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Conditions for Conformist Transmission

APPENDIX A: THE MODEL OF SPATIAL VARIABILITY

THE BASELINE MODEL

There are four genetically distinct types of organisms: (1) social learners (linearly frequency-
dependent, UT), (2) conforming social learners (disproportionately frequency-dependent, CT),

(3) payoff-biased social learners (PT), and (4) individual learners (IL).

e UT acquire their phenotypes by copying a random member of the parental generation in
the site they occupy (oblique transmission).

e CT acquire their phenotypes by copying the most common behavior of the parental
generation in the site they occupy, but suffer a mortality cost d.

e PT acquire their phenotypes by copying the behavior of the parental generation with the
highest payoff in the site they occupy, but suffer a mortality cost g.

e L always acquire the phenotype that is adapted to the environment of the site they
occupy, but suffer a cost ¢ due to mistakes made before the mature behavior is realized.

We assume 0<d<g<c<l.

Organisms may occupy any of n sites in a spatially heterogeneous world. Each site has a
different environment. We distinguish n phenotypes, each of which is locally adapted to one
particular environment, but maladaptive in the n—1 other environments. Phenotypes that are

maladaptive in all n environments are not incorporated into the dynamics. Let Xj; (1< i<n,

1< j <n) be the number of UT at site i that are adapted to the environment of site j. Then, at site
i there are X; = Z?zlxi,— UT inall, of which X;; are behaving adaptively (UTC, for short) and

Xi — Xj; are behaving maladaptively (UTW, for short). Similarly, let U; and V;; be the number
of CT and PT at site i that are adapted to the environment of site j. Then, at site i there are

U, = ijluij CTandV, = Z?ﬂvij PT in all, of which U, and V, are behaving adaptively (CTC
and PTC, for short), and U, —=U,, and V, -V, are behaving maladaptively (CTW and PTW, for

short). Moreover, let Z; (1<i<n) be the number of IL at site i. By assumption, IL always

acquire the phenotype that is adapted to the environment of the site they occupy, but suffer a cost
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Conditions for Conformist Transmission

due to mistakes made before the mature behavior is realized. Therefore N, = X, +U; +V, +Z, is

the total population at site i. These numbers are enumerated at the adult stage just prior to

reproduction.

The life cycle begins with reproduction, where each organism gives birth asexually to b(N;)

offspring according to the discrete logistic equation
b(N;) =1+r(1—-N;/K). (A.2)

Here, r >0 and K >0 are assumed to be the same for all sites. Since the offspring are
genetically identical to their parents, the numbers of UT, CT, PT, and IL among the newborns at

site i are X;b(N;), U,b(N,), V.b(N,), and Z;b(N;), respectively.

At the second step of the life cycle, UL, CT, and PT acquire their phenotypes by copying a
behavior of the parental generation. All members of the parental generation die immediately
afterward. As a result, the number of UT at site i that are adapted to the environment of site |

becomes

XbN)(X; +Uy +V, +2,8,) I N, (A2)
where &;; is Kronecker’s delta (5;; =1 when i = j and 0 otherwise). The number of CT at site i
that are adapted to the environment of site j becomes

(L-d)U;b(N;) p; (A.3)

where

[(Xij +U; +V; +Zié‘ij)/ N;J*

i~ o " (A.4)
DXy +Uy +Vi +Z,6,) IN{]
Here, a is the strength of conformist bias, and CT always imitate the most common behavior
when a=oc0. The number of PT at site i that are adapted to the environment of site j becomes
(1-g)Vib(N;)5; (A.5)
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Conditions for Conformist Transmission

because we assume there are organisms behaving adaptively in the parental generation. The

number of individual learners remains the same.

The third step of the lifecycle is migration, where a fixed fraction of the organisms at each
site emigrate (constant forward migration rate). For the island model, we assume reciprocal

migration between all pairs of sites at rate m/(n—-1) (0 <m <1/2).

In the fourth step of the life cycle, IL acquire the phenotype suitable to their new
environment but suffer a fixed mortality cost c. Finally, viability selection occurs, and all
organisms behaving adaptively (UTC, CTC, PTC, IL), and a fraction 1—s of organisms
behaving maladaptively (UTW, CTW, PTW) survive. We assume 0<d <g<c<s<l.

RECURSIONS

Based on the above assumptions, we generate the following recursions:

Xili =(1—m)Xib(Ni) Xy +Us +Vy +2, + m Zn ,Xkb(Nk)_in+Uki +Vii 1
Ni _1 k=i Nk

Xi +U; +V; X:+U.+V. +7Z.

@-m)X,b(N,) - N” i, mlij(Nj) TtV T4

’ L i
Xij =(1_S) ]

m n X tU +V,
+ n—lzkii'j Xkb(Nk) d 4 4
k

n

Ui = (1_d){(1_m)uib(Ni)pii +%Zk¢iukb(Nk)pki}’

Uj = (1_d)(l_s){(1_m)Uib(Ni)pij +%Z:¢iukb(Nk)pki}

Vi = (1= 9)A-mVib(N;),
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1-g)A-s)mV;b(N;)

V! = A.6
1) n—l ( f)
' m
Z; =(1—c){(1—m)zib<Ni)+mzLizkb<Nk>}, (A69)
where 1<i<n,1<j<n,and j=i inEgs. (A.6b), (A.6d), and (A.6f).
STABILITY OF CT EQUILIBRIUM
When r >[1-(1-d)1-ms)]/(1-d)(L-ms), a CT equilibrium exists where other social
learners (UT, PT) and IL are absent, and CT occur in equal numbers at each site; formally,
X, =V, =7,=0,
~  K@-m 1-(1-d)(L-ms), ~ Km(@l-s 1-(1-d)(L-ms .
g, =Kty G=om), K069 12G=0Em) gy a)
—ms r(1—d)@—ms) @—ms)(n-1) r(l—d)@—ms)
for 1<i<n, 1< j<n.
When the recursion (A.6) is linearized at this equilibrium in the variables Xj;, U;; —Uij , V;; and
Z. , the coefficient matrix becomes a (3n”+n)x (3n”+n) matrix as follows:
1 (1—s)M? <
Xi= 1-m)*X. + Xt A.8a
" (L-d)@-ms)’ {( I (n-1)° 2 k} (A.8a)
, (1-s)m { (1—s)M < }
L= 1-m)A-s)X, +(1-m)X. + D G A.8b
ij (1—d)(n—1)(1—m8)2 ( )( ) i ( ) j n—1 Zki“ k ( )
, o~ 1-m ~
Ui -U; =1—[2—(1+ N-d)d-ms)JU; -U;), (A.8c)
—ms
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g o @=sm o, —d)1- 4.
103 ViU, = o op 2 0 - da-mou, -0)), (A.8d)
104
105 v - d=g)d=m - (A.8e)
(1—d)(L—ms)
106 y - d=g)d=s)m - (A.8f)
T = d)1-ms)(n-1)
107
i 1-¢ gz M S
108 Zi_(l—d)(l—ms){(l m)z,+n_1zk¢izk}. (A.89)

109  The matrix is reducible into four submatrices. The coefficient matrix of Eqg. (A.8a) and (A.8b)

110  has n sets of identical columns each of multiplicity n, which entails that (at least) n(n-1)

111 eigenvalues are equal to 0. Moreover, the transformed variables X; = Z';:lxij (1<i<n)

112 satisfy
113 X! = L (1—m)[(1—s)2m+1—m]X.+(1_S)m{l—ms+£}zn x} (A.92)
' @-d)(1-ms)? ' -1 n—1 <k '
114  i.e.,
X, a p p - B X
X1 | B a B - B X,
115 X|lf he PN (Ab)

116  where
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117 o= (1—m)[(1—s)2m+%—m] = (L=s)m 5 {1—ms+£] (A.9c)
(@—d)(L—ms) (n-1)@-d)(L—ms) n-1
118  Since
119
a p B Bl la+(n-DB B B B
g a p Bl la+(h-1Dp a B B
pF o fl_la+(-0p p a o - p
oo oa p : S a p
B B B - B a la+(n-D B p - p «
a+(n-1)p 0 0 0
a+(n=-1)p a-pf 0 0
Ja+(n-1p 0 a-pf 0
: : . a-pf 0
a+(n-1)p 0 0 0 a-pf
a+(n=-1)p 0 0 0
0 a-p 0 0
B 0 0 a-p 0
120 : : -y 0 . (A.10)
0 0 0 0 a-p
121

122 the coefficient submatrix of the linearized recursions in the variables Xj; yields the maximal

123  eigenvalue

124
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a+(n=-1)p=

(1—m)[(1d—3)2m+1—m]+ (j_s)m 2[1_m3+£}
(1; )(d—ms) (@—-d)@-ms) n-1 (A11)

T (1—d)(1—ms)?

{(1— m)(L—ms) +m(L—s)? +%}

Similarly, since

u-G, =L[2—<1+r)(l—d)(l—ms)]{(l—m)(ui—Ui)+mz” .(uk—dk)}, (A12)
1-ms n-1 kel

the coefficient submatrix of the linearized recursions in the variables U; —L]ij yields the maximal

eigenvalue 2—(1+r)(2—d)(@—ms), and since

,_ (@-9) B (d=s)m Gon
V"_(l—d)(l—ms){(l myV, + -] zmvk}, (A.13)

the coefficient submatrix of the linearized recursions in the variables V; yields the maximal

eigenvalue (1-g)/(1—d). Moreover, from (A.8g), the coefficient submatrix of the linearized

. . . : . 1-
recursions in the variables Z, yields the maximal eigenvalue —C. If all of these
(1-d)(@L—ms)
maximal eigenvalues have their absolute values smaller than unity, then the CT equilibrium is

stable. Since (1-g)/(1—d) <1, the condition is

L — — Y (1—s)sm2
(= d)(1—ms)’ {(1 m)(1—ms) +m(l-s) +—_1 }<1, (A.14a)
2-(1+r)@-d)(>1-ms) <1, (A.14b)

and
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1= 4
A-d)1-ms)

When CT suffer no additional learning cost (i.e., d =0), the condition becomes

1 o o2, (@A—s)sm?
m{(l m)(L—ms) + m(1—5s) +—n—1 }<l,

1<(@+r)(L-ms),

and

Since n>2 and 0 <m<1/2, (A.15a) is always satisfied. Therefore, the CT equilibrium is
stable against invasion with any combinations of NT, CT, PT and IL when ms < ¢ and

ms<r/(1+r).

Here we consider CT with strongest conformity bias (a = o« ). As shown below, even when
we consider CT with intermediate strength of conformity bias (CTI) (1<a<x), the CT

(strongest) equilibrium is stable. Let T; (1< 1<n, 1< j<n) be the number of CTI at site i that

are adapted to the environment of site j.

1 m n
T/ =—{@-m)T, +—— > «T, ¢,
i 1_ms{( )7| n_lzkﬂ k}
1-s m m n
T = 1—m)«T. + T + KT, ¢,
! 1—ms{( AT, n1’ n—lz"‘“'J k}
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m?(1-s)®
_ (1-m)* o (n-1)° e
where y = p. = sy and k= p; = ) (i=]). Similar to
@-m) — Q-m)*+——
(n-1) (n-1)

above, the transformed variables T, = ZLTU (1<i<n) satisfy

e L O B R e I T CEy
1-ms n—1 k=i

so that the coefficient submatrix of the linearized recursions in the variables T; yields the
maximal eigenvalue

ﬁ{a— ms)y +[A—s)(n—1) + ms]x}. (A.18a)

Since ¥+ (n-1)x =1, (A.18a) can be rewritten as

ﬁ{(l— ms)[1-(n-Dx]+[Q1-s)(n-1)+ ms]zc}
- A.18b
_1- sk[(n-1)(@-m)-m] 1 ( )
1-ms

so that the CT (strongest) equilibrium is stable even when we consider the invasion of CT with

intermediate strength of conformity bias (CTI).

STABILITY OF IL EQUILIBRIUM

When r > c/(1-c), an IL equilibrium exists where social learners (UT, CT, PT) are absent

and IL occur in equal numbers at each site, formally,

A

X;=U; =V, =0,Z,=Z =K[1-c/r(l-c)] for 1<i<n, 1< j<n. (A.19)

ij ij
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As expected, Z monotonically decreases in c. When the recursion (A.6) is linearized at this

U.

i Vi and Z; —Z , the coefficient matrix becomes a

equilibrium in the variables Xj;,

(3n% +n) x(3n* +n) matrix as follows.

L (A.20a)
1-c
- _@=sm X, (A.20b)
@-c)(n-2
u :wui , (A.20c)
1-c
‘= wuj , (A.20d)
(1-c)(n-1)
V! = wVi , (A.20e)
1-c
V| = wvj , (A.20f)
(@-c)(n-2)
;2 ~ m n 5
Z'-Z=[l+c- r(l—c)]{(l— m)(Z, - Z) +nzk#i Z, - Z)} : (A.209)
The matrix is reducible into four submatrices. The coefficient matrix of Eq. (A.20a) and (A.20b)
has n sets of identical columns each of multiplicity n, which entails that (at least) n(n—1)
eigenvalues are equal to 0. Moreover, the transformed variables X; = Z’;:lxij (1<i<n)
satisfy
x;=1My oy _dmsm (A21)
1-c 7 (1-c)(n-12)

Solving these linear equations, the coefficient submatrix of the linearized recursions in the

variables Xj; yields the maximal eigenvalue (1-ms)/(1-c). Similarly, the variables U; and V;
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yield the maximal eigenvalues (1-d)(1—ms)/(1—c) and (1—g)(L—ms)/(1-c), respectively. On

the other hand, the coefficient submatrix of the linearized recursions in the variables Z; — Z

yields the maximal eigenvalue 1+c—r(1—c). If all of these maximal eigenvalues have their

absolute values smaller than unity, then the IL equilibrium is stable. The condition is

1-ms

-1<
l1-c

yielding

2+¢C

c
c<ms and —<r<——

1-c

1-¢c

<1l and -1<1+c-r(l-c)<1

STABILITY OF UT EQUILIBRIUM

Xy =X>0,X;=Y>0(i#j)Z=U;=V;=0for 1<i<n, 1< j<n. A mixture of UTC

and UTW occur at each site. Each site is occupied by X UTC (which are adapted to that site)

and (n —1)\? UTW (which are adapted to the environments of the n—1 other sites). There are no

CT, PT, and IL. Clearly, the population of each site is Ni =N =X +(n—1)\? , and hence an

equilibrium of this kind is completely symmetric (the structure of the equilibrium is identical at

all sites). Let =Y /X . Substituting X, = X >0, X, =Y >0(i # j),Z, =U, =V, =0 in Egs.

(A.6a) and (A.6b) and dividing the latter by the former, we find that & is the larger and positive

root of the quadratic equation

me{e—@—ij}w(em:o.
m 1

Solving Eq. (A.23) explicitly yields

Hz{ms

_(@-s)m N
n-1

J[m_

s (@—s)m

n-1

T

2
+4(1 s)m

n-1

}/Zm
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Note: 1-s/m<f@<land 1-6>s.When n—> o, 8§ >1-s/mif s<mand d >0 if s>m.

Equation (1) entails that N >0 if and only if B(N) =b<1+r. Since Eq. (A.1) reduces to

1
1-m(1-6)’

b=
this equilibrium exists if and only if
r>m@-6)/[1-m(1-06)].

Solving as above, since

_@-d)i-m
"1-m@-0) "
,  (@-d)@-s)m
T -m@-6)(n-1) '

i (1—9)(1—m)v_

"1-m@-6) "

v/ - (1-9)d-s)m
Y -m@-0)](n-1 "

1-c m n
Zl=—————1-mZ+—— " Z ¢,
! 1—m(1—¢9){( P k}

the coefficient submatrix of the linearized recursions in the variables U,

V;,and Z; yields the
(-d)(l-ms) ~(1-g)A-ms) ,and 1-¢ , respectively. If all of
1-ml-6) ' 1-m1-6)

maximal eigenvalues
1-m(1-6)

these maximal eigenvalues have their absolute values smaller than unity, then the UT

equilibrium is stable. Since d < g, the condition is
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@-d)@-ms)<1l-m(1-0), (A.28a)
c>m(@-29), (A.28Db)
and (A.26).

STABILITY OF PT EQUILIBRIUM

Next, let us consider the stability of PT equilibrium, formally,

A

%, =U, =7, =0,

\7“ _ K(@-m) [1_1_(1_9)(1—m3)]'\7ij _ Km(l-s) 1_1_(1_ g)(l—ms)] (i#]) (A29)
1-ms r1—g)(L—ms) @—ms)(n-1) r(1—g)(@L—ms)

for 1<i<n,1<j<n.

When the recursion (A.6) is linearized at PT equilibrium,

U - A-d)a-m |

" A (A.30a)
(1-g)(@—ms)
- (L—d)1-s)m ) o
1-9)@-ms)(n-1)
so that
o 1-d ey @=S)m G
i_(l_g)(l_ms){(l mU; + - Zkiiuk}. (A.30c)

Therefore, the coefficient submatrix of the linearized recursions in the variables U; yields the

maximal eigenvalue (1-d)/(1—g) . Since g >d, this eigenvalue is always larger than unity, so

that PT equilibrium is always unstable.
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244 POLYMORPHIC EQUILIBRIUM OF IL AND CT

245 Assume that polymorphic equilibrium of IL and CT (and others) exist. Then IL and CT occur
246  inequal numbers at each site, formally, Lj“ =U, ljij -0 (EX)E Z =7, and Ni =N . From

247  the recursion (A.6), they satisfy

248

249 U=@-d)a-mu +n-101p(N), (A.31a)
250 ﬁz(l—d)(l—s)%[ﬁ +(n-0 (N, (A.31b)
251 y (1—c){(1— m)Z +%(n —1)2}b(r\]). (A.31c)
252 From (A:31a) and (A.31b), b(N) = — = and from (A:31c), b(K) = —— . Therefore,

(1-d)@@—ms) 1-¢
253 this type of equilibrium can exist only if 1—c=(1-d)(1—ms), i.e., polymorphic equilibrium of
254 ILand CT (and others) never exist when 1-c < (1-d)(L1-ms) or 1-c¢> (1—-d)(L—ms).

255 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and
256  others) never exist.

257 RESULTS SUMMARY

258 The conditions for the existence and stability of equilibria can be mapped onto six regions of

259  the (m,c)-parameter space. First, if c<ms and c/(1-c) <r < (2+c)/(1—c), fixation of IL is the

260  unique stable equilibrium (region I). Second, if ms < ¢ <min[m(1-8),1- (@ —d)(L—ms)] where

2
. g{m_s_m+ J[mu} +4M},2m, A2
n-1 n-1
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262 polymorphism of IL and UT is the unique stable equilibrium provided r > c/(1—c) (region II).
263 Third, if c>m(1-60) and m(1-6) <1-(1-d)(L-ms), fixation of UT is the unique stable
264 equilibrium provided r > m(1-6)/[1-m(@- )] (region I11). Fourth, if c >1-(1-d)(1-ms) and

(1—s)sm?

265  (1-m)(L—ms)+m(l—s)* + < (1-d)(@1-ms)?, fixation of CT is the unique stable

266 equilibrium provided r >[1- (1-d)(1—ms)]/(1-d)(L—ms) (region IV). Fifth, if

m(l-s)? . (1—s)sm?

267 c¢>1-(1-d)1-ms) and 1-m(1-60) <(1-d)(L1-ms) <1-m+ 1-ms (h—Da-ms)’

268  polymorphism of UT and CT is the unique stable equilibrium provided

269  r>[1-(1-d)AL-ms)]/(1-d)@—ms) (region V). Sixth, if

270 r<min{m(1-0)/[1-m(1-0)],[1-(1-d)2-ms)]/1-d)2-ms)} and r < c/(1-c), extinction
271 is the unique stable equilibrium (region VI). Provided the cost of PT is larger than that of CT
272 (i.e.,, g >d), PT never evolve. When CT suffer no cost (i.e., d =0), fixation of IL, fixation of

273  CT, and extinction are the possible stable equilibria (UT and PT never evolve).

274 INCREASING TRAIT NUMBER AND THE REGION OF CT

275 We show that the region for fixation of UT decreases and that for fixation of CT increases as

276  nincreases. Since the (necessary) condition for fixation of UT is

277 ml—6) <1—(1—d)(1—ms), (A.32)

278 e, 0> (L-d)d- 25) —(@-m)

=1-s@1-d) —% , and @ decreases as n increases, the region for

279  fixation of UT decreases as n increases. When d >0, (A.32) is always satisfied at m — 0, and
280  (A.32) can be violated when m exceeds a threshold value, which we write m; .o . Since

d

281 My yr.er =——————, and @ decreases as n increases, My, .oy decreases asn
1-s(l-d)-¢6

282 increases.

283 Moreover, since the (necessary) condition for fixation of CT is
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mql—d)(l—ms)z,

i.e.,

1 - (1-d)1-ms)* - (@1 -m)(@-ms)—m(l-s)

n-1

(1—s)sm?

, the region for fixation of CT increases

as n increases. When d >0, (A.33) is always unsatisfied at m — 0, and (A.33) can be satisfied

when m exceeds a threshold value, which we write My, o o1 - Myr.cr ot 1S, IT it exists, the

smaller root of the quadratic equation

(1—m)(L—ms) +m(L—s)* +

(1—s)sm?

—(1-d)1-ms)*=0,

and the necessary condition for the existence of m;,cr_cr 1S S(1—s)—4d(1-s —ﬁ) >0.

Since the coefficient of quadratic term decreases as n increases, m;;,.;_,cr decreases asn

increases.

INCREASING THE COSTS OF NON-ADAPTIVE BEHAVIOR AND THE REGION OF CT

When the costs of non-adaptive behavior (s) increases, from (A.14b) and (A.14c), CT

equilibrium decreases because of the extinction and the invasion of IL. When n is large (n — «)

ordis small (d <<1), from (A.28a), UT equilibrium is less likely to be invaded by CT. Overall,

the region where CT can evolve (regions UT+CT and CT) decreases when s increases.

WHEN IL LEARN BEFORE MIGRATION

(A.33)

(A.34)

RECURSIONS

When IL learn before migration, IL do not always have correct behavior. Let Z; (1<i<n,

1< j <n) be the number of IL at site i that are adapted to the environment of site j, and

Zi=y

Z

=17ij

. Then, the recursions is written as
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X! = (1—m)X.b(N,) Xi +Ui +V; +Z; L_m zn X,b(N,) Xi U +Vii + 2y | (A.35a)
Ni -1 ki Nk
(A—m)xp(N)Ji i Vit Ly | m ij(Nj)xjﬁUn Vi +Z;
N, n-1 N;
Xj=(-5s) X UV 17 , (A.35b)
m s gtV Vgt 4y
+Ezk¢i’jxkb(Nk) Nk
’ m n
Ui = (1_d){(1_ mU;b(N;) p; +E2k¢iukb(Nk)pki}v (A.35¢c)
! m n
Uj = (1_d)(1_s){(1_m)Uib(Ni)pij +Ezk¢iukb(Nk)pkj}a (A.35d)
where
Py = n[(xij+Uij +Vij+Zij)/Ni] a (A4)
Zkzl[(xik +U +Vie +Z3 ) IN]
Vi=@1-9g)Q-mVib(N)), (A.35€)
1-g)(L—s)mV.b(N.
- G- DA-ImVBN,) 350
n-1
Zi=(1-c)L-m)Zb(N;), (A.359)
1-c)@—s)mZ.b(N.
, _G-0a-9mz o) A35h)

n-1

where 1<i<n, 1< j<n,and j=i inEgs. (A.35b), (A.35d), (A.35f), and (A.35h).

Page | 18



319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Conditions for Conformist Transmission

When IL learn before migration, the stability of CT equilibrium becomes as follows.

Let Z; (1<i<n, 1< j<n) be the number of IL at site i that are adapted to the environment of

site j. When the recursion (A.35) is linearized at CT equilibrium,

70 _ 1-c)@—m)

= Z, (A.36a)
(1-d)@L—ms)
. (@A-c)l-s)m N (A.36h)
@-d)@-ms)(n-1)
so that
' 1_C (1_ S)m n
Zl=———<(1-m)Z + A A.36¢
! (1—d)(1—ms){( )2, n—1 L k} ( )
Therefore, the coefficient submatrix of the linearized recursions in the variables Z; yields the
maximal eigenvalue (1-c)/(1—d). Since ¢ >d, this eigenvalue is always smaller than unity, so
that IL cannot invade CT equilibrium. Therefore, the condition for CT equilibrium to be stable is
_ 2
L Ja-mya-ms)+m-sy + SOy (A.14a)
(1-d)@—ms) -1
@+r)@-d)@-ms)>1, (A.14b)’
Next, let us consider the stability of IL equilibrium, formally,
X;=U; =V, =0,
Zi _ K(@-m) 1_1—(1—c)(1—ms)]’zn__ _ Km(l-5) 1_1—(1—c)(1—ms)] (%)) (A37)

1-ms rl-c)l-ms) =" (1-ms)(n-1) r(1-c)(@-ms)
for 1<i<n,1<j<n.
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When the recursion (A.35) is linearized at IL equilibrium,

U’ = 1-d)a- m)

= U, (A.38a)
(A—c)L—ms)
, (1-d)@-s)m
ij — i (A.38b)
(1-c)L-ms)(n-1)
so that
u(=${a— mu, + &= S)mz _uk}. (A.38¢)
(L-c)@-ms) n-1 <
Therefore, the coefficient submatrix of the linearized recursions in the variables U; yields the
maximal eigenvalue (1-d)/(1—c). Since ¢ >d, this eigenvalue is always larger than unity, so
that IL equilibrium is always unstable.
Next, let us consider the stability of UT equilibrium, formally,
Xi=X>0,X;=Y>0(i#j),Z=U;=V,=0for1<i<n, 1< j<n. (A.39)
When the recursion (A.35) is linearized at UT equilibrium,
z! = _(@-c)d-m, Z, (A.402)
1-m(l-6)
, @-c)@d-s)m
ij jo (A.40Db)
[Ll-m@-6)](n-1)
so that
1-c (1 s)m
Zl=———~ _I(1- V4 A.40c
! 1—m(1—49){( R R 2 k} (A.400)

Therefore, the coefficient submatrix of the linearized recursions in the variables Z; yields the

(1-c)@—ms)

maximal eigenvalue
1-m(1-06)

. Since recursions of CT and PT are the same as (A.27), the
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coefficient submatrix of the linearized recursions in the variables U,

V;,and Z; yields the

@-d)@-ms) (@-g)@—ms) and (1-c)@—ms)

, , , respectively. Since
1-m@1-6) 1-m@1-6) 1-m@-6)

maximal eigenvalues

d < g <c, the conditions for UT equilibrium to be stable are
(1-d)2-ms)<1l-m(@1-0)

and
r>ml-6)/[1-m(1-6)].

Just as in the condition where IL learn after migration, PT equilibrium is always unstable

when IL learn before migration.

Moreover, if polymorphic equilibrium of IL and CT (and others) exist, equilibrium values

~ ~ ~

U;=U,U;=U (i#]),2,=2,Z,=Z (i#]),and N, =N satisfy

U=@-d)a-mu +n-101b(N),
jz(l—d)(l—s)%[ﬁ +(n-)U (N,
7 =(1-c)A-m)[Z +(n-DZb(N),

Zi:(l—c)(l—s)%[f +(-)Z(N),

From (A.41a) and (A.41b), b(N)=—— X and from (A.41c) and (A.41d),
(1-d)L-ms)
b(N) L . Since ¢ >d, these conditions are never satisfied simultaneously so that

T (l—c)1-ms)

polymorphic equilibrium of IL and CT (and others) never exist.
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372 Similarly, polymorphic equilibrium of PT and CT (and others), and that of PT and IL (and
373  others) never exist.

374 RESULTS SUMMARY

375 The conditions for the existence and stability of equilibria can be mapped on to four regions

376  of the (m,c)-parameter space. First, if m(1-6) <1-(1—d)(L-ms), fixation of UT is the unique
377  stable equilibrium provided r > m(1-&)/[L-m(1-6)] (region I). Second, if

378 (L-m)(L-ms)+m(1-s)’ +

N 2
A=S)SM _ 1 d)1—ms)?, fixation of CT is the unique stable

379  equilibrium provided r >[1-(1—d)(1—ms)]/(1—d)(Z—ms) (region Il). Third, if

m(l—s)? . (1—s)sm?

380 1-m(l-6)<(@-d)@-ms)<l-m+ 1-ms  (n-1)(l—ms)

, polymorphism of UT and CT is

381  the unique stable equilibrium provided r >[1—-(1—d)(1-ms)]/(1—d)(@—ms) (region III). Fourth,
382 if r<min{m(1-6)/[Ll-m@1-0)],[1-(1-d)(L-ms)]/(1-d)(@—ms)}, extinction is the unique

383  stable equilibrium (region 1V). Provided the cost of IL and PT are larger than that of CT (i.e.,
384 c¢>g>d), IL and PT never evolve. When CT suffer no cost (i.e., d =0), fixation of CT and

385  extinction are the only possible stable equilibria (UT,PT, and IL never evolve) .

386 WHAT HAPPENS IF THE NUMBER OF TRAITS AND SITES DIFFER?

387 Here we consider an infinite number of islands and n behavior model, where each behavior is
388  adapted to the same number of sites. In this situation, we can regard the sites where the same

389  behavior is adaptive as one site, so this situation is almost the same as normal island model with
390 nsite but migration rate is different. That is, we can ignore the migration between sites where the

391  same behavior is adaptive, so effective migration rate in this model is

m* = (n-Ym .
n

392 (A.42)

393  Therefore, the conditions for fixation of UT, those for CT, etc. are basically the same as in the

394  above model, but m — m”. The threshold values of m for UT - UT +CT and UT +CT —»CT
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n .. . i . .
are 1 times as large as those in the normal n island model. Since both the threshold values in

n ) .
the normal model and —1 decrease as n increases, the threshold values in this model also
n —_

decrease as n increases.

APPENDIX B: A MODEL OF TEMPORAL VARIABILITY WITH PURE
LEARNING STRATEGIES

The method of numerical simulation for the evolution of learning in temporally changing
environment is as follows. We assume that the number of possible environmental states is
infinite so that when the environment changes it never reverts to an earlier state (infinite
environmental states model). Corresponding to each environmental state, there is one optimal
(correct) behavior (fitness: 1). All other behaviors are equally maladaptive (fitness: 1—-5; i.e. the
cost of maladaptive behavior is s). The environment changes every ¢ generations (¢ >1), so that
one post-change generation experiences a different environmental state to the previous
generation, and ¢ —1 subsequent generations experience the same state as that post-change

generation. That is, larger values of /7 imply more environmental stability.

We assume a population of haploid asexual organisms. A tetra-allelic locus determines
whether an organism is an individual learner, a social learner with unbiased transmission, a
social learner with conformist transmission, and a social learner with payoff-biased transmission
(abbreviated IL, UT, CT, and PT, respectively). IL always achieves the optimal (correct)
behavior by individual learning, but suffers a fixed cost c. Social learners (UT, CT, PT) copy a
behavior of the previous generation. So, when the environment changes, social learners always
copy a maladaptive (wrong) behavior and only IL behaves correctly. UT acquire their
phenotypes by copying a random member of the parental generation in the site they occupy
(obligue transmission). CT suffer a mortality cost d to acquire their phenotypes. Here we assume
CT with a conformity bias a. Therefore, the probability that CT imitates a behavior j with the

frequency b; in the previous generation can be expressed as
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by
Pi: a a a
by +b7 +b) +--

where b,,b;,b, --- are the frequencies of organisms with the behavior 0, 1, 2 --- respectively. PT
acquire their phenotypes by copying the behavior of the parental generation with the highest
payoff, but suffer a mortality cost g. Provided IL exist in the population, PT can copy optimal
(correct) behavior in every generation except post-change generations. In post-change

generations, PT copy a behavior that is optimal in the previous generation.

The fitness of IL is 1—c, that of social learners (UT, CT, PT) behaving correctly (UTC,
CTC,PTC)is1,1-d,and 1- g, respectively, and that of social learners behaving incorrectly

(UTW, CTW, PTW) is1-s, (1-d)(1-s),and (1-g)(@—s), respectively (0<d <g<c<s<l
).

We set the initial condition such that the environment is in state 0 in generation 0 and all
members have behavior 0. In the next generation (generation 1) the environment changes to state
1 and behavior 1 becomes optimal. We suppose that behavior i is optimal in state i. In a
periodically changing environment, the environment changes every ¢ generations so that the

environment changes from state i to state i+1 between generation i/ and generation i/ +1.

Suppose that the population is now in generation k and the environment is state n. Let the

frequency of UT, CT, PT, and IL after natural selection be x®, u®, v® and z% (

x® +u® 4+ v 1 709 =1, respectively, that of behavior i be b and PR® = (b)* />’ (b{)* .
=0

Then,

() — b¥™® + (1-s)@-b¥* ™M) (k-
Tk 1

u(k) — (1_ d) I:)n(kil) + (1_ S)(l_ Pn(kil)) u(k—l)
Tk—l
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(1-9g)1-5s) kD (

T post - change generations)
k-1

v = .
g kD

(other generations)
Tk—l

1-c_u-
200 _ 7 (kD)

Tk—l
1-c)z*? .
L ost - change generations
T p geg
brEk) _ k-1
bUIxED 4 1—d)P*Pu*D 41— g)v* P+ (1-c)z*? .
n ( )F (@-9) d=c) (other generations)
Tk—l
(k-1) y, (k-1) _ (k-1),,(k-1) _ (k-1)
@--s) by X7+ d)l?lr_” u+A=g)v (post - change generations; m =n—1)
k-1
(k-1) y, (k-1) _ (k-1),,(k-1)
b® = (1-s) b "X +(T1 )R, " (post - change generations; m < n —1)
k-1
(k-1) y, (k-1) _ (k-1),,(k-1)
@-s) by X +(T1 d)F, (other generations; m < n)
k-1

where

@=9)x9 +@-d)@-s)u® + (@-g)-s)v* + (1-c)z™  (post - change generations)
DR + 12— 5)L-b®)I® + @-d){P® + (L-s)(L— PP) Y + @1 gv® + (1-c)z®  (other generations)

Since the fitness of social learners over one cycle (¢ generations) is always smaller than

(1-s)"1"" =1-s and that of IL over one cycle is (L—c)’, IL equilibrium is stable when

1 S InQl-c)

" In(l-s)’
It can also be shown that IL and PT never coexist at stable equilibrium, except when

1_In-c)-Int-g)
0 In(L—s) '

Page | 25

(B.2c)

(B.2d)

(B.3a)

(B.3b)

(B.4)

(B.5)

(B.6)



452
453

454

455

456

457
458
459

460

461

462

463

464

465

466

467

468
469

470
471

472
473

474

Conditions for Conformist Transmission

When IL exist, the fitness of IL over one cycle is (1-c)*, and that of other coexisting strategies
must be the same fitness. However, when IL do not exist, the fitness of PT over one cycle is

(1-s)@-g)". Therefore, IL and PT coexist at stable equilibrium only when

1_In@-=0)=In@=9) \ype, 1, Ind=c)=Ind-g) , PT cannot invade the equilibrium

/ In(L—s) ( InL—s)

population of IL (and others). When 1 < Ind-c)-Ind-g)
¢ In(L—s)

, the frequency of IL decreases, but

if IL go extinct, the fitness of PT over one cycle becomes (1-5)'(1—g)". Since c<s, IL can
invade this equilibrium population of PT (and others), but when IL invades, the fitness of PT
over one cycle becomes (1-s)(1-g)" again, so the frequency of IL decreases again. Assuming
that the frequency of IL never becomes 0 because of low frequency mutation, the frequency of

IL is almost O at equilibrium when %< IN@=¢)=I=9) \ypen L INE=C)=In(l=0) PT

In(1—s) l In(L—s)

equilibrium (with low frequency IL) is stable if and only if

1_In(-g)

¢ In(l-5s) B.7)

because when the frequency of PT is almost 1, the fitness of UT over one cycle is (1-s)* and

that of CT over one cycle is (1-s)*(1—d)" < (L—s)? because they learn the wrong behavior in

post-change generation and the next generation, but learn correct one in other generations. When

1> Inl-c)-In(L-9g) and 1< Inl—g)
l In(L—5s) ¢ In(l-5s)

, polymorphism of PT and other social learning

strategy (UT and/or CT) will be achieved. These analytical results are confirmed by the

numerical simulation.

For Figure 6B, we set the initial frequencies of UT, CT, PT, and IL be 0.25. Parameters are
s=05,c=03,9g=0.1,d=0, /=5,and a=10. For Figure 5, we obtain the equilibrium
frequencies of UT, CT, PT, and IL from several initial frequencies of them. Parameters are
s=0.5, g=0.1, d=0.05,and a=10. Note a =10 is sufficiently strong such that it can be

assumed to be almost infinite.

Page | 26



475

476
477
478
479

480

481

482

483

484

485

Conditions for Conformist Transmission

IL LEARN BEFORE THE ENVIRONMENTAL CHANGE

If IL learn before environmental change, IL also have a wrong behavior in post-change
generations. Then, all members have a wrong behavior in post-change generations, so social
learners (UT, CT, PT) always copy a wrong behavior in the next generation of the post-change

generation. Therefore, the fitness of social learners over one cycle (¢ generations) is always
smaller than (1—s)?1"2 = (1-s)?, that of IL over one cycle is (1-s)(@1—c)’, and that of PT over

1 In(l-c)

one cycle is (1-s)*(1—g)". Thus, IL equilibrium is stable when n > InA_s)’ IL and PT never

1 _ Inl-c)—In(L-9g)

coexist except when = , and PT equilibrium (with low frequency IL) is

1 InA-5s)
stable if and only if 1 Ind=0)=In=9) ;gL INE=09) .o catisied. That is, the results
; In(l—s) ¢ In(=s)

are basically the same as in the case that IL learn after environmental change.
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