success of CT in the spatial model.  232 

The final stage in the life cycle is viability selection, in which all individuals with the locally 233 

adaptive trait survive while only a fraction s1  of individuals with the maladaptive trait survive.  234 

2.1.2. RECURSIONS FOR THE BASELINE SPATIAL MODEL  235 

 The above assumptions entail that the recursions be written as 236 

  
k

kiki
k

n

ik k

i

iiiii
iiii

N

UX
NbX

n

m

N

ZUX
NbXmX







  

)(
1

)()1( , (5) 237 

  








































 
k

kjkj

k

n

jik k

j

jjjjj

jj

i

ijij

ii

ij

N

UX
NbX

n

m

N

ZUX
NbX

n

m

N

UX
NbXm

sX

)(
1

)(
1

)()1(

)1(

,

, (6) 238 

 239 

  









   kik

n

ik kiiiiii NbU
n

m
NbUmdU  )(

1
)()1()1( , (7) 240 

  









   kjk

n

ik kijiiij NbU
n

m
NbUmsdU  )(

1
)()1()1)(1(  (8) 241 
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








  

)(
1

)()1()1( k

n

ik kiii NbZ
n

m
NbZmcZ , (9) 242 

where ni 1 , nj 1 , and ij   in Eqs. (6) and (8).   243 
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2.2. THE BASELINE TEMPORAL MODELS  244 

Now we develop a parallel model for a temporally varying environment using the same pure 245 

strategies, and then discuss a similar model involving mixed strategies (from Nakahashi, 2007a). 246 

Both temporally varying models assume that corresponding to each environmental state, there is 247 

one adaptive cultural trait or behavioral phenotype (fitness = 1) and other traits that are equally 248 

maladaptive (fitness = s1 ; i.e. the cost of maladaptive behavior is s). The environment changes 249 

every   generations ( 1 ), so that one post-change generation experiences a different 250 

environmental state from the previous generation, and 1  subsequent generations experience 251 

the same state as that post-change generation. That is, larger values of   imply more 252 

environmental stability. Here we use a fixed duration between environmental shifts in place of a 253 

randomly varying environment to maintain mathematical tractability. Prior work suggests that, 254 

for our purposes, this assumption does not produce essentially different results (Nakahashi, 255 

2007b).   256 

For our pure strategy temporal model, as in the spatial model, we assume the existence of three 257 

genetically encoded and asexually reproducing learning strategies: individual learners (IL), 258 

unbiased social learners (UT), and conformist social learners (CT). Later we introduce pay-off 259 

biased social learners (PT). IL always achieve the adaptive trait via individual learning, but 260 

suffer a fixed cost c.  Social learners (UT, CT, and later PT) copy a trait from the previous 261 

generation. When the environment changes, social learners always copy a maladaptive (wrong) 262 

trait and only IL behave correctly. UT acquire their trait by copying a random member of the 263 

parental generation. Paralleling our spatial model, CT acquire the cultural trait j with probability 264 

Pj, as in equation (4), where a gives the strength of conformist transmission:  265 

  


aaa

a

j

j
bbb

b
P

210
 (10) 266 

This means that the probability that CT imitate trait j is expressed by (10), where 210 ,, bbb  are 267 

the frequencies of individuals in the previous generation with the traits 0, 1, 2  respectively. 268 

CT suffer a mortality cost d.   269 
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 All this means that the fitness of IL is c1 while the fitnesses of UT and CT are, 270 

respectively, 1 and d1  if they have acquired the currently adaptive trait, and s1  and 271 

)1)(1( sd   if they have not acquired the adaptive trait. As above, we typically assume 272 

0 1d c s    .    273 

To extract as much analytical insight as possible from these two models (before moving to 274 

simulations), we have allowed for some differences vis-à-vis our spatial model. Both of these 275 

temporally varying models assume that the number of possible environmental states is infinite, 276 

so that when the environment changes it never reverts to an earlier state (infinite environmental 277 

states model). This makes these models most comparable to our spatial model when n in the 278 

spatial model is large (infinite), though we show n does not have to be particularly large before it 279 

approximates the infinite solution.  280 

2.2.1. RECURSIONS FOR THE BASELINE TEMPORAL MODEL WITH PURE 281 

STRATEGIES  282 

We set the initial condition such that the environment is in state 0 in generation 0 and all 283 

members have trait 0. In the next generation (generation 1) the environment changes to state 1 284 

and trait 1 becomes optimal. We suppose that trait i is optimal in state i. In a periodically 285 

changing environment, the environment changes every   generations so that the environment 286 

changes from state i to state i+1 between generation i  and generation 1i . 287 

 Suppose that the population is now in generation k and the environment is in state n.  Let the 288 

frequency of UT, CT, and IL after natural selection be )(kx , )(ku , and )(kz  ( ) ( ) ( )( 1)k k kx u z   , 289 

respectively, that of trait i be )(k

ib  and 



n

j

ak

j

ak

i

k

i bbP
0

)()()( )(/)( . Then,  290 

  )1(

1

)1()1(
)( )1)(1( 



 
 k

k

k

n

k

nk x
T

bsb
x  (11) 291 

  )1(

1

)1()1(
)( )1)(1(

)1( 



 
 k

k

k

n

k

nk u
T

PsP
du  (12) 292 
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where 296 

 








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297 

   

(16) 298 

From this model we will sometimes extract analytical insights, and supplement with simulations 299 

when necessary. 300 

To complement our use of the pure strategy model in temporally varying environments, we also 301 

draw on results from a mixed strategy model that is otherwise very similar to the above model 302 

(Nakahashi, 2007a). In this model, individuals have two parameters. The first sets the degree of 303 

reliance on either individual or social learning. The second specifies the strength of conformist 304 

transmission, a. That is, the probability that an individual who relies on social learning imitates 305 

trait j with the frequency jb  in the previous generation is expressed as (10). Below we will also 306 

sometimes present analytical findings from this model to provide a point of comparison. 307 

To compare spatial variability to temporal variability, we focus on comparing the impact of the 308 

parameter m, which gives the migration rate among sites in the spatial model (and thus the 309 

degree of mixing), with the parameter R=1/ . Since is the number of periods between 310 

environmental shifts, ranging from 2 to infinity, R gives a measure of temporal variability 311 

between 0 and 0.5 that parallels that provided by m. 312 
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3. COMPARISON OF RESULTS FOR BASELINE MODELS 313 

Let’s begin with the simplest cases. For the spatial model, we initially assume n, the number of 314 

cultural traits (and sites), is large and that the cost of using conformist transmission is zero (d = 315 

0). By assuming that n is large ( n ) we can most directly compare our spatial and temporal 316 

models. We also assume a is large such that CT always copy the most common trait from the 317 

previous generation. As we go along, we show that in many cases when CT are stable, only 318 

a  is stable against invasion by strategies with other values of a. Appendix A presents the 319 

formal details and derivations. 320 

Under these conditions, for different parameter combinations, the spatial model reveals only 321 

three unique and stable equilibria: (a) all IL, (b) all CT, or (c) extinction. IL are the unique stable 322 

equilibrium if 323 

  msc     (17) 324 

and 325 

  
c

c
r

c

c






 1

2

1
   (18) 326 

The first condition means that the cost of individual learning must be low relative to the product 327 

of the migration rate and the cost of not acquiring the locally adaptive trait. The second condition 328 

specifies that the intrinsic rate of population growth must fall into an intermediate range that 329 

depends only on c.  330 

There is a second set of conditions in which CT are a unique stable equilibrium if  msc   (the 331 

reverse of the above condition) and 332 

  
ms

ms
r




1
         (19) 333 

This means that if c and r are sufficiently large (relative to the product of m and s), CT is the 334 

unique stable equilibrium. Moreover, as shown in Appendix A, when CT are a stable 335 

equilibrium, CT with larger values of a can continually invade, so a will go to it maximum value. 336 

Thus, our assuming a  likely does little harm. 337 
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If neither of these two different equilibrium conditions hold, it means this population will go 338 

extinct because its intrinsic rate of reproduction is too low for the conditions posed by the 339 

combination of selection, migration, and the costs of individual learning.  340 

In the temporal model with pure strategies, we show that IL are a unique and stable equilibrium 341 

when  342 

 

 )1ln(

)1ln(1

s

c
R






  

(20) 343 

This indicates that IL are favored when environments are unstable (R is large), individual 344 

learning is cheap (c is small), and getting the locally adaptive traits is important (s is large). 345 

When this condition does not hold, numerical simulations indicate that the population consists of 346 

a fluctuating composition of IL, CT, and UT. Below, when we introduce payoff-biased social 347 

learners (PT), we solve this model analytically. Appendix B supplies these derivations.  348 

Figures 1A, 1B and 1C provide a comparison of our spatial and temporal models in the (m, c)- or 349 

(R, c)-parameter space. We have set s rather high at 0.5, which biases the plots in favor of IL. 350 

Despite this, Figure 1A shows that in a spatially varying environment, conformist bias is always 351 

at its maximum strength and is uniquely favored, except when individual learning is cheap and 352 

migration rates are high. Figure 1B shows the results of our simulations superimposed over of 353 

our analytically-derived line demarcating the stable region for IL. Figure 1C shows the analytical 354 

results drawn from Nakahashi (2007a) using a mixed strategy approach.  Viewing Figures 1B 355 

and 1C side by side highlights the similarity between the pure and mixed strategy approaches, 356 

and reveals that in both approaches CT are generally only favored for intermediate values of c. If 357 

the environment is sufficiently stable and the costs of individual learning are high, a mixture of 358 

UT and IL emerge. The mixed strategy model (Figure 1C) indicates that conformist bias does not 359 

evolve to its maximum strength, except in the narrow band shown.  360 
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(A) Spatial (B) Temporal (pure strategies) (C) Temporal (mixed strategy) 

 
  

Figure 1. Comparable plots in the (m, c)- and (R, c)-parameter space for spatially and temporally varying environments when d = 0 and n is infinite (s = 0.5, K = 

100, and r = 0.5). (A) The stable equilibrium strategies in a spatially heterogeneous environment assuming (0 < m < 1/2 and 0 < c < s). In the “IL” region IL are a 

unique stable equilibrium while in the “CT (strongest)” region CT are a unique stable equilibrium in which CT have the strongest conformity bias (where   
 ). (B) Numerical simulation of equilibrium pure strategies in a temporally changing environment (0 < R < ½, 0 < c < s, a = 10). The “∆” markers indicate that 

IL are the stable equilibrium, the “◊” markers indicate a polymorphic stable state for IL and UT, the “●” markers indicate a polymorphic equilibrium of IL and 

CT, and the “■” markers indicate a polymorphic equilibrium of IL, UT and CT. Filled markers mean the points where CT exist. The line in Figure 1B represents 

the threshold for the purely IL equilibrium, captured by equation (20). The precise region where CT can exist is impossible to obtain analytically, and the 

numerical simulations suggest a complex relationship among the parameters. (C) The ESS (mixed strategy) in temporally changing environment is shown in the 

(R, c)-parameter space (0 < R <1/2, 0 < c < s). The region “IL” indicates that IL are the unique stable equilibrium; the region “IL+CT(strongest)” indicates that 

mixed strategies with a mixture of individual learning and conformist transmission are an ESS, and that conformist transmission (when used) is at its maximum 

strength; the “IL+CT(intermediate)” region indicates stable mixed strategies involving individual learning and conformist transmission (but at which conformist 

transmission is not maximum strength); and the “IL+UT” region indicates a stable mixed strategy involving both individual learning and unbiased transmission.  
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3.1. MAKING CONFORMIST TRANSMISSION COSTLY 361 

The above results assume that using conformist transmission is costless and, in particular, no 362 

more costly than using unbiased social learning. Now we assume that using conformist 363 

transmission imposes a mortality cost, d > 0, by assuming that 0 1d c s    .  364 

For the spatial model we now have five different unique stable equilibria for different parameter 365 

values.  For IL, nothing changes. If (17) and (18) hold, IL are the unique stable equilibrium. This 366 

occurs when the costs of individual learning (c) are sufficiently small and r falls into an 367 

intermediate range. 368 

In the second situation, CT are a unique stable equilibrium if these three conditions are satisfied:  369 
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
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        (23) 372 

The first two conditions set thresholds for the costs of conformist transmission. The first 373 

condition (21) guarantees that CT outcompete IL, which means the maximum value of d depends 374 

on c and the product of m and s. The more costly individual learning is, the larger the range of 375 

conditions favoring CT.  The product of m and s captures the penalty suffered by migrating CTs 376 

when they first arrive in a new site. The second threshold for d (22) depends only on m and s, 377 

and gives the conditions for outcompeting UT. Here larger values of both m and s raise the 378 

threshold for d: when d is below this CT outcompete UT. Condition (23) merely guarantees that 379 

the population reproduces sufficiently rapidly to avoid extinction. 380 

In the third regime, assuming (21) and (23) from above are satisfied (so, no IL and no 381 

extinction), a polymorphic stable equilibrium of UT and CT exist when the cost of conformist 382 

transmission falls into this range:  383 
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  (24) 384 

In the fourth regime, a mixture of IL and UT are a unique stable equilibrium if  385 

  )]1)(1(1,min[ msdmcms         (25) 386 

as long as 387 
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Note that if d = 0, condition (25) is never satisfied, and this is generally a rather narrow region.  389 

 In the fifth regime, UT are a unique stable equilibrium if these three conditions are satisfied: 390 
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Finally, if the intrinsic rate of growth of the population is too slow, the population will go 394 

extinct.   395 

For the pure strategy temporal model with 0d   we can analytically derive the region in which 396 

IL are the unique stable strategy, and it turns out to be the same as in (20). However, beyond this, 397 

we must rely on simulations of our pure strategy model. Below we also discuss the mixed 398 

strategy temporal model. 399 

Figure 2 compares our analytical results for the spatial model with our simulations of the 400 

temporal model for the case when 05.0d  (otherwise using the same parameters as in Figure 401 

1). For the spatial case, adding costs for conformist transmission means that (a) when mixing 402 

rates are sufficiently low, UT can be a unique stable equilibrium, (b) when mixing rates are 403 

intermediate, UT can coexist with CT, and (c) a narrow polymorphic region of equilibria 404 

involving UT and IL separate stable regions of UT, CT, or mixes of CT and UT, from those with 405 
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pure stable IL. By contrast, in the temporal model, CT are only found in mixtures with IL or 406 

sometimes with both IL and UT, and this region is limited to a rather narrow band. By 407 

comparing Figure 2B with Figure 1B we see that occurrences of CT seem even sparser, and 408 

limited to an even narrower band of the (R, c)-parameter space.  409 

For the mixed strategy temporal model, the outcome depends on how the relationship of d with 410 

the strength of conformist transmission (a) is modeled.  If we express d as a function of a, d(a), 411 

and set d(1) = 0 to match the pure strategy model (UT is costless), then we can show that if the 412 

derivative of d at a=1 is greater than zero, 0)1( d , then the stable regions of IL and UT in 413 

Figure 1C expand. Since social learners must investigate the frequencies of cultural traits when 414 

a>1 and this is probably costly, assuming  0)1( d  is defensible. This analysis indicates that the 415 

findings from our two temporally models are at least qualitatively consistent. 416 

Overall, making conformist transmission costly relative to unbiased transmission does not 417 

qualitatively alter the results from our simplest models (Figure 1). In the spatial model, assuming 418 

even moderate amounts of mixing, CT always exist as long as individual learning is sufficiently 419 

costly. Within this parameter range: the more mixing, the more CT are favored. By contrast, in 420 

the models with temporally varying environments, CT are favored in an even narrower band of 421 

parameters than in the earlier temporal model.    422 

       423 
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(A) Spatial (B) Temporal (pure strategies) 

 
 

Figure 2. Comparable plots in the (m,c)- and (R, c)-parameter space for spatially and temporally varying environments when conformist transmission is costly (d 

= 0.05) and n is infinite (s = 0.5, K = 100, and r = 0.5). (A) The equilibrium in a spatially heterogeneous environment assuming (0 < m < 1/2 and 0 < c < s). In the 

“IL” region all organisms are individual learners (IL equilibrium), while in the “CT” region all organisms are social learners with the strongest conformity bias 

(CT equilibrium); in the “UT+IL” region the polymorphic equilibrium consists of unbiased social learners and individual learners, while the “UT+CT” region is 

a polymorphic equilibrium of unbiased social learners and conformist social learners. (B) shows the outcomes of numerical simulations of equilibrium pure 

strategies in a temporally changing environment (0 < R < ½, 0 < c < s, a = 10). The points “∆” mean that all organisms become individual learners; the “◊” marks 

a polymorphic equilibrium of individual learners and social learners with unbiased transmission; the “●” marks a polymorphic equilibrium of individual learners 

and social learners with conformist transmission, and the “■” marks a polymorphic equilibrium of individual learners, unbiased social learners, and conformist 

social learners. Filled points indicate situations in which some conformist social learners exist. The line represents the analytical threshold for the pure individual 

learning equilibrium (equation (20) above).  
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3.2. HOW DOES THE NUMBER OF CULTURAL TRAITS INFLUENCE THE 424 

EVOLUTION OF CONFORMIST TRANSMISSION? 425 

Thus far we have assumed that the number of cultural traits (n), as well as the number of sites in 426 

the spatial model, is large ( n ). This has allowed us to simplify the mathematical 427 

expressions above and provide a more direct comparison with the infinite trait models of 428 

temporally varying environments. Now we consider how increasing n above two traits influences 429 

the evolution of conformist transmission. This is especially important since most prior models 430 

have assumed only two cultural traits. Exploring this also allows us to consider how broadly 431 

applicable our prior assumption of large n is.  432 

The effect of trait number, n, in the spatial model is to increase the range of conditions favoring 433 

CT over polymorphic equilibria of CT and UT, and to increase the range of conditions favoring 434 

polymorphic equilibria of CT and UT over UT alone. Since the conditions favoring the fixation 435 

of IL are the same as those above, this leaves us with five additional equilibrium situations.  436 

In the first of our five equilibrium situations, CT are a unique stable equilibrium if (21), (23) and 437 
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are satisfied. This inequality reveals the relationship between n and d. As n increases the fourth 439 

term on the right-hand side of this inequality shrinks by a fraction )1/(1 n . Thus, as n gets large, 440 

this term goes to zero (reducing the condition back to (22)), which increases the maximum value 441 

of d under which CT are still favored over other strategies.  442 

If d is larger than in condition (30) while (21) and (23) are still satisfied, then UT and CT will 443 

exist in a stable polymorphic equilibrium provided d is not too large. Inequality (31) sets the 444 

range for d at this equilibrium: 445 
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where  447 
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 (32) 448 

If both c and d are sufficiently large, UT are the third unique stable equilibrium. CT are 449 

prevented from invading if d exceeds the upper threshold set in inequality (31). IL are prevented 450 

from invading, and extinction is avoided if c and r exceed these thresholds: 451 

  )1(  mc       (33) 452 
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A fourth equilibrium situation arises in which combinations of IL and UT create a unique stable 454 

equilibrium. Under these circumstances, c must fall between these thresholds:  455 

  )]1)(1(1),1(min[ msdmcms    (35) 456 

This condition guarantees that CT cannot invade while keeping individual learning sufficiently 457 

costly that IL cannot completely take over. To avoid extinction, r must be sufficiently large to 458 

satisfy (26).  459 

The final situation is that the entire population goes extinct. This occurs if r is too small, and falls 460 

below the smallest of the threshold conditions for r (inequalities: (34), (26), and (23)). In these 461 

models, the intrinsic growth rate r only affects whether the entire population goes extinct and 462 

does not affect the evolution of conformity or the other strategies. 463 

It is somewhat difficult to tell from these complicated expressions precisely how n influences the 464 

conditions favoring the evolution of different learning strategies. However, as we graphically 465 

show in Figure 3A and prove in Appendix A, increasing n above two substantially increases the 466 

conditions favoring CT. Figure 3A shows the stable strategies for n = 2, 4, 8, 16, and  . As n 467 

increases, the values of m favoring stable CT expand, while those favoring UT and combinations 468 

of UT and CT contract. The largest impact of n occurs in moving from two traits to four traits, 469 

with only a small change from eight to sixteen traits. Here, when CT are favored, the strongest 470 

form of conformist transmission is always favored ( a ). It is important to realize that here we 471 
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have set d = 0.05. Had we set d = 0, all the bars would have been entirely green (all CT at 472 

maximum strength). Appendix A formally proves that increasing n decreases the size of the 473 

region for fixation in UT and increases the size of the region for fixation in CT.  474 

Now we compare our spatial and temporal models. To obtain comparable results for the temporal 475 

case, we draw on the mixed strategy model. This provides us with the two extremes; when there 476 

are only two (recognizable) traits and when the number of traits is infinite. Figure 3 compares the 477 

impact of different values of n in our spatial and temporal models, using both the parameters 478 

used above in prior figures and the values of s, d and c that set an order of magnitude lower. 479 

Figures 3A and 3C show how increasing n increases the range of conditions dominated by 480 

conformist transmission at maximum strength. Figures 3B and 3D show the parameter ranges 481 

that favor either mixed strategies with both IL and CT or with both IL and UT. It is never the 482 

case in the temporal model that CT are favored at its maximum strength, though increasing n 483 

from two to infinity substantially increases the size of the regions that include some CT, 484 

especially when s is small (compare Figures 3B and 3D). This suggests, and results in Nakahashi 485 

(2007a) confirm, that increasing n in our temporal model expands the conditions favoring 486 

conformist biases in social learning.  487 

Note that in Figures 3B and 3D d = 0, while in Figures 3A and 3C d = 0.05 and d = 0.005 488 

(respectively), so this figure is biased against the evolution of CT in spatially varying 489 

environments. Consequently, we focus on the effects of increasing n in the different models, not 490 

on the size of the regions with CT. Above, we discussed the challenges of assuming d > 0 in the 491 

mixed strategy model, and note that if we assume d = 0 in the spatial model the importance of n 492 

cannot be observed since CT completely dominate for 2n . 493 
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Spatial Model with costly conformist transmission (d > 0) Temporal Model (mixed strategy) 

 
 

  

Figure 3. These plots illustrate the relative impact of different numbers of cultural traits on the learning strategies favored in spatially and temporally varying 

environments. For Figures 3A and 3B, the parameters are the same as those used above: 5.0s , 3.0c , 100K , and 5.0r , while for Figures 3C and 

3D the parameters are 0.05s  , 0.03c  , 100K , and 5.0r . The lower panels allow us to observe the effect of n on conformist transmission when s 

is an order of magnitude smaller than used above. Figures 3A and 3C show the effect of the number of traits (sites) in the spatial model by comparing n = 2, 4, 8, 

16, and  , where 0.05d  and 0.005d  , respectively. The regions are marked as in previous figures. For Figures 3A and 3C, CT have the strongest 

conformity bias. Realize that if we assume d = 0, as in Figures 3B and 3D, all the bars in Figures 3A and 3C would be green (all CT). Figures 3B and 3D, 

drawing on Models 2 and 3 of Nakahashi (2007a), shows the effect of the number of traits in a temporally changing environment for n = 2 and  . The “IL+CT” 

region marks the conditions where the favored mixed strategy deploys both individual learning and conformist transmission (with an intermediate strength).     

A B 

C D 
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In Figure 1A (n = 2), the dominance of UT at both low and high migration rates, with a mixture 494 

of UT and CT in the middle range, highlights an interesting feature of these evolutionary 495 

processes. When m is low (few migrants), UT get the adaptive trait almost as often as CT. Since 496 

CT pay a mortality cost for its conformist abilities, UT can dominate at low m. As m increases, 497 

CT non-migrants get the adaptive trait relatively more frequently than UT non-migrants, 498 

resulting in a polymorphic equilibrium. When m is high, many CT and UT are migrants to new 499 

sites. At new sites, CT never has the locally adaptive trait, and thus suffers both mortality costs s 500 

and d. Compared to CT, UT migrants are more likely to possess the locally adaptive trait for 501 

their new site (which is non-adaptive back in their home site). This effect is strongest when n = 2 502 

because UT migrants who have adopted the locally non-adaptive trait in their home population 503 

always end up moving into a site in which their trait is now adaptive. CT migrants never end up 504 

in such a site. However, as n increases, UT’s chances of ending up in a site where their behavior 505 

is locally adaptive plummets as 
1

1

n
 . 506 

3.2.1. RELATIONS WITH PRIOR MODELS USING A HEURISTIC APPROACH 507 

Both the spatial and temporal models indicate that increasing n above two substantially expands 508 

the conditions favoring the evolution of conformist transmission, though increasing n above 509 

about eight yields only small and diminishing effects (at least in the spatial model). This means 510 

that considering more than two traits is important for understanding the conditions favoring the 511 

evolution of conformist transmission. It also means that our above assumption of n being large 512 

provides a good approximation for a wide range of conditions. 513 

To intuitively understand how larger values of n (above 2) empower conformist transmission, 514 

let’s go back to the original formulation used by Boyd and Richerson (1985): 515 

  )12)(1()(  ppDpppB   (36)  516 

Here, B(p) is the probability of a conformist learner acquiring a particular trait, whose frequency 517 

in the population is captured by p. D gives the strength of conformist transmission, which we 518 

will assume is 1 (its maximum) for this example. This was derived assuming two cultural traits 519 
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exist (n = 2) and that individuals select three models each, at random, from that population, 520 

giving weight D to the most common variant in their small sample.   521 

Now we compare two situations: the first with two traits ( 2n ) and the second with many traits 522 

( 2n ). In both situations we assume that there is only one locally adaptive trait and assign it a 523 

frequency p. Our conformist learner (CT) selects three models at random from the population, 524 

and the probabilities for the trio possessing 0,1,2, or 3 of the locally adaptive traits are the same 525 

in both our n = 2 situation and our n > 2 situation: 3223 ,)1(3,)1(3,)1( pppppp  . In the 526 

two trait situation, CT always imitate the locally adaptive trait when the number of models with 527 

adaptive trait is 2 or 3 but never imitates when only 0 or 1 of models has the adaptive trait. When 528 

n = 2, the probability of imitating the adaptive trait is 2 33(1 ) (1 )(2 1)B p p p p p p p       , 529 

so B p  when 2/1p . By contrast, in the situation with n > 2, CT always imitate the adaptive 530 

trait when 2 or 3 models display this trait, sometimes imitates it when 1 model displays it, and 531 

never imitates it when none of the three have it. That is, in this situation, even when the number 532 

of models with the adaptive trait is 1, the other two targets sometimes have different non-533 

adaptive traits so that conformists still imitate the adaptive trait with probability 1/3. The 534 

probability that CT imitate the adaptive trait depends on the frequencies of the other non-535 

adaptive traits. This probability, B, is largest when the frequencies of non-adaptive traits are the 536 

same (i.e., )1/()1(  np ) and smallest when the frequency of one non-adaptive trait is largest, 537 

almost p1 . When the frequencies of the non-adaptive traits are the same, the probability of 538 

imitating the locally adaptive trait is 539 
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 (37) 540 

Thus, B p when np /1 . When the frequency of one of the many non-adaptive traits is almost541 

p1 , the probability of acquiring the adaptive trait is the same as in the two trait situation. In 542 

general: 543 
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For UT, the probability of acquiring the adaptive trait is the same (p) in both the n = 2 and the 545 

2n situations because the frequency of the adaptive trait is the same in both cases. So, CT can 546 

be favored over UT even when 2/1/1  pn  .  547 

Figure 4 summarizes this heuristic analysis and indicates that increasing the number of cultural 548 

traits increases the strength of the selective forces favoring the evolution of conformist 549 

transmission, regardless of the particular expression used to capture the idea behind conformist 550 

transmission. Importantly, note that there are no explicit fitness costs or environmental variation 551 

in this heuristic approach.  552 

 

Figure 4. Illustration of our heuristic analysis of the effects of increasing the number of cultural traits on the relative 

advantage of CT vs. UT.  

 553 

So far, we have made the simplifying assumption that n is both the number of sites and the 554 

number of cultural traits. Appendix A explores how our results change if we separate the number 555 
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of sites from the number of traits. By assuming that the number of sites is large (infinite) and the 556 

number of traits is n, we show that the qualitative results do not change. The threshold values for 557 

the invasion of CT into a population of UT and for the stability of an pure CT equilibrium 558 

increase by a factor of 
1n

n
 . As n increases, the ratio approaches 1, so the thresholds for m 559 

approach the results presented above. This indicates that as long as the number of sites is large, 560 

our conclusions are not substantially affected by matching the number of sites with the number 561 

of cultural traits. 562 

The basic insights from this section will be important below in our discussion of how, even in the 563 

absence of spatial variability, learning and transmission errors can create a steady inflow of 564 

suboptimal cultural traits (increasing n) that mimics the inflow created by spatial variability and 565 

mixing. This means that these insights are likely important in considering situations involving 566 

both static and temporally varying environments, and especially in situations of cumulative 567 

cultural evolution in which transmission errors are likely to increase as trait complexity and 568 

diversity increases. 569 

3.3. HOW DOES THE INCLUSION OF PAYOFF-BIAS SOCIAL LEARNING 570 

CHANGE THE PREVIOUS RESULTS? 571 

While much work has examined the evolution of conformist learning strategies in competition 572 

with individual learning and unbiased or vertical transmission strategies, less work has examined 573 

whether conformist transmission can evolve in the presence of strategies that use the payoff 574 

differences among cultural traits in figuring out what to adopt (Kendal, et al., 2009). Now, we 575 

add payoff-biased cultural learning (PT) to our set of pure strategies and examine what happens 576 

in both spatially and temporally varying environments.  577 

To the above baseline model we add the strategy PT, which copies the cultural trait with the 578 

highest payoff in the local population (the site) at a mortality cost g. We typically assume, 579 

0 1    d g c s . This assumption seems plausible, given that PT have more complicated task 580 

than CT, which involves assessing payoffs or at least relative payoff differences for the cultural 581 

traits present. There may be particular situations in which d > g; this will expand the range of 582 

conditions favoring PT.  583 
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Using the same notation as above for the baseline spatial model, we can write down the 584 

recursions for the frequency of PT. Vii and Vij represent the number of PTs at site i who possess 585 

the locally adaptive cultural trait and the number of PT who possess the trait that is adaptive at 586 

site j, respectively:  587 

  )()1)(1( iiii NbVmgV   (39) 588 
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The other recursions presented above are modified slightly to include the V’s. A full derivation 590 

can be found in Appendix A.  591 

Given the potency of payoff-biased cultural learning in other contexts (Kendal, et al., 2009; R. 592 

McElreath, et al., 2008), our results are surprisingly stark.  If the cost to PT is larger than that to 593 

CT (i.e., dg  ), PT never evolve. That is, our findings presented above hold, unchanged 594 

(Figures 1A and 2A hold even if PT enters the fray). If both CT and PT suffer the same mortality 595 

costs (d = g), they are neutrally stable—both always learn the adaptive trait for their home site 596 

and suffer a cost when they migrate.  597 

The temporal model gives quite different results. Here we focus on our pure strategy model and 598 

rely on a combination of analytical and numerical simulation results. We begin by presenting key 599 

findings from the available analytical results, and then combine these with simulations to 600 

generate a comparison with our spatial model. The derivation can be found in Appendix B.  601 

Analytically, we show that IL are the stable equilibrium when  602 
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PT can invade IL when  604 
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Assuming mutation maintains IL in the population at some low frequency, PT remain stable at 606 

high frequency in the population when   607 
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 (43) 608 

We could not analytically delineate the region where CT can exist, but numerical simulation 609 

suggests complex relationships with the parameters. Our simulations all indicate that CT are not 610 

very important in a temporally varying environment, especially when PT are in the mix. 611 

Logically, if PT suffer no additional learning cost, PT are favored over UT/CT. But if PT suffer a 612 

cost (g), UT/CT can invade a PT+IL because when the frequency of PT and IL are sufficiently 613 

large, UT can easily imitate the locally adaptive trait, so that the frequency of PT cannot exceed 614 

some value. Of course, the details should depend on g and d. 615 

Figure 5 combines our analytical and simulation results for this temporal pure strategy model. It 616 

can be compared with Figure 2A, since our spatial model’s results do not change with the 617 

addition of PT (assuming g > d > 0). On Figure 5, the lower curve represents the analytically-618 

derived threshold of the IL equilibrium (41). The upper curve demarcates the threshold at which 619 

PT can exist at equilibrium (42), and the vertical line represents the threshold of an almost purely 620 

PT equilibrium (43).  621 

For the temporal model, this combination of numerical and analytical findings suggests that five 622 

different regions exist in the temporal model. Two regions involve equilibria of pure strategies of 623 

either PT or IL. A third region permits combinations of UT and PT while a fourth region has 624 

combinations of IL and UT. The final region always includes IL, mixed with either UT or CT, or 625 

both.  A comparison of Figures 5 and 2B reveal the dramatic impact of introducing PT into the 626 

mix of pure strategies, as PT dominate when both c and R are high and exists in a polymorphic 627 

equilibrium with UT when c is high and R is low (stable environments). 628 
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Figure 5. Equilibrium regions for our pure strategy temporal model in (R,c)-parameter space ( s = 0.5, a = 10, g = 

0.1, n =  and d = .05). Numerically, we obtain the equilibrium frequencies of UT, CT, PT, and IL from several 

initial frequencies. The symbol “∆” means that IL evolve to fixation. The points labeled “○” indicate that PT 

evolve to fixation. “□” indicates a polymorphic equilibrium of UT and PT. “◊” indicates a polymorphic 

equilibrium of IL and UT. “●” indicates a polymorphic equilibrium of IL and CT. “■” indicates a polymorphic 

equilibrium of IL, UT and CT. Filled markers indicate where CT exist at equilibrium. The lower curve represents 

the analytically-derived threshold of the IL equilibrium. The upper curve demarcates the threshold at which PT 

exist at equilibrium. The vertical line represents the threshold for a purely PT equilibrium.   

 629 

To illustrate the dynamics of our models with PT, Figure 6 presents two simulation runs, one for 630 

our spatial model (Figure 6A) and the second for our temporal model (Figure 6B). Both models 631 

used these common parameters: 5.0s , 3.0c , 1.0g , 0d , 10a , 100K , and 5.0r . 632 

Note that 10a   is sufficiently strong to closely approximate a = ∞. For the spatial model we set 633 

the initial number of UT, CT, PT, and IL to be 
n

K
VUX ijijij

4
  for all i, j, and / 4iZ K .  634 

That is, the initial frequencies of UT, CT, PT, and IL are 0.25. We also set 4n , so as not to 635 

give CT too much of an advantage in the spatial model and 2.0m . For the temporal model we 636 

set the initial frequencies of UT, CT, PT, and IL to be 0.25, and set 5  (R=0.2) to parallel the 637 

setting m in our spatial model.   638 
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(A) Spatial 

 

(B) Temporal 

 

Figure 6. Illustrative evolutionary dynamics for our four different pure strategies in (A) spatially and (B) 

temporally varying environments for parameters 0.5s  , 3.0c , 1.0g , 0d , and 10a . We set the 

initial frequencies of UT, CT, PT, and IL be 0.25. In Figure 6A, 2.0m , 100K , and 5.0r , and in 

Figure 6B, 5  ( 2.0R ). 
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Both Figures 5 and 6 reveal a fairly stark contrast in how CT and PT respond to selection in 639 

spatially vs. temporally varying environments. If anything, adding PT to a mix of strategies 640 

accentuates the difference in the selective regimes created by spatially vs. temporally varying 641 

environments. 642 

3.4. WHEN IL CANNOT LEARN AFTER MIGRATION OR ENVIRONMENTAL 643 

SHIFTS 644 

Thus far our models have permitted an asymmetry among the four pure learning strategies by 645 

assuming that IL can immediately acquire the locally adaptive trait after migration, or after an 646 

environmental shift, but UT, CT and PT cannot learn new traits later in their life cycle. Here we 647 

present results from analyses in which we level the playing field so that IL cannot re-learn its 648 

adult trait after migration, or after an environmental shift. Like the social learners, IL are stuck 649 

with whatever it learned while growing up. Our results indicate that this assumption about IL has 650 

suppressed the success of CT in our spatially varying model while having no effect in our 651 

temporally varying model. 652 

For the spatial model, Appendix A shows how we altered our baseline recursions to 653 

accommodate this change in IL’s life cycle. We present only the results here. When CT suffer no 654 

cost (i.e., 0d ), fixation of CT and extinction are the only possible stable equilibria (UT,PT, 655 

and IL never evolve). If d is greater than zero but still smaller than g and c, IL and PT never 656 

evolve. That is, if 10  scgd , there are only four stable outcomes: (1) all CT, (2) all 657 

UT,  (3) mixtures of CT and UT, and (4) extinction. CT are the unique stable equilibrium if 658 

inequalities (31) and (23) hold, which guarantees that d is sufficiently small to prevent UT from 659 

invading, and r is sufficiently large to prevent extinction. These are two of the three conditions 660 

previously necessary for CT to remain stable in the model, when IL could learn after migration. 661 

The third condition is no longer necessary, since it was the required condition to hold IL at bay—662 

IL’s advantage obtained by being able to learn after migration. The second equilibrium situation 663 

also parallels the above case, and occurs when d falls into an intermediate range set by inequality 664 

(32), assuming that r is sufficiently large that (23) is not violated. In the third situation, UT 665 

emerge as the sole stable equilibrium if d exceeds the upper threshold marked by (32) and r is 666 
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sufficiently large that (34) holds. Finally, if r fails to exceed either (23) or (34) extinction is the 667 

only long-term result. 668 

The results are quite different in our pure strategy temporal model, detailed in Appendix B. This 669 

constraint on IL means that it cannot adapt immediately when the environment changes to obtain 670 

the locally adaptive trait. If IL cannot adapt, then neither can any of the social learning strategies 671 

(UT, PT and CT). Any constraint placed on IL in this temporal model that delays acquisition of 672 

the locally adaptive trait is subsequently imposed downstream on UT, PT, and CT since they 673 

ultimately rely on IL to figure out the locally adaptive trait. This means that there is no 674 

qualitative difference in the findings for this version of the temporal model compared to the case 675 

when IL can acquire the currently adaptive trait immediately after the environmental shift. 676 

Overall, leveling the playing field to constrain IL expands the range of conditions favoring CT 677 

(and social learning more generally) in the spatial model, but does not change the conditions in 678 

the temporal model. Future work should examine what happens with all of our strategies can 679 

learn after migration but before selection. 680 

4. DISCUSSION 681 

In broadening, applying, and contextualizing our modeling results we focus on three areas. First, 682 

we discuss how the spatial variation we analyzed above, which powerfully favors the evolution 683 

of conformist transmission, represents but one source of low-level, non-adaptive, phenotypic trait 684 

variation. By non-adaptive trait variation we mean the presence of additional cultural variants 685 

(phenotypes) that are distinct to the learner, but not distinguishable from many other variants in 686 

terms of payoffs in the current environment. It is this non-adaptive variation, not spatial variation 687 

per se, that favors conformist transmission. Other factors, like learning errors or transmission 688 

noise will also produce a similarly persistent low volume inflow of non-adaptive variation. This 689 

means that even in the absence of spatial variability, conformist transmission can provide an 690 

adaptive advantage. Second, with empirical tests in mind, we develop a set of predictions from 691 

our formal results that are suitable to experimental testing. Third, although our models are 692 

focused on cultural traits applied in non-social contexts (e.g., which berries are edible), we 693 

consider the evolution in conformist transmission for acquiring traits or strategies for interacting 694 
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in social situations. We argue, contrary to recent claims, that conformist transmission can still be 695 

adaptive in situations involving cooperation and punishment, and even in situations involving 696 

complementarities.  697 

4.1. LEARNING ERROR AS SOURCE OF NON-ADAPTIVE VARIATION 698 

The kind of non-adaptive phenotypic trait variation (cultural traits) created in our spatial model 699 

by a combination of environmental differences among sites and migration is merely one 700 

manifestation of a more general adaptive challenge with which successful social learning 701 

strategies must contend. Conformist transmission is frequently favored in these spatially varying 702 

environments because of its ability to successfully ignore, or avoid acquiring, the non-adaptive 703 

cultural traits brought in via migration from other sites. There are, however, a variety of 704 

processes that can generate a similar adaptive challenge to that created by spatial environmental 705 

variation, including errors or noise produced during learning and transmission (which we did not 706 

explicitly model). 707 

Both mistakes in individual learning and a variety of errors in cultural transmission can create 708 

the same kind of low-level trait variation as does environmental variation and migration. Even in 709 

a completely static environment, errors and mistakes by both individual and social learners can 710 

inject a steady flow of non-adaptive cultural traits (increasing n and effectively m) into the local 711 

population. Individual learners may sometimes “goof-up” and “invent” something that is both 712 

new and non-adaptive. Social learners are likely to create a great variety of novel and less 713 

adaptive cultural traits, especially when acquiring more complex cultural traits, by (a) 714 

misperceiving what their models are doing, (b) making errors during the inferential steps of 715 

imitation, or (c) misremembering elements of cultural traits at some later time (J. Henrich & 716 

Boyd, 2002). Successful social learners need to figure out how to avoid this constant injection of 717 

non-adaptive variation. Conformist transmission provides one way to “squeeze out” this non-718 

adaptive variation at (potentially) a low cost (see analogy with robust estimators in Boyd & 719 

Richerson, 1985: Chapter 7). 720 

Of course, there are other ways to address this challenge. Payoff-biased strategies can avoid this 721 

non-adaptive variation, but these strategies are likely more costly in general, and potentially 722 

quite a bit more costly. And, if a learner’s payoff information is itself noisy, then conformist 723 
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transmission can still be a superior strategy (J. Henrich & Boyd, 2002; R. McElreath, et al., 724 

2008)—especially if the learner accurately perceives that he or she is likely to be less well 725 

informed about payoffs than many others in the local population. Other important strategies that 726 

can address this problem include blending mechanisms, which present a cousin of conformist 727 

biases, and the use of ethnic markers (Boyd & Richerson, 1985: Chapter 4; Boyd & Richerson, 728 

1987; R. McElreath, et al., 2003).  729 

It is also not the case that one need choose between payoff and conformist biases. Consider a 730 

social learning strategy that samples M models from the local population and estimates which N 731 

of these M models have the highest payoffs, or are the most successful. Our integrated learner 732 

then applies conformist learning to these N. When payoff differences are non-existent, or too 733 

noisy to be successfully differentiated, this algorithm reduces to pure conformist transmission. 734 

When payoff differences between traits can be recognized, but traits can be misperceived (the 735 

model is doing A, but learners misread it as B), this heuristic improves the accuracy of payoff-736 

biased learning. This, and other more complex heuristics, can obtain the noise-reducing benefits 737 

of conformist transmission while still achieving the rapid adaptability and flexibility of payoff-738 

biased learning (J. Henrich & Boyd, 2002). 739 

We think this may be particularly important for understanding cumulative cultural evolution. As 740 

tools, for example, evolve culturally to become more complicated, errors in cultural transmission 741 

will increasingly introduce non-adaptive variation at the same time as payoff differences get 742 

harder to detect, or at least, to trace to particular differences in the tools, or their manufacture. 743 

After selectively sampling those with higher payoffs, copying the most common step or 744 

technique in the manufacture of a complicated tool can still allow learners to avoid copying non-745 

adaptive variation.  746 

4.2. PREDICTIONS 747 

One of the primary goals of evolutionary modeling is to generate clear, precise, empirical 748 

predictions about the operation of psychological mechanisms, and specifically in this case about 749 

the cognitive mechanisms that underpin our cultural learning abilities. Here we outline four 750 

testable predictions, derived from our modeling efforts above: 751 



   

Page | 37  

 

1) Increasing the migration rates (m) among different environments (local populations) 752 

should increase individuals’ reliance on conformist transmission, provided the costs of 753 

individual learning are not too low (Figure 2A). By contrast, increasing the rate of 754 

environmental fluctuations, should not have similarly sharp effects (see Figure 2B, 755 

focusing on increasing R).  756 

2) Increasing n, the number of cultural traits, in the presence of low-level trait variation 757 

should increase individuals’ reliance on conformist transmission. This is best illustrated 758 

in Figures 3A and 4. The degree of increase of reliance on conformist transmission 759 

should be more pronounced in moving from two traits to four traits with declining 760 

increases thereafter. See Figure 4 for a heuristic relationship. Both increasing m and n 761 

raises the rate of influx of local non-adaptive traits variation. Similar predictions should 762 

hold if learning errors or transmission noise is increased, even in stable environments.  763 

3) Increasing the costs of individual learning (c) in an environment with persistent low-764 

levels of trait variation should increase individuals’ reliance on conformist transmission, 765 

provided that the levels of trait variation are not too low (Figure 2A).  766 

4) Increasing the costs of non-adaptive behavior (s) should decrease individuals’ reliance on 767 

conformist transmission and increase reliance on individual learning provided other costs 768 

(c, d, g) are constant.  769 

These predictions can drive new field and experimental research on learning strategies, while 770 

informing existing work showing substantial heterogeneity in individual strategies (Efferson, 771 

Lalive, & Fehr, 2008; Efferson, Lalive, Richerson, McElreath, & Lubell, 2008; R. McElreath, et 772 

al., 2008).  773 

4.3. SOCIAL INTERACTION, REPUTATION, PUNISHMENT AND 774 

COOPERATION 775 

Like much prior work, our models analyze the evolution of different social learning strategies by 776 

assuming that the traits being learned are non-social, or at least that their payoffs do not depend 777 

on the frequency of other cultural traits in the local population. Skills or techniques related to 778 

food choice or tool manufacture might be most appropriate. Here we consider how using various 779 

learning strategies for acquiring social behavior might influence the evolution of conformist 780 
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transmission, or at least the range of domains or types of problems to which it might be applied. 781 

We think our models are particularly useful in this regard, since as we argue below, the cultural 782 

evolution of social behavior may often create a kind of spatial variability much like what we 783 

have modeled.  784 

To explore this we consider three kinds of social interactions in groups, those involving (1) 785 

coordination, (2) cooperation, and (3) complementarity (Erikksson, et al., 2007). In coordination 786 

games, conformist transmission is clearly an adaptive strategy as learners need to figure out what 787 

most people are doing among those whom they are most likely to interact with in the future. If 788 

everyone expects dowries to be paid along with daughters, then our learner adopts the practices 789 

associated with dowry. If bride prices or bride services are paid to the wife’s family, then our 790 

learner adopts this strategy. The effectiveness of conformist transmission in these situation seems 791 

uncontroversial, though some have argued that payoff biases gets one the same answer. This is 792 

true, but payoff biased transmission requires learners to acquire and process payoff information, 793 

which is likely more costly relative to frequency information. The precise difference depends 794 

heavily on the costs of various sorts of information and its relative accuracy.  795 

For many different coordination problems cultural evolution can generate a wide variety of 796 

solutions. The important thing in a coordination problem is to do what the majority does. This 797 

applies to such problems as driving on the left or the right, relying on a lunar or solar calendar, or 798 

closing the factory on a particular day of the week. If different groups wind up at different 799 

solutions, a kind of spatial variation can emerge that parallels what we have modeled above. The 800 

important thing for migrants is to acquire the most common behavior in whatever population 801 

they end up in, while non-migrants just need to make sure they don’t mistakenly copy a new 802 

arrival (from a group with a different coordinated solution).   803 

The second and more controversial kind of social interaction involves problems of cooperation, 804 

and in particular situations of larger-scale or n-person cooperation. In this kind of social 805 

interaction the group does best if everyone cooperates, but defecting individuals can free ride on 806 

the cooperation of others and receive higher payoffs than those who cooperate. Eriksson et al. 807 

(2007) have argued that learners ought not use conformist transmission in such a situation, and 808 

especially in acquiring the punishing strategies that are so often thought to stabilize human 809 

cooperation (J. Henrich, 2004).  810 
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We, however, think this view fails to recognize two different lines of theoretical work. First, 811 

there is a large body of modeling showing how a variety of mechanisms related to punishment, 812 

signaling, reputation, and reciprocity can effectively turn cooperative dilemmas into coordination 813 

situations (N. Henrich & Henrich, 2007). That is, formal cultural evolutionary models show how 814 

a multiplicity of stable social norms are created by a variety of mechanisms that generate self-815 

reinforcing incentives (Boyd, Gintis, & Bowles, 2010; Gintis, Smith, & Bowles, 2001; J. Henrich 816 

& Boyd, 2001; Panchanathan & Boyd, 2004). The theoretical expectation from these models is 817 

that different social groups will culturally evolve different norms, since a wide variety of 818 

behaviors are stable once common. From the perspective of conformist transmission, the 819 

emergence of self-reinforcing social norms that vary among social groups creates a situation that 820 

parallels our spatial model. Different groups (sites) have different self-enforcing social norms, so 821 

migrants need to figure out what locally won’t get one a bad reputation or punished, and non-822 

migrants need to avoid learning from those who have made an error or are new arrivals to the 823 

group.   824 

In a second line of theoretical work on cultural evolution, some approaches to larger scale 825 

cooperation have shown how including punishing  strategies—while not leading to stable states 826 

as above—does slow the within-group decline of cooperation (when common) sufficiently that 827 

between group competition can favor higher levels of cooperation overall in a large structured 828 

population (Boyd, Gintis, Bowles, & Richerson, 2003; Boyd, Richerson, & Henrich, 2011). 829 

Guzman et al. (2007), building on this work using simulations, have explored the genetic 830 

evolution of payoff-biased and conformist transmission in a world in which the only problem 831 

individuals confront are those involving cooperation and punishment. This simulation suggests 832 

that natural selection will still, contrary to some suggestions (Hagen & Hammerstein, 2006), 833 

favor the evolution of substantial conformist transmission. This simulation has a complex 834 

interaction of cultural and genetic evolution in which conformist transmission keeps culturally 835 

transmitted punishing and cooperating strategies common in some groups, and those groups 836 

proliferate. When conformist-biased learners migrate to non-cooperative, non-punishing groups, 837 

they rapidly stop paying the costs of cooperation and punishment, thus reducing the selection 838 

against them. Conformist transmission, cooperation, and punishment appear to be a potent 839 

culture-gene coevolutionary package. Using a setup similar to Guzman et al., Henrich and Boyd 840 

(2001) have analytically shown that once conformist transmission evolves to even a relatively 841 
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weak degree, it can give rise to the same kind of stable social norms described above. Either way 842 

one looks at it, the kind of spatial variability that favors conformist transmission is again created. 843 

The third kind of social interaction involves complementary actions. In games of 844 

complementarity, individuals receive the highest payoffs when they bring skills, endowments, or 845 

know-how different from those with which they are interacting. Copying the currently most 846 

common trait here is not the road to higher payoffs for sure. However, an empirical look at 847 

human societies reveals how they are organized in such a way so as to mitigate this concern. In 848 

the smallest scale human societies, there is little division of labor or know-how, except by age 849 

and sex (Fried, 1967). While men, for example, vary in their skills, there are not obvious 850 

complementarities, and only mild amounts of occupational specialization exists (Johnson, 1995). 851 

There are, at times, ritual specialists but it is not clear why the existence of these relatively rare 852 

roles would inhibit the evolution of conformist transmission. As for sex and age, much prior 853 

theorizing on cultural learning mechanisms have suggested that learners use cues of both sex and 854 

age to hone their attention and learning efforts (J. Henrich & Gil-White, 2001), and that 855 

conformist transmission should interface with such cues (J. Henrich & McElreath, 2007). Men, 856 

for example, may be inclined to copy what most men do, while women should be inclined to 857 

copy what most women do. Men and women, then, supply complementary skills to the 858 

household.  Thus, cultural evolution solves this problem of complementarity by partitioning 859 

individuals into sub-groups within which conformist transmission can operate effectively, and 860 

making the complementary interaction occur between subgroups. At the group-level, everyone 861 

merely needs to coordinate on the same cultural beliefs about the division of labor: for example, 862 

“males hunt and females gather” (which again, can be effectively acquired by conformist 863 

transmission).   864 

In more complex human societies, occupational specializations of the kind associated with 865 

complementary interactions emerge principally in relations among social groups, with whole 866 

groups, castes, classes, or guilds specializing in one or another skill (Barth, 1965; Gadgil & 867 

Malhotra, 1983). Farmers grow up among farmers, herders among herders, merchants among 868 

merchants, and nobles among nobles. Exploring this, cultural evolutionary models of 869 

complementary interactions in structured populations have shown how payoff-biased 870 

transmission will spontaneously give rise to specializations by local or ethnic groups in specific 871 
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skills (J. Henrich & Boyd, 2008). This means that payoff-biases—in the absence of conformist 872 

transmission—in situations of complementarity will spontaneously give rise to precisely the kind 873 

of spatial variation that favors the evolution of conformist transmission.  874 

CONCLUSION 875 

We have constructed, analyzed, and compared a series of formal models aimed at further 876 

elucidating the evolutionary foundations of different learning strategies. Our primary 877 

contribution is to clarify how spatial vs. temporal environmental variation differentially 878 

influences the evolution of three different social learning strategies and individual learning, as 879 

well as to examine how using more than two cultural traits affects the emergence of conformist 880 

transmission. Our models also examine the effects of different fitness costs for different 881 

strategies. Broadly speaking, we find that when individual learning is sufficiently costly, 882 

conformist transmission is favored in spatially varying environments while payoff-biased 883 

transmission is favored in temporally varying environments. With regard to the number of 884 

cultural traits, our results also show that by focusing on models with two cultural traits, much 885 

prior work has explored the circumstances least favorable to conformist transmission. A small 886 

increase in the number of cultural traits substantially expands the range of conditions favoring 887 

conformist transmission in both spatially and temporally varying environments. To facilitate 888 

empirical testing, we distilled our formal results into a series of predictions suited to 889 

experimentation. 890 

We believe our findings have broader implications for the evolution of social learning strategies 891 

beyond spatially and temporally varying environments for two reasons. First, spatial variability is 892 

merely one way to generate a low-level but persistent influx of non-adaptive trait variation that 893 

favors conformist transmission, with learning errors being another obvious process that could 894 

generate this selective force. This means that conformist transmission could be similarly favored 895 

even in static or temporally varying environments with transmission noise or learning errors. 896 

Second, while the learning challenge in our model is non-social, we argue that social interactions 897 

involving coordination, cooperation, and complementarity can and do generate a kind of 898 

variation among groups that parallels our model’s spatial variation. This suggests that conformist 899 
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transmission to acquire phenotypes for social interactions could also be favored for similar 900 

reasons. 901 

Better understanding conformist transmission at both proximate and ultimate levels is important 902 

for a number of reasons. To begin, it may provide a readily available explanation for some of the 903 

apparent “clumpiness” observed in cultural variation (J. Henrich & Boyd, 1998), addressing the 904 

question of why local groups, for example, might vary on numerous cultural dimensions (Bell, 905 

Richerson, & McElreath, 2009). It may also help explain the group-level heritability found in the 906 

branching signals revealed in the application of phylogenetic methods to cultural datasets 907 

(Collard, Shennan, & Tehrani, 2006; Lipo, O'Brien, Collard, & Shennan, 2006), something 908 

which is difficult to explain if vertical cultural transmission is assumed. Third, because 909 

conformist transmission enhances the stability of local norms, it may help explain the impressive 910 

persistence of maladaptive behaviors, and potentially societal collapses (Whitehead & Richerson, 911 

2009), in societies throughout the ethnographic and historical record (Durham, 1991; Edgerton, 912 

1992). And finally, by reducing the variation within groups and assorting like phenotypes 913 

together, conformist transmission may increase the relative importance of the between-group 914 

components of cultural evolution relative to the within-group component. This suggests that 915 

cultural evolutionary processes might have quite a different character with regard to the 916 

evolution of social behavior when compared to vertically-transmitted genetic evolution (Bell, et 917 

al., 2009; Boyd & Richerson, 1985; Currie & Mace, 2009; J. Henrich & Boyd, 2001).   918 
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APPENDIX A: THE MODEL OF SPATIAL VARIABILITY  21 

THE BASELINE MODEL 22 

There are four genetically distinct types of organisms: (1) social learners (linearly frequency-23 

dependent, UT), (2) conforming social learners (disproportionately frequency-dependent, CT), 24 

(3) payoff-biased social learners (PT), and (4) individual learners (IL).  25 

 UT acquire their phenotypes by copying a random member of the parental generation in 26 

the site they occupy (oblique transmission). 27 

 CT acquire their phenotypes by copying the most common behavior of the parental 28 

generation in the site they occupy, but suffer a mortality cost d. 29 

 PT acquire their phenotypes by copying the behavior of the parental generation with the 30 

highest payoff in the site they occupy, but suffer a mortality cost g. 31 

 IL always acquire the phenotype that is adapted to the environment of the site they 32 

occupy, but suffer a cost c due to mistakes made before the mature behavior is realized. 33 

We assume 10  cgd . 34 

Organisms may occupy any of n sites in a spatially heterogeneous world. Each site has a 35 

different environment. We distinguish n phenotypes, each of which is locally adapted to one 36 

particular environment, but maladaptive in the 1n  other environments. Phenotypes that are 37 

maladaptive in all n environments are not incorporated into the dynamics. Let ijX  ( ni 1 , 38 

nj 1 ) be the number of UT at site i that are adapted to the environment of site j. Then, at site 39 

i there are  


n

j iji XX
1

 UT in all, of which iiX  are behaving adaptively (UTC, for short) and 40 

iii XX   are behaving maladaptively (UTW, for short). Similarly, let ijU  and ijV  be the number 41 

of CT and PT at site i that are adapted to the environment of site j. Then, at site i there are 42 

 


n

j iji UU
1

 CT and  


n

j iji VV
1

 PT in all, of which iiU  and iiV  are behaving adaptively (CTC 43 

and PTC, for short), and iii UU   and iii VV   are behaving maladaptively (CTW and PTW, for 44 

short). Moreover, let iZ  ( ni 1 ) be the number of IL at site i. By assumption, IL always 45 

acquire the phenotype that is adapted to the environment of the site they occupy, but suffer a cost 46 
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due to mistakes made before the mature behavior is realized. Therefore iiiii ZVUXN 
 
is 47 

the total population at site i. These numbers are enumerated at the adult stage just prior to 48 

reproduction.  49 

 The life cycle begins with reproduction, where each organism gives birth asexually to )( iNb  50 

offspring according to the discrete logistic equation 51 

  )/1(1)( KNrNb ii  . (A.1) 52 

Here, 0r  and 0K  are assumed to be the same for all sites. Since the offspring are 53 

genetically identical to their parents, the numbers of UT, CT, PT, and IL among the newborns at 54 

site i are )( ii NbX , )( ii NbU , )( ii NbV , and )( ii NbZ , respectively.  55 

 At the second step of the life cycle, UL, CT, and PT acquire their phenotypes by copying a 56 

behavior of the parental generation. All members of the parental generation die immediately 57 

afterward. As a result, the number of UT at site i that are adapted to the environment of site j 58 

becomes 59 

  iijiijijijii NZVUXNbX /))((  ,  (A.2) 60 

where ij  is Kronecker’s delta ( 1ij  when ji   and 0 otherwise). The number of CT at site i 61 

that are adapted to the environment of site j becomes 62 

  ijii NbUd )()1(    (A.3) 63 

where  64 

  

 





n

k

a

iikiikikik

a

iijiijijij

ij

NZVUX

NZVUX

1
]/)[(

]/)[(




  (A.4) 65 

Here, a is the strength of conformist bias, and CT always imitate the most common behavior 66 

when a . The number of PT at site i that are adapted to the environment of site j becomes 67 

  ijii NbVg )()1(    (A.5) 68 
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because we assume there are organisms behaving adaptively in the parental generation. The 69 

number of individual learners remains the same.  70 

 The third step of the lifecycle is migration, where a fixed fraction of the organisms at each 71 

site emigrate (constant forward migration rate). For the island model, we assume reciprocal 72 

migration between all pairs of sites at rate )1/( nm  ( 2/10  m ). 73 

 In the fourth step of the life cycle, IL acquire the phenotype suitable to their new 74 

environment but suffer a fixed mortality cost c. Finally, viability selection occurs, and all 75 

organisms behaving adaptively (UTC, CTC, PTC, IL), and a fraction s1  of organisms 76 

behaving maladaptively (UTW, CTW, PTW) survive. We assume 10  scgd .  77 

RECURSIONS  78 

 Based on the above assumptions, we generate the following recursions: 79 

  
k

kikiki
k

n

ik k

i

iiiiiii
iiii

N

VUX
NbX

n

m

N

ZVUX
NbXmX







  

)(
1

)()1( , (A.6a) 80 
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where ni 1 , nj 1 , and ij   in Eqs. (A.6b), (A.6d), and (A.6f). 89 

STABILITY OF CT EQUILIBRIUM 90 

 When )1)(1/()]1)(1(1[ msdmsdr  , a CT equilibrium exists where other social 91 

learners (UT, PT) and IL are absent, and CT occur in equal numbers at each site; formally, 92 

  
0ˆˆˆ  iijij ZVX ,   93 

  

)(]
)1)(1(
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)1)(1(
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94 

for ni 1 , nj 1 . 95 

When the recursion (A.6) is linearized at this equilibrium in the variables ijX , ijij UU ˆ , ijV  and 96 

iZ , the coefficient matrix becomes a )3()3( 22 nnnn   matrix as follows: 97 

 98 
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The matrix is reducible into four submatrices. The coefficient matrix of Eq. (A.8a) and (A.8b) 109 

has n sets of identical columns each of multiplicity n, which entails that (at least) )1( nn  110 

eigenvalues are equal to 0. Moreover, the transformed variables  


n

j iji XX
1

 ( ni 1 ) 111 

satisfy  112 
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i.e., 114 
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the coefficient submatrix of the linearized recursions in the variables ijX  yields the maximal 122 

eigenvalue  123 

 124 



   

Page | 8  
 

  







































1

)1(
)1()1)(1(

)1)(1(

1

1
1

)1)(1(

)1(

)1)(1(

]1)1)[(1(
)1(

2
2

2

22

2

n

sms
smmsm

msd

n

ms
ms

msd

ms

msd

mmsm
n 

.   (A.11) 125 

 126 

Similarly, since 127 
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


  

n

ik kkiiii UU
n

ms
UUmmsdr

ms
UU )ˆ(

1

)1(
)ˆ)(1()]1)(1)(1(2[

1

1ˆ , (A.12) 128 

the coefficient submatrix of the linearized recursions in the variables ijij UU ˆ  yields the maximal 129 

eigenvalue )1)(1)(1(2 msdr  , and since   130 

 131 

  
















  

n

ik kiii V
n

ms
Vm

msd

g
V

1

)1(
)1(

)1)(1(

)1(
, (A.13) 132 

 133 

the coefficient submatrix of the linearized recursions in the variables ijV  yields the maximal 134 

eigenvalue )1/()1( dg  . Moreover, from (A.8g), the coefficient submatrix of the linearized 135 

recursions in the variables iZ  yields the maximal eigenvalue 
)1)(1(

1

msd

c




. If all of these 136 

maximal eigenvalues have their absolute values smaller than unity, then the CT equilibrium is 137 

stable. Since 1)1/()1(  dg , the condition is 138 

  1
1

)1(
)1()1)(1(

)1)(1(

1 2
2

2















 n

sms
smmsm

msd
,  (A.14a) 139 

  1)1)(1)(1(2  msdr , (A.14b) 140 

and 141 
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  .1
)1)(1(

1






msd

c
 (A.14c) 142 

When CT suffer no additional learning cost (i.e., 0d ), the condition becomes 143 

  1
1

)1(
)1()1)(1(

)1(

1 2
2

2















 n

sms
smmsm

ms
,  (A.15a) 144 

  )1)(1(1 msr  , (A.15b) 145 

and 146 

  .1
1

1






ms

c
 (A.15c) 147 

Since 2n  and 2/10  m , (A.15a) is always satisfied. Therefore, the CT equilibrium is 148 

stable against invasion with any combinations of NT, CT, PT and IL when cms  and 149 

)1/( rrms  . 150 

 Here we consider CT with strongest conformity bias ( a ). As shown below, even when 151 

we consider CT with intermediate strength of conformity bias (CTI) (  a1 ), the CT 152 

(strongest) equilibrium is stable. Let ijT  ( ni 1 , nj 1 ) be the number of CTI at site i that 153 

are adapted to the environment of site j.  154 

 155 

  












  

n

ik kiii T
n

m
Tm

ms
T 

1
)1(

1

1
, (A.16a) 156 

  

















  

n

jik kjiij T
n

m
T

n

m
Tm

ms

s
T

,11
)1(

1

1
 , (A.16b) 157 
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where 

1)1(

)1(
)1(

)1(









a

aa
a

a

ii

n

sm
m

m
  and )(

)1(

)1(
)1(

)1(

)1(

1

ji

n

sm
m

n

sm

a

aa
a

a

aa

ij 














 . Similar to 158 

above, the transformed variables  


n

j iji TT
1

 ( ni 1 ) satisfy  159 

  














  

n

ik kii T
n

snssm
Tnsm

ms
T

1

])1)(1()1[(
])1)(1()[1(

1

1 
  (A.17) 160 

so that the coefficient submatrix of the linearized recursions in the variables ijT  yields the 161 

maximal eigenvalue 162 

    ])1)(1[()1(
1

1
msnsms

ms



. (A.18a) 163 

Since 1)1(   n , (A.18a) can be rewritten as 164 

  

 

1
1

])1)(1[(
1

])1)(1[(])1(1)[1(
1

1










ms

mmns

msnsnms
ms





 (A.18b) 165 

so that the CT (strongest) equilibrium is stable even when we consider the invasion of CT with 166 

intermediate strength of conformity bias (CTI).  167 

STABILITY OF IL EQUILIBRIUM 168 

 When )1/( ccr  , an IL equilibrium exists where social learners (UT, CT, PT) are absent 169 

and IL occur in equal numbers at each site, formally, 170 

 171 

)]1(/1[ˆˆ,0ˆˆˆ crcKZZVUX iijijij   for ni 1 , nj 1 . (A.19) 172 
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As expected, Ẑ  monotonically decreases in c. When the recursion (A.6) is linearized at this 173 

equilibrium in the variables ijX , ijU , ijV  and ZZi
ˆ , the coefficient matrix becomes a 174 

)3()3( 22 nnnn   matrix as follows. 175 

   iii X
c

m
X






1

1
, (A.20a) 176 

  jij X
nc

ms
X

)1)(1(

)1(




 , (A.20b) 177 

  iii U
c

md
U






1

)1)(1(
, (A.20c) 178 

  jij U
nc

msd
U

)1)(1(

)1)(1(




 , (A.20d) 179 

  iii V
c

mg
V






1

)1)(1(
, (A.20e) 180 

  jij V
nc

msg
V

)1)(1(

)1)(1(




 , (A.20f) 181 

  











  
)ˆ(

1
)ˆ)(1()]1(1[ˆ ZZ

n

m
ZZmcrcZZ

n

ik kii , (A.20g) 182 

The matrix is reducible into four submatrices. The coefficient matrix of Eq. (A.20a) and (A.20b) 183 

has n sets of identical columns each of multiplicity n, which entails that (at least) )1( nn  184 

eigenvalues are equal to 0. Moreover, the transformed variables  


n

j iji XX
1

 ( ni 1 ) 185 

satisfy  186 

    









n

ij jii X
nc

ms
X

c

m
X

)1)(1(

)1(

1

1
. (A.21) 187 

Solving these linear equations, the coefficient submatrix of the linearized recursions in the 188 

variables ijX  yields the maximal eigenvalue )1/()1( cms  . Similarly, the variables ijU  and ijV  189 
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yield the maximal eigenvalues )1/()1)(1( cmsd   and )1/()1)(1( cmsg  , respectively. On 190 

the other hand, the coefficient submatrix of the linearized recursions in the variables ZZi
ˆ  191 

yields the maximal eigenvalue )1(1 crc  . If all of these maximal eigenvalues have their 192 

absolute values smaller than unity, then the IL equilibrium is stable. The condition is 193 

  1
1

1
1 






c

ms
  and  1)1(11  crc   (A.22a)  194 

yielding 195 

  msc    and  
c

c
r

c

c






 1

2

1
. (A.22b) 196 

STABILITY OF UT EQUILIBRIUM 197 

 0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  for ni 1 , nj 1 . A mixture of UTC 198 

and UTW occur at each site. Each site is occupied by X̂  UTC (which are adapted to that site) 199 

and Yn ˆ)1(   UTW (which are adapted to the environments of the 1n  other sites). There are no 200 

CT, PT, and IL. Clearly, the population of each site is YnXNNi
ˆ)1(ˆˆˆ  , and hence an 201 

equilibrium of this kind is completely symmetric (the structure of the equilibrium is identical at 202 

all sites). Let XY ˆ/ˆ . Substituting 0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  in Eqs. 203 

(A.6a) and (A.6b) and dividing the latter by the former, we find that   is the larger and positive 204 

root of the quadratic equation 205 

  0)1(
1

)1(
1 





















 

n

ms

m

s
m . (A.23) 206 

Solving Eq. (A.23) explicitly yields 207 

  m
n

ms

n

ms
sm

n

ms
sm 2/

1

)1(
4

1

)1(

1

)1( 22




































 .  (A.24) 208 
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Note: 1/1  ms  and s1 . When n , ms /1  if  ms   and 0  if ms  . 209 

Equation (1) entails that 0ˆ N  if and only if rbNb  1ˆ)ˆ(ˆ . Since Eq. (A.1) reduces to 210 

  
)1(1

1ˆ



m

b , (A.25) 211 

this equilibrium exists if and only if 212 

  )]1(1/[)1(   mmr . (A.26) 213 

Solving as above, since 214 

  iii U
m

md
U

)1(1

)1)(1(




 , (A.27a) 215 

  jij U
nm

msd
U

)1)](1(1[

)1)(1(







, (A.27b) 216 

 217 

  iii V
m

mg
V

)1(1

)1)(1(




 , (A.27c) 218 

  jij V
nm

msg
V

)1)](1(1[

)1)(1(







, (A.27d) 219 

 220 

  














  

n

ik kii Z
n

m
Zm

m

c
Z

1
)1(

)1(1

1


, (A.27e) 221 

the coefficient submatrix of the linearized recursions in the variables ijU , ijV , and iZ  yields the 222 

maximal eigenvalues 
)1(1

)1)(1(





m

msd
, 

)1(1

)1)(1(





m

msg
, and 

)1(1

1





m

c
, respectively. If all of 223 

these maximal eigenvalues have their absolute values smaller than unity, then the UT 224 

equilibrium is stable. Since gd  , the condition is 225 
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 226 

  )1(1)1)(1(  mmsd ,  (A.28a) 227 

  )1( mc ,   (A.28b) 228 

and (A.26).  229 

STABILITY OF PT EQUILIBRIUM 230 

 Next, let us consider the stability of PT equilibrium, formally, 231 

   232 

  0ˆˆˆ  iijij ZUX ,  233 

  )(]
)1)(1(

)1)(1(1
1[

)1)(1(

)1(ˆ],
)1)(1(

)1)(1(1
1[

1

)1(ˆ ji
msgr

msg

nms

sKm
V

msgr

msg

ms

mK
V ijii 



















  (A.29) 234 

for ni 1 , nj 1 . 235 

When the recursion (A.6) is linearized at PT equilibrium,  236 

  iii U
msg

md
U

)1)(1(

)1)(1(




 , (A.30a) 237 

  jij U
nmsg

msd
U

)1)(1)(1(

)1)(1(




 , (A.30b) 238 

so that  239 

  
















  

n

ik kii U
n

ms
Um

msg

d
U

1

)1(
)1(

)1)(1(

1
. (A.30c) 240 

Therefore, the coefficient submatrix of the linearized recursions in the variables ijU  yields the 241 

maximal eigenvalue )1/()1( gd  . Since dg  , this eigenvalue is always larger than unity, so 242 

that PT equilibrium is always unstable.  243 
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POLYMORPHIC EQUILIBRIUM OF IL AND CT 244 

 Assume that polymorphic equilibrium of IL and CT (and others) exist. Then IL and CT occur 245 

in equal numbers at each site, formally, UUii
ˆˆ  , )(ˆˆ jiUUij  , ZZi

ˆˆ  , and NNi
ˆˆ  . From 246 

the recursion (A.6), they satisfy  247 

 248 

  )ˆ(]ˆ)1(ˆ)[1)(1(ˆ NbUnUmdU  , (A.31a) 249 

  )ˆ(]ˆ)1(ˆ[
1

)1)(1(ˆ NbUnU
n

m
sdU 


 , (A.31b) 250 

  )ˆ(ˆ)1(
1

ˆ)1()1(ˆ NbZn
n

m
ZmcZ












 . (A.31c) 251 

From (A.31a) and (A.31b), 
)1)(1(

1
)ˆ(

msd
Nb


 , and from (A.31c), 

c
Nb




1

1
)ˆ( . Therefore, 252 

this type of equilibrium can exist only if )1)(1(1 msdc  , i.e., polymorphic equilibrium of 253 

IL and CT (and others) never exist when )1)(1(1 msdc   or )1)(1(1 msdc  .  254 

 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and 255 

others) never exist.  256 

RESULTS SUMMARY  257 

 The conditions for the existence and stability of equilibria can be mapped onto six regions of 258 

the ),( cm -parameter space. First, if msc   and )1/()2()1/( ccrcc  , fixation of IL is the 259 

unique stable equilibrium (region I). Second, if )]1)(1(1),1(min[ msdmcms    where  260 

  m
n

ms

n

ms
sm

n

ms
sm 2/

1

)1(
4

1

)1(

1

)1( 22




































 , (A.24) 261 
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polymorphism of IL and UT is the unique stable equilibrium provided )1/( ccr   (region II). 262 

Third, if )1( mc  and )1)(1(1)1( msdm  , fixation of UT is the unique stable 263 

equilibrium provided )]1(1/[)1(   mmr  (region III). Fourth, if )1)(1(1 msdc   and 264 

2
2

2 )1)(1(
1

)1(
)1()1)(1( msd

n

sms
smmsm 




 , fixation of CT is the unique stable 265 

equilibrium provided )1)(1/()]1)(1(1[ msdmsdr   (region IV). Fifth, if 266 

)1)(1(1 msdc   and 
)1)(1(

)1(

1

)1(
1)1)(1()1(1

22

msn

sms

ms

sm
mmsdm









  , 267 

polymorphism of UT and CT is the unique stable equilibrium provided 268 

)1)(1/()]1)(1(1[ msdmsdr   (region V). Sixth, if 269 

)}1)(1/()]1)(1(1[)],1(1/[)1(min{ msdmsdmmr    and )1/( ccr  , extinction 270 

is the unique stable equilibrium (region VI). Provided the cost of PT is larger than that of CT (i.e., 271 

dg  ), PT never evolve. When CT suffer no cost (i.e., 0d ), fixation of IL, fixation of CT, 272 

and extinction are the possible stable equilibria (UT and PT never evolve).  273 

INCREASING TRAIT NUMBER AND THE REGION OF CT 274 

 We show that the region for fixation of UT decreases and that for fixation of CT increases as 275 

n increases. Since the (necessary) condition for fixation of UT is  276 

  )1)(1(1)1( msdm  , (A.32) 277 

i.e., 
m

d
ds

m

mmsd



 )1(1

)1()1)(1(
 , and   decreases as n increases, the region for 278 

fixation of UT decreases as n increases. When 0d , (A.32) is always satisfied at 0m , and 279 

(A.32) can be violated when m exceeds a threshold value, which we write CTUTUTm  . Since 280 




)1(1 ds

d
m CTUTUT , and   decreases as n increases, CTUTUTm   decreases as n 281 

increases.  282 

 Moreover, since the (necessary) condition for fixation of CT is  283 
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  2
2

2 )1)(1(
1

)1(
)1()1)(1( msd

n

sms
smmsm 




 ,  (A.33) 284 

i.e., 
2

22

)1(

)1()1)(1()1)(1(

1

1

sms

smmsmmsd

n 





, the region for fixation of CT increases 285 

as n increases. When 0d , (A.33) is always unsatisfied at 0m , and (A.33) can be satisfied 286 

when m exceeds a threshold value, which we write CTCTUTm  . CTCTUTm   is, if it exists, the 287 

smaller root of the quadratic equation  288 

  0)1)(1(
1

)1(
)1()1)(1( 2

2
2 




 msd

n

sms
smmsm , (A.34) 289 

and the necessary condition for the existence of CTCTUTm   is 0)
1

1
1(4)1( 




n
sdss . 290 

Since the coefficient of quadratic term decreases as n increases, CTCTUTm   decreases as n 291 

increases.  292 

INCREASING THE COSTS OF NON-ADAPTIVE BEHAVIOR AND THE REGION OF CT 293 

 When the costs of non-adaptive behavior (s) increases, from (A.14b) and (A.14c), CT 294 

equilibrium decreases because of the extinction and the invasion of IL. When n is large ( n ) 295 

or d is small ( 1d ), from (A.28a), UT equilibrium is less likely to be invaded by CT. Overall, 296 

the region where CT can evolve (regions UT+CT and CT) decreases when s increases.  297 

WHEN IL LEARN BEFORE MIGRATION 298 

 RECURSIONS  299 

 When IL learn before migration, IL do not always have correct behavior. Let ijZ  ( ni 1 , 300 

nj 1 ) be the number of IL at site i that are adapted to the environment of site j, and 301 

 


n

j iji ZZ
1

. Then, the recursions is written as 302 

 303 
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where  309 
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  )()1)(1( iiii NbVmgV  , (A.35e) 313 
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  )()1)(1( iiii NbZmcZ  , (A.35g) 315 

  
1

)()1)(1(






n

NbmZsc
Z

jj

ij , (A.35h) 316 

where ni 1 , nj 1 , and ij   in Eqs. (A.35b), (A.35d), (A.35f), and (A.35h). 317 

 318 
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When IL learn before migration, the stability of CT equilibrium becomes as follows.  319 

Let ijZ  ( ni 1 , nj 1 ) be the number of IL at site i that are adapted to the environment of 320 

site j. When the recursion (A.35) is linearized at CT equilibrium,  321 

 322 

  iii Z
msd

mc
Z

)1)(1(

)1)(1(




 , (A.36a) 323 

  jij Z
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msc
Z

)1)(1)(1(
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
 , (A.36b) 324 

so that  325 
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. (A.36c) 326 

Therefore, the coefficient submatrix of the linearized recursions in the variables ijZ  yields the 327 

maximal eigenvalue )1/()1( dc  . Since dc  , this eigenvalue is always smaller than unity, so 328 

that IL cannot invade CT equilibrium. Therefore, the condition for CT equilibrium to be stable is 329 

  1
1
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)1()1)(1(

)1)(1(

1 2
2

2















 n

sms
smmsm

msd
,  (A.14a) 330 

  1)1)(1)(1(  msdr , (A.14b)’ 331 

 Next, let us consider the stability of IL equilibrium, formally, 332 

 333 

  0ˆˆˆ  ijijij VUX ,  334 
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for ni 1 , nj 1 . 336 
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When the recursion (A.35) is linearized at IL equilibrium,  337 

  iii U
msc

md
U

)1)(1(

)1)(1(




 , (A.38a) 338 

  jij U
nmsc

msd
U

)1)(1)(1(

)1)(1(




 , (A.38b) 339 
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Therefore, the coefficient submatrix of the linearized recursions in the variables ijU  yields the 342 

maximal eigenvalue )1/()1( cd  . Since dc  , this eigenvalue is always larger than unity, so 343 

that IL equilibrium is always unstable.  344 

 Next, let us consider the stability of UT equilibrium, formally, 345 

  0ˆ),(0ˆˆ,0ˆˆ  ijijiijii VUZjiYXXX  for ni 1 , nj 1 .  (A.39) 346 

When the recursion (A.35) is linearized at UT equilibrium,  347 
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so that  350 

  
















  

n

ik kii Z
n

ms
Zm

m

c
Z

1

)1(
)1(

)1(1

1


. (A.40c) 351 

Therefore, the coefficient submatrix of the linearized recursions in the variables ijZ  yields the 352 

maximal eigenvalue 
)1(1

)1)(1(





m

msc
. Since recursions of CT and PT are the same as (A.27), the 353 
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coefficient submatrix of the linearized recursions in the variables ijU , ijV , and ijZ  yields the 354 

maximal eigenvalues 
)1(1

)1)(1(





m

msd
, 

)1(1

)1)(1(





m

msg
, and 

)1(1

)1)(1(





m

msc
, respectively. Since 355 

cgd  , the conditions for UT equilibrium to be stable are  356 

  )1(1)1)(1(  mmsd   (A.28a) 357 

and   358 

  )]1(1/[)1(   mmr . (A.26) 359 

 Just as in the condition where IL learn after migration, PT equilibrium is always unstable 360 

when IL learn before migration.  361 

 Moreover, if polymorphic equilibrium of IL and CT (and others) exist, equilibrium values 362 

UUii
ˆˆ  , )(ˆˆ jiUUij  , ZZii

ˆˆ  , )(ˆˆ jiZZij  , and NNi
ˆˆ   satisfy 363 

 364 

  )ˆ(]ˆ)1(ˆ)[1)(1(ˆ NbUnUmdU  , (A.41a) 365 
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  )ˆ(]ˆ)1(ˆ)[1)(1(ˆ NbZnZmcZ  , (A.41c) 367 
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)1)(1(ˆ NbZnZ
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m
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
 , (A.41d) 368 

From (A.41a) and (A.41b), 
)1)(1(

1
)ˆ(

msd
Nb


 , and from (A.41c) and (A.41d), 369 

)1)(1(

1
)ˆ(

msc
Nb


 . Since dc  , these conditions are never satisfied simultaneously so that 370 

polymorphic equilibrium of IL and CT (and others) never exist.  371 
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 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and 372 

others) never exist.  373 

RESULTS SUMMARY  374 

 The conditions for the existence and stability of equilibria can be mapped on to four regions 375 

of the ),( cm -parameter space. First, if )1)(1(1)1( msdm  , fixation of UT is the unique 376 

stable equilibrium provided )]1(1/[)1(   mmr  (region I). Second, if 377 

2
2

2 )1)(1(
1

)1(
)1()1)(1( msd

n

sms
smmsm 




 , fixation of CT is the unique stable 378 

equilibrium provided )1)(1/()]1)(1(1[ msdmsdr   (region II). Third, if 379 

)1)(1(

)1(

1

)1(
1)1)(1()1(1

22

msn

sms

ms

sm
mmsdm









  , polymorphism of UT and CT is 380 

the unique stable equilibrium provided )1)(1/()]1)(1(1[ msdmsdr   (region III). Fourth, 381 

if )}1)(1/()]1)(1(1[)],1(1/[)1(min{ msdmsdmmr   , extinction is the unique 382 

stable equilibrium (region IV). Provided the cost of IL and PT are larger than that of CT (i.e., 383 

dgc  ), IL and PT never evolve. When CT suffer no cost (i.e., 0d ), fixation of CT and 384 

extinction are the only possible stable equilibria (UT,PT, and IL never evolve) . 385 

WHAT HAPPENS IF THE NUMBER OF TRAITS AND SITES DIFFER? 386 

 Here we consider an infinite number of islands and n behavior model, where each behavior is 387 

adapted to the same number of sites. In this situation, we can regard the sites where the same 388 

behavior is adaptive as one site, so this situation is almost the same as normal island model with 389 

n site but migration rate is different. That is, we can ignore the migration between sites where the 390 

same behavior is adaptive, so effective migration rate in this model is   391 

  
n

mn
m

)1(* 
 . (A.42) 392 

Therefore, the conditions for fixation of UT, those for CT, etc. are basically the same as in the 393 

above model, but *mm . The threshold values of m for CTUTUT   and CTCTUT   394 
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are 
1n

n
 times as large as those in the normal n island model. Since both the threshold values in 395 

the normal model and 
1n

n
 decrease as n increases, the threshold values in this model also 396 

decrease as n increases.  397 

APPENDIX B: A MODEL OF TEMPORAL VARIABILITY WITH PURE 398 

LEARNING STRATEGIES  399 

 The method of numerical simulation for the evolution of learning in temporally changing 400 

environment is as follows. We assume that the number of possible environmental states is 401 

infinite so that when the environment changes it never reverts to an earlier state (infinite 402 

environmental states model). Corresponding to each environmental state, there is one optimal 403 

(correct) behavior (fitness: 1). All other behaviors are equally maladaptive (fitness: s1 ; i.e. the 404 

cost of maladaptive behavior is s). The environment changes every   generations ( 1 ), so that 405 

one post-change generation experiences a different environmental state to the previous 406 

generation, and 1  subsequent generations experience the same state as that post-change 407 

generation. That is, larger values of   imply more environmental stability.  408 

 We assume a population of haploid asexual organisms. A tetra-allelic locus determines 409 

whether an organism is an individual learner, a social learner with unbiased transmission, a 410 

social learner with conformist transmission, and a social learner with payoff-biased transmission 411 

(abbreviated IL, UT, CT, and PT, respectively). IL always achieves the optimal (correct) 412 

behavior by individual learning, but suffers a fixed cost c. Social learners (UT, CT, PT) copy a 413 

behavior of the previous generation. So, when the environment changes, social learners always 414 

copy a maladaptive (wrong) behavior and only IL behaves correctly. UT acquire their 415 

phenotypes by copying a random member of the parental generation in the site they occupy 416 

(oblique transmission). CT suffer a mortality cost d to acquire their phenotypes. Here we assume 417 

CT with a conformity bias a. Therefore, the probability that CT imitates a behavior j with the 418 

frequency jb  in the previous generation can be expressed as 419 
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 (B.1) 420 

where 210 ,, bbb  are the frequencies of organisms with the behavior 0, 1, 2  respectively. PT 421 

acquire their phenotypes by copying the behavior of the parental generation with the highest 422 

payoff, but suffer a mortality cost g. Provided IL exist in the population, PT can copy optimal 423 

(correct) behavior in every generation except post-change generations. In post-change 424 

generations, PT copy a behavior that is optimal in the previous generation.  425 

 The fitness of IL is c1 , that of social learners (UT, CT, PT) behaving correctly (UTC, CTC, 426 

PTC) is 1, d1 , and g1 , respectively, and that of social learners behaving incorrectly (UTW, 427 

CTW, PTW) is s1 , )1)(1( sd  , and )1)(1( sg  , respectively ( 10  scgd ).  428 

 We set the initial condition such that the environment is in state 0 in generation 0 and all 429 

members have behavior 0. In the next generation (generation 1) the environment changes to state 430 

1 and behavior 1 becomes optimal. We suppose that behavior i is optimal in state i. In a 431 

periodically changing environment, the environment changes every   generations so that the 432 

environment changes from state i to state i+1 between generation i  and generation 1i . 433 

 Suppose that the population is now in generation k and the environment is state n. Let the 434 

frequency of UT, CT, PT, and IL after natural selection be )(kx , )(ku , )(kv , and )(kz  435 

( 1)()()()(  kkkk zvux ), respectively, that of behavior i be )(k
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Then,  437 
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where 444 
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 Since the fitness of social learners over one cycle (   generations) is always smaller than 446 

ss   11)1( 11 
 and that of IL over one cycle is 

)1( c , IL equilibrium is stable when  447 
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It can also be shown that IL and PT never coexist at stable equilibrium, except when  449 
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When IL exist, the fitness of IL over one cycle is 
)1( c , and that of other coexisting strategies 451 

must be the same fitness. However, when IL do not exist, the fitness of PT over one cycle is 452 

)1)(1( gs  . Therefore, IL and PT coexist at stable equilibrium only when 453 
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, PT cannot invade the equilibrium 454 

population of IL (and others). When 
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
, the frequency of IL decreases, but 455 

if IL go extinct, the fitness of PT over one cycle becomes 
 )1()1( gs  . Since sc  , IL can 456 

invade this equilibrium population of PT (and others), but when IL invades, the fitness of PT 457 

over one cycle becomes 
)1)(1( gs   again, so the frequency of IL decreases again. Assuming 458 

that the frequency of IL never becomes 0 because of low frequency mutation, the frequency of 459 

IL is almost 0 at equilibrium when 
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equilibrium (with low frequency IL) is stable if and only if  461 
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because when the frequency of PT is almost 1, the fitness of UT over one cycle is 
2)1( s  and 463 

that of CT over one cycle is 
22 )1()1()1( sds  
 because they learn the wrong behavior in 464 

post-change generation and the next generation, but learn correct one in other generations. When 465 

)1ln(

)1ln()1ln(1
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



 and 

)1ln(
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
, polymorphism of PT and other social learning 466 

strategy (UT and/or CT) will be achieved. These analytical results are confirmed by the 467 

numerical simulation.  468 

 For Figure 6B, we set the initial frequencies of UT, CT, PT, and IL be 0.25. Parameters are 469 

5.0s , 3.0c , 1.0g , 0d , 5 , and 10a . For Figure 5, we obtain the equilibrium 470 

frequencies of UT, CT, PT, and IL from several initial frequencies of them. Parameters are 471 

5.0s , 1.0g , 05.0d , and 10a . Note 10a  is sufficiently strong such that it can be 472 

assumed to be almost infinite. 473 
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IL LEARN BEFORE THE ENVIRONMENTAL CHANGE 474 

 If IL learn before environmental change, IL also have a wrong behavior in post-change 475 

generations. Then, all members have a wrong behavior in post-change generations, so social 476 

learners (UT, CT, PT) always copy a wrong behavior in the next generation of the post-change 477 

generation. Therefore, the fitness of social learners over one cycle (   generations) is always 478 

smaller than 
222 )1(1)1( ss  
, that of IL over one cycle is 

)1)(1( cs  , and that of PT over 479 

one cycle is 
)1()1( 2 gs  . Thus, IL equilibrium is stable when 

)1ln(

)1ln(1

s

c







, IL and PT never 480 

coexist except when 
)1ln(

)1ln()1ln(1

s

gc







, and PT equilibrium (with low frequency IL) is 481 

stable if and only if 
)1ln(

)1ln()1ln(1

s

gc







 and 

)1ln(

)1ln(1

s

g







 are satisfied. That is, the results 482 

are basically the same as in the case that IL learn after environmental change.  483 
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