Levels of Processing Versus Transfer Appropriate Processing

C. Donald Morris, John D. Bransford, and Jeffery J. Franks

Vanderbilt University

Levels of processing were manipulated as a function of acquisition task and type of recognition task in three experiments. Experiment 1 showed that semantic acquisition was superior to rhyme acquisition given a standard recognition test, whereas rhyme acquisition was superior to semantic acquisition given a rhyming recognition test. The former finding supports, while the latter finding contradicts, the levels of processing claim that depth of processing leads to stronger memory traces. Experiment 2 replicated these findings using both immediate and delayed recognition tests. Experiment 3 indicated that these effects were not dependent upon the number of times a rhyme sound was presented during acquisition. Results are interpreted in terms of an alternation framework involving transfer-appropriate processing.

According to the levels of processing framework proposed by Craik and Lockhart (1972), the nature and duration of the memory trace is determined by the level, or depth, at which the input is processed, inputs that receive only superficial analyses such as those prompted by nonsalient orienting tasks are assumed to be more poorly retained than inputs subjected to deeper semantic analyses. A large number of studies appear to support the levels of processing framework (e.g., Hyde & Jenkins, 1969; Till & Jenkins, 1972; Walsh & Jenkins, 1972). A somewhat smaller set of studies has pointed toward the need to further differentiate levels of processing within the semantic level of analysis (e.g., Craik & Tulving, 1975; Schulman, 1974; Klein & Salz, 1976; Seamon & Murray, 1976) and to consider additional memory variables such as retrieval constraints, trace uniqueness, trace congruity, and so forth (e.g., Craik, Tulving, 1975; Moscovitch & Craik, 1976). To our knowledge, however, no theorists have explicitly addressed the question of what is meant by superficial or nonmeaningful processing in contrast to semantic processing. We shall argue that particular acquisition activities are never inherently "superficial" or "nonmeaningful." Instead, task meaningfulness must be defined relative to particular learning goals.

Consider a recent experiment conducted within the levels of processing framework: Seamon and Murray (1976) presented orienting instructions indicating that subjects should either attend to word meaning (Task A) or attend to the position of their lips during vocalization of each input (Task B). Results indicated that the deeper processing suggested by Task A produced better memory than did the superficial, nonmeaningful processing prompted by Task B. Seamon and Murray also manipulated the normative meaningfulness of input stimuli and found that meaningfulness facilitated recall only for acquisition Task A.

It is instructive to ask why attention to the
position of one’s lips during pronunciation constitutes a non-meaningful or superficial level of processing. At first glance, the answer to such a question seems obvious. Subjects are not prompted to process the meaning of each word. However, is the failure to process the semantic meaning of inputs necessarily equivalent to performing a superficial or non-meaningful task?

Assume that one wants to teach principles of speech perception and articulation to students. The present authors’ experiences (as well as those of colleagues who have taught speech perception) suggest that an especially helpful teaching technique involves asking students to attend to the position of their lips and tongue while pronouncing words. Students usually find this to be an extremely meaningful exercise, despite the fact that they are not prompted to process the semantic meaning of the words used in the exercise. Indeed, the semantic meaning of the words presented is not necessarily a meaningful component of such an instructional exercise. Similarly, if one wants to teach students about rhyming, the semantic meaning of the words presented as illustrations is not necessarily a meaningful aspect of the task at hand. Imagine that an instructor wishes to test the degree to which students learned from the above-mentioned classroom exercises. It would seem totally inappropriate to test students by asking them to identify the particular inputs (e.g., words) that were used during the learning exercises. The purpose of the semantic and rhyme exercises is not to learn the particular inputs used as illustrations during instruction. Instead, the purpose is to learn sound-mouth and tongue relationships (for speech perception and articulation), to learn sound-sound relationships (for rhyming), and so forth. Such learning tasks are not necessarily shallow, superficial, or non-meaningful. Do such tasks necessarily result in memory traces that are less adequate and durable than do other tasks which prompt subjects to process the semantic aspects of inputs? We suggest that the answer to this question has not yet been subjected to appropriate experimental test.

Investigators who have utilized the levels of processing framework have been equivalent to a speech perception or rhyme instructor who tests his student on the particular words used to exemplify the desired-to-be-learned information. In a classroom situation, it seems clear that sophisticated students would strongly object to such a testing procedure. Clearly, the tests would not be designed to tap what was supposed to be learned. The levels of processing claim that less meaningful or more superficial analyses of inputs result in less durable memory traces is therefore questionable or at least highly ambiguous. It seems clear that one can test people inappropriately and therefore find evidence for “inadequate processing or learning” relative to that particular testing criterion. Will the superiority of deep, semantic processing persist irrespective of the test one employs? For example, assume that one group of subjects is asked to check for each word in each word (Hyde & Jenkins, 1969), whereas a second group is prompted to process each word at a deeper, semantic level. Which group will be better and faster at estimating the number of acquisition stimuli that contained an “r”?

The present experiments are designed to begin an initial inquiry into the assumptions underlying the levels of processing framework. Their purpose is to explore the degree to which assumptions about the “goodness” of particular acquisition activities must be defined relative to particular learning goals (as well as to tests designed to be congruent with these goals). It is possible that so-called superficial or non-meaningful tasks (e.g., rhyme acquisition) are inferior to semantic tasks irrespective of the testing situation. Alternatively, different modes or levels of processing may simply allow people to acquire different sorts of information, each of which may have the potential for being equally strong and durable (as revealed by appropriate testing situations). The present provide an initial investigation possibilities.

Two incidental learning tasks subjects to induce them to to items at different levels. One subjects to judge the appropriate target word within the context sentence frame. The second task is judged whether or not a target word, with another word. The first task tapped a semantic (deep) level, whereas the second task induced the process the words a phonetic (superficial) level. The level framework predicts that the processes should result in a set of items, relative to the ccessing the task. But, as argued in section, tests of this claim have targets and foils that may appropriate to and dependent modes of processing. Thus, results favoring the levels claims may be due in large part by the way in which mem

To provide a more adequate claims it is necessary to consider processing levels dictated by the tasks, but also the processing level of the form of the memory test. Typically, the present experiments varied the kind of acquisition and kind of memory test given to a group of students that were to be directly affected the subjects processed materials and testing.

The basic paradigm of the experiments is as follows: Subjects were given a semantic or a phonetic orientation of the subjects in each test and given a recognition test in which the original items presented during the other half of the subjects recognition test in which target of the items presented origin.
We suggest that the answer has not yet been subjected to rimental test. who have utilized the levels network have been equivalent option or rhyme instructor test on the particular word. They the desired to-be-learned a classroom situation, in sophistics students would o such a testing procedure, would not be designed to tap as to be learned. The levels of that less meaningful or more se of inputs result in less trances is therefore question highly ambiguous. It seems test people inappropriately d evidence for "inadequate ning" relative to that particu. Will the superiority of processinc persist irrespective ploys? For example, assume f subjects is asked to check ard (Hyde & Jenkins, 1969), d group is prompted to ard at a deeper, semantic p will be better and faster at inber of acquisition stimuli . Experiments are designed to inquiry into the assumptions els of processing framework, to explore the degree to is about the "goodness" of sition activities must be a particular learning goals is designed to be congruent. It is possible that so-called onmeaningless tasks (e.g., o) are inferior to semantic o of the testing situation. Foremost modes or levels of imply allow people to acquire information, each of which nial for being equally strong revealed by appropriate

testing situations). The present experiments provide an initial investigation of these possibilities.

Two incidental learning tasks were given to subjects to induce them to process verbal items at different levels. One task required subjects to judge the appropriateness of a target word within the context of a given sentence frame. The second task involved judging whether or not a target word rhymed with another word. The first task presumably tapped a semantic (deep) level of processing, whereas the second task induced subjects to process the words at a phonetic (a relatively more superficial) level. The levels of processing framework predicts that the semantic process task should result in superior retention of items, relative to the phonetic processing task. But, as argued in the introduction, tests of this claim have generally used targets and foils that may be considered appropriate to and dependent upon semantic modes of processing. Thus, many of the results favoring the levels of processing claims may be due in large part to an inherent bias in the way in which memory was tested.

To provide a more adequate test of these claims it is necessary to consider not only the processing levels dictated by the acquisition tasks, but also the processing levels induced by the form of the memory test itself. Accordingly, the present experiments factorially varied the kind of acquisition task with the kind of memory test given to subjects. It was expected that these experimental manipulations would directly affect the levels at which subjects processed materials during acquisition and testing.

The basic paradigm of the present experiments is as follows: Subjects were given either a semantic or a phonetic orienting task. Half of the subjects in each experiment were given a recognition test in which targets were the original items presented during acquisition. The other half of the subjects received a recognition test in which targets were rhymers of the items presented originally. Thus, the level of processing for a set of items was varied not only at acquisition, but at the time of test as well.

Experiment 1

Experiment 1 was designed to investigate the possibility of an interaction between acquisition modes and type of memory test, given an immediate testing situation. It was hypothesized that a semantic level of processing during acquisition would indeed facilitate recognition performance relative to a rhyme-related level of processing, given a standard recognition test. This superiority was expected to be neutralized, and possibly reversed, however, when subjects were given a rhyming recognition test.

Method

Subjects. Thirty-two subjects from an introductory psychology class served in this experiment. Each subject was run individually.

Design. A 2 x 2 x 2 factorial design was utilized. There were two types of Acquisition Tasks, a Semantic orienting task and a Rhyme orienting task. These tasks induced deep and superficial levels of processing, respectively. Nested within this factor was a Congruency factor (see Craik & Tulving, 1975). Target words were either congruent or not with a particular context for both kinds of Acquisition Task. For example, targets were either meaningful or meaningless within a particular sentence, or targets either rhymed or did not rhyme with the last word of the preceding sentence. The two levels of this factor are referred to as Yes and No, respectively. Both Acquisition Task and Congruency were varied within subjects. The third factor, Type of Test, was manipulated between subjects. Sixteen subjects were given a Standard recognition test in which target items were the original acquisition items. The other sixteen subjects were given a Rhyming recognition test in which targets were rhymers of the original items.
Materials and procedures. The experimental stimuli were 32 target words, embedded in sentences. These words were subsequently presented on a recognition test along with 32 foils. All targets and foils were common five-letter words, of either one or two syllables. Each word was chosen to meet the following constraints: (1) it bore little semantic or phonetic similarity to any other word on the list; and (2) at least one other word rhymed with it if it was a foil, or at least two other words rhymed with it if it was a target. (The reasoning for this last constraint is given below.)

During acquisition, the experimenter read aloud 32 sentences with one word (the target) missing from each. The word “BLANK” was said in place of the missing target word. Each sentence was followed by a 2-second pause, then the verbal presentation of the target word. There were four types of sentences, each with eight instances, and each representing a particular mode of acquisition. These acquisition modes corresponded to the four possible combinations of the within-subject factors: Semantic-Yes, Semantic-No, Rhyme-Yes, Rhyme-No. Sentences requiring semantic processing of the targets were of the form “The —— had a silver engine.” Sentences inducing phonetic processing of the targets were of the form “The —— rhymes with legal.” The target word was either a Yes or No. For example, given “The —— had a silver engine,” presentation of the target “TRAIN” would represent a Semantic-Yes acquisition mode, whereas presentation of the target “EAGLE” would represent a Semantic-No acquisition mode. Analogously, for a sentence such as “The —— rhymes with legal,” presentation of targets such as “EAGLE” and “PEACH” represent Rhyme-Yes and Rhyme-No acquisition modes, respectively. Each subject received the same 32 target words. These words appeared in one of four different random orders and each target was presented equally often as an instance of each of the four acquisition modes. These last two considerations were both counterbalanced across subjects.

All sentences were short and constructed in such a way that subjects could easily decide if the target was meaningful or nonsensical, or a rhyme or nonrhyme. Subjects were simply to respond positively or negatively as to the appropriateness of each target given the immediately preceding sentence. Subjects were told that their responses were to serve as normative data for future experiments.

After receiving the 32 acquisition sentences, subjects were immediately given a recognition test consisting of 64 items, 32 targets and 32 foils in a random order. These words were read aloud by the experimenter at a rate of one word approximately every 3 seconds. Subjects responded on a binary yes-no scale and then responded on a 5-point scale rating their confidence of their recognition responses. For those subjects receiving the Stanford recognition test, the to-be-remembered items were those they had received during acquisition. For those receiving a Ryhmerecognition test, to-be-remembered items were words that rhymed with the original acquisition items. As mentioned before, all foils (e.g., “POUND”) had at least one rhyme (e.g., “MOUND”). It was necessary, however, to choose targets (e.g., “EAGLE”) that had at least two rhymes, one given in the acquisition sentence (e.g., “LEGAL”) and one given in the recognition test (e.g., “REGAL”).

Results

Table 1 presents a summary of the mean corrected recognition scores for each experimental condition. It was considered appropriate to use uncorrected scores, since these would not take into account the response biases of individual subjects, but that, of course, inferences to respond positively or negatively regardless of the acquisition mode of a particular item. In an attempt to remove at least part of this potential response bias, false positive responses were subtracted from the
TABLE 1
MEAN CORRECTED PROPORTION SCORES AS A FUNCTION OF TYPE OF ACQUISITION TASK AND
TYPE OF ACQUISITION MODE

<table>
<thead>
<tr>
<th>Acquisition mode</th>
<th>Recognition test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Semantic-Yes</td>
<td>.846 (.155)</td>
</tr>
<tr>
<td>Rhyme-Yes</td>
<td>.635 (.239)</td>
</tr>
<tr>
<td>Semantic-No</td>
<td>.859 (.93)</td>
</tr>
<tr>
<td>Rhyme-No</td>
<td>.524 (.271)</td>
</tr>
</tbody>
</table>

* Numbers in parentheses represent standard deviations.

Scores in each condition. The corrected scores are presented as proportions and were obtained in the following manner: Suppose a subject had correctly recognized six Semantic-Yes items and four Rhyme-Yes items but had also responded positively to eight of the 32 foils. The corrected scores would then be (6/8) - (8/32) = 0.50 and (4/8) - (8/32) = 0.25, respectively.

A survey of these means given that subjects received a Standard recognition test reveals that the Semantic acquisition mode was indeed superior to the Rhyme acquisition mode. This finding supports the levels of processing claim that greater depth of processing leads to improved memory traces (e.g., Craik & Tulving, 1975). An examination of the Rhyming recognition scores suggests quite a different account, however. In this condition, memory performance was better when subjects had been given a Rhyme-Yes acquisition mode relative to a Semantic-Yes acquisition mode (although this did not hold for No acquisition sentences, see below). This latter effect is difficult to account for within the levels of processing framework.

A 2 x 2 x 2 (Type of Test x Acquisition Task x Congruency) analysis of variance on the corrected proportion scores showed a significant main effect for Type of Test, F(1, 30) = 39.09, p < .001, indicating a general superiority of the Standard recognition test over the Rhyming recognition test; a significant main effect for Acquisition Task, F(1, 30) = 21.31, p < .001, indicating a general superiority of the Semantic acquisition mode over the Rhyme acquisition mode; and a significant Type of Test x Acquisition Task interaction, F(1, 30) = 23.89, p < .001, discussed more fully below. The analysis of variance also showed a significant Congruency effect, F(1, 30) = 9.87, p < .004, and a significant Acquisition Task x Congruency interaction, F(1, 30) = 15.91, p < .001. In general, targets embedded within congruent sentence frames were better remembered than those embedded in incongruent frames, replicating the findings of Craik & Tulving (1975). This effect was primarily attributable to the enhanced recognition of Rhyme-Yes over Rhyme-No scores.

The effect of primary interest in these scores is the observed interaction between Acquisition Task and Type of Test. This interaction was obtained in the analysis of variance with scores collapsed across the Yes-No acquisition dimensions. An examination of Table 1 indicates that the nature of this interaction varies substantially between the Yes and No conditions. Inspection of the upper half of Table 1 (for Yes acquisition conditions) reveals that, given a Standard recognition test, the Semantic acquisition mode was superior to the Rhyme acquisition mode, .844 > .433, t(30) = 3.99, p < .001. However, given that subjects received a Rhyming recognition test, the Rhyme acquisition mode provides superior recognition performance relative to the Semantic acquisition mode, .489 > .333, t(30) = 2.55, p < .05. If we now consider the lower half of Table 1 (for No acquisition conditions), it is evident that the Semantic acquisition mode was superior to the Rhyme acquisition mode for both types of recognition test, although the superiority was greater for the Standard test. Since there was no reversal here, as there was for Yes scores, no further statistical tests were considered necessary.
One reason for these results with No items may be the lack of integration of the target and its sentence frame for No acquisition sentences. This would lead to a decrement in performance, particularly for the Rhyme-No conditions. Craik and Tulving (1975), for instance, have noted that the role of congruency in encoding and retrieval operations needs further clarification. Its influence, particularly with other levels of processing factors, remains unclear at present.

A second reason why Rhyme-No conditions may have poor performance on the Rhyming test stems from the following consideration. Rhyme-No acquisition frames are of the form “______ rhymes with ditch: REGAL.” Under these conditions LEGAL is assumed to be the target item and the rhyme transfer test assesses a subject’s abilities to detect a rhyme word like REGAL. Although this procedure was utilized in the present studies in order to be congruent with previous investigations (e.g., Craik & Tulving, 1975; Moscovitch & Craik, 1976), there are certain reasons to doubt its adequacy. The focal point of a sentence like “______ rhymes with ditch: LEGAL,” may very well be “ditch” and not LEGAL. If subjects could somehow be instructed to understand that words rhyming with “ditch” were the target items for Rhyme-No sentences and were later tested with words like WITCH (rather than REGAL), performance might greatly improve on the Rhyming test, despite the lack of a sentence-target congruity effect. This possibility must await further research. In the meantime, it seems more appropriate to focus present analyses and discussions on the Yes items rather than the No items.

An analysis of the obtained confidence ratings provided no additional insights into the nature of the effects reported above.

EXPERIMENT 2

Experiment 2 was designed with two functions in mind. One function was to replicate the findings of Experiment 1. To this end, certain changes were made to provide greater reliability and power for the statistical tests of the phenomenon. The result to be replicated indicates that memory performance seems to be affected by processing level during acquisition task and by processing level during retention test. Given this finding, the levels of processing claim that semantic orienting tasks provide inherently stronger memory traces stands in need of qualification. The levels of processing framework also claims that semantic processing results in longer-lasting or more durable memory traces. Thus, the superiority of “semantic” traces over “rhyme” traces should increase, or at least remain constant, over time. The second function of Experiment 2 was to test this prediction, using the same basic paradigm as before. In this experiment, half the subjects received the recognition test immediately, as before, while the other half were tested after a 24-hour delay. Thus, it was hoped that more could be ascertained regarding the interaction between levels of processing at acquisition and test.

Method

Subjects. One hundred and fourteen subjects from an introductory psychology class served in this experiment. Subjects were run in 16 groups of six to eight persons each.

Design. The design was similar to that of Experiment 1 with the exception of an additional between-subjects factor, Time of Test. There were two levels of this factor, Immediate and Delayed. Thus, the design was now a 2 x 2 x 2 factorial design.

Materials and procedures. The materials were identical to those of Experiment 1 with the following exception: In Experiment 1 there were 6 distinct stimulus lists (four random orders x four acquisition modes per target), whereas the present experiment utilized only eight distinct stimulus lists (two random orders x four acquisition modes per target). There were two procedural variations.
Experiment 1: (1) Subjects could now respond "yes," "no," or "unsure" after each acquisition sentence. (2) Eight groups of subjects were tested immediately, whereas eight were tested after a 24-hour delay. To help insure the incidental nature of the task, subjects were told that they were to provide additional normative ratings on the following day and that the experiment concerned the variability of such ratings over time.

Results
Table 2 presents a summary of mean corrected proportion scores for each experimental condition. A survey of these means reveals again that a Semantic acquisition mode is superior to a Rhyme acquisition mode when subjects were given a standard recognition test. Thus, this finding replicates that found in Experiment 1 and supports the levels of processing claim. In addition, this superiority persists when subjects are tested after a 24-hour delay, although the absolute difference between Semantic and Rhyme acquisitions has diminished. When subjects are given a Rhyme recognition test, a different pattern of results appears. As in Experiment 1, memory performance was better when subjects had been given a Rhyme-Yes acquisition rather than a Semantic-Yes acquisition. This effect holds not only for the Immediate condition (thus replicating the results of Experiment 1) but for the Delayed condition as well. It is interesting to note that the absolute difference between Semantic-Yes and Rhyme-Yes acquisitions remains fairly constant over the delay period. Note once again, however, that no reversal was found for the Ne scores. The Semantic-No condition was superior to the Rhyme-No condition for both the Standard and the Rhyming tests and for both the Immediate and the Delayed conditions.

A 2 × 2 × 2 × 2 analysis of variance (Type of Test × Acquisition Task × Congruency × Time of Test) on the corrected proportion scores showed significant main effects for Type of Test, F(1, 110) = 86.51, p < .001; Acquisition Task, F(1, 110) = 5.37, p < .02; Congruency, F(1, 110) = 30.03, p < .001; and Time of Test, F(1, 110) = 54.18, p < .001. These represent, in general, the superiority of Standard over Rhyming recognition tests, Semantic over Rhyme acquisition modes, Yes over No acquisition modes, and Immediate over Delayed tests, respectively. Significant interaction were found for Type of Test × Time of Test, F(1, 110) = 11.88, p < .001; Type of Test × Acquisition Task, F(1, 110) = 21.24, p < .001; and Congruency × Acquisition Task, F(1, 110) = 16.71, p < .001. The Type of Test × Time of Test interaction was due to a larger difference between the Standard and Rhyming recognition tests when tested immediately than when tested after a 24-hour delay. The Congruency × Acquisition Task interaction was significant, but further analysis revealed no systematic pattern.
interaction was primarily attributable to the relatively poor performance levels of the Rhyme–Non acquisition mode relative to the other three acquisition modes. The Type of Test × Acquisition Task interaction is described below.

For the reasons expressed in the discussion of the results of Experiment 1, it is difficult to interpret differences between Yes and No acquisition modes. Therefore, the critical Type of Test × Acquisition Task interaction was examined with respect to only the Yes scores. When subjects were given a Standard recognition test, Semantic acquisition was better than Rhyme acquisition for the Immediate test condition, 757 > 682, t(10) = 1.66, p < .10. Although this difference failed to reach conventional levels of significance for a two-tailed test, it was significant for a one-tailed test, p < .05. For the Delayed test condition, Semantic acquisition was also better than Rhyme acquisition, but again the advantage was not significant, 450 > 411, t < 1.00. Though these comparisons fail to suggest significant differences, the differences are in the direction predicted by the levels of processing claim. When subjects were given a Rhyming recognition test, Rhyme acquisition was significantly better than Semantic acquisition for both the Immediate and the Delayed tests, 424 > 300, t(10) = 2.66, p < .01 and 290 > 180, t(10) = 2.38, p < .02, respectively. Thus, the levels of processing claim that greater depth of processing results in stronger memory traces is, again, not supported.

The second claim, that depth of processing also provides more durable traces, is also questioned by the present data. The present authors had assumed that rhyme processing might yield extremely poor performance on a rhyme test after a 24-hour delay. In contrast, semantic processing might well show much less decrement in performance on the delayed rhyme test. However, the three-way interaction among Time of Test, Type of Test, and Acquisition Task was not significant. Furthermore, an examination of the Yes scores in Table 2 reveals that the failure of the three-way interaction to reach significance was not due to a lack of statistical resolution. Instead, it appears that the results run in a direction opposite to that discussed above. For instance, given a Standard recognition test, the superiority of Semantic over Rhyme acquisition diminishes over time (737 > 682 in the Immediate condition compared to 450 v. 418 in the Delayed condition). This itself is not surprising, but it offers an interesting contrast to the Rhyming recognition condition. In this condition, the superiority of Rhyme over Semantic acquisition diminishes to a lesser extent over time (424 v. 300 in the Immediate condition compared to 290 v. 180 in the Delayed condition). A comparison of the differences between differences (675 - 202 = 473 v. 124 - 110 = 14, respectively) failed to reach statistical significance. Thus, these results question the assumption that semantic processing provides more durable memory traces.

Finally, there are two major questions regarding the recognition performance of Rhyme–Yes words. Examination of Tables 1 and 2 shows that Rhyme–Yes acquisition stimuli are better retained or Standard, rather than Rhyming, recognition tests. Although the present inferent concerns the Acquisition Task × Type of Test interaction, these findings warrant further consideration. Two possibilities suggest themselves. One, the Standard recognition test is simply an easier test to perform. Two, and perhaps more importantly, items on the Standard recognition test contain both semantic and phonetic information relevant to correct identification of the target. Items on the Rhyming recognition test contain rhyme information which relates only to phonetically relevant information but not to semantic information. This possibility is currently being researched.

The second point to be considered involves an inherent procedural difference between Rhyme–Yes and Semantic–Yes conditions. In particular, the Rhyme–Yes condition includes two occurrences of items that rhyme with the

Ryming test target items (e.g., rhymes with legal: EAGLE). Semantic–Yes condition includes occurrence of an item that rhymes with test target items (e.g., has feather: EAGLE). Clear items to define a rhyme. It is possible that this procedural difference represents a confound in design.

The procedural differences between and rhyme modes of action are important and in need of further exploration. For example, Rhyme–Yes involves two sources of information that might be used in subsequent situations (e.g., a Rhyming yes–acquisition involves only control for this difference is to source of rhyme-related information). Semantic–Yes items as well. Rhyming recognition test, acquisition would not be at a disadvantage in numerical terms relative to acquisition. Experiment 3 contains a procedural factor in order to examine the previous results.

EXPERIMENT 3

Method

Subjects. Twenty-five subadult introductory psychology class volunteers served as subjects. Subjects were tested in groups of six or seven persons each.

Design. A 2 × 2 factorial design.

The two factors were Acoustic Congruency, as in Experiments 1 and 2, and Semantic Congruency, as in Experiment 2. Subjects were given a Rhyming test.

Materials and procedures. These were identical to those of Experiments 1 and 2, with the following exceptions. Two distinct subtitles were used, one per condition. Each target was presented in these two lists. A second change was that each condition of the semantic sentence was a
h significance was not due to
results run in a direction
cussed above. For instance,
ecognition test, the superi-
over Rhyme acquisition
ne (.757 vs .682 in the Im-
compared to .450 vs .418 in
). This is itself is not
rs an interesting contrast
recognition condition. In
 superiority of Rhyme over
d diminishes to a lesser
24 vs .300 in the Immediate
 to .290 vs .180 in the
). A comparison of the
ferences (.075 -.032 =
014, respectively) failed to
ificance. Thus, these
umption that semantic
 more durable memory
re two major questions
ignition performance of
amination of Tables 1
yme-Yes acquisition
tained on Standard, rather
tion tests. Although the
 the Acquisition
ction, these findings
robiency. Two possi-
se, one, the Standard
ly an easier test to
whatsoever meaning,
 recognition test
 and phonetic informa-
reent identification of the
Rhyming recognition
formation which relates
reent information but
mation. This possibility
be considered involves
ural difference between
nic-Yes conditions. In
-Yes condition includes
that rhyme with the
Rhyming test target items (e.g., "———
rymes with legal: EAGLE"), whereas the
Semantic-Yes condition involves only one
ocurrence of an item that rhymes with
 the Rhyming test target items (e.g., "A ———
has feathers: EAGLE") Clearly, it takes two
items to define a rhyme. However, it is
possible that this procedural difference never-
theless represents a confound in the present
 design.
The procedural differences between seman-
tic and rhyme modes of acquisition are
important and in need of further considera-
tion. For example, Rhyme-Yes acquisition
involves sources of information that
might be utilized in subsequent transfer
situations (e.g., a Rhyming test); Semantic-
Yes acquisition involves only one. One way to
control for this difference is to present two
 sources of rhyme-related information for
Semantic-Yes items as well. Thus, given a
Rhyming recognition test, Semantic-Yes ac-
quision would not be at a disadvantage (in
numerical terms) relative to Rhyme-Yes
acquisition. Experiment 3 controls for this
procedural factor in order to examine its role
in determining previous results.

EXPERIMENT 3

Method
Subjects. Twenty-five subjects from an
introductory psychology class served in this
experiment. Subjects were tested in
four groups of six or seven persons each.

Design. A 2 x 2 factorial design was utilized.
The two factors were Acquisition Task and
Congruency, as in Experiments 1 and 2. All
subjects were given a Rhyming recognition
test.

Materials and procedures. The materials
were identical to those of Experiments 1 and 2
with the following exceptions: Only four
distinct stimulus lists were used; the acquisi-
tion mode of each target was varied across
these lists. A second change concerns the
construction of the semantic encoding sen-
tences. These sentences were altered so that
four Semantic-Yes sentences and four Seman-
tic-No sentences would have as their last
word a rhyme of one of the eight Semantic-
Yes acquisition target items. This rhyme word
was not the Rhyming recognition test target
and did the rhyme word ever appear in the
same sentence as the corresponding acquisi-
tion target. Consider the Semantic-No item
EAGLE, which might appear in the following
context "The ——— has feathers: EAGLE." Now,
a rhyme of EAGLE, such as "regal," would appear at the end of another
Semantic sentence frame. For example,
subjects might hear "The ——— was very
regal: LOCAL." The interval between presen-
tation of a Semantic-Yes target (e.g., EAGLE)
and its rhyme word (e.g., "regal") was
variable.

The nature of the question under investiga-
tion concerns whether or not Rhyme-Yes
items have an unfair advantage over Semantic-
Yes items on a subsequent Rhyming recog-
nition test. For this reason it was considered
unnecessary to test subjects on a Standard
recognition test. Therefore, Type of Test was
a nonfactor in this experiment; all subjects
received a Rhyming test.

Results
Table 3 presents a summary of the mean
corrected proportion scores for each experi-
mental condition. These results are in general

<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>MEAN CORRECTED PROPORTION SCAI'^ FOR RHYMING RECOHITION AS A FUNCTION OF ACQUISITION MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition mode</td>
<td>Rhyming test</td>
</tr>
<tr>
<td>Semantic-Yes</td>
<td>.303 (.207)</td>
</tr>
<tr>
<td>Rhyme-Yes</td>
<td>.466 (.187)</td>
</tr>
<tr>
<td>Semantic-No</td>
<td>.283 (.158)</td>
</tr>
<tr>
<td>Rhyme-No</td>
<td>.265 (.174)</td>
</tr>
</tbody>
</table>

* Numbers in parentheses represent standard deviations.
agreement with those of Experiments 1 and 2. Of particular importance is the superiority of Rhyme-Yes acquisition over Semantic-Yes acquisition. This superiority holds even when Semantic-Yes items have a second presentation of the critical sound information during acquisition.

A 2 x 2 (Acquisition Task x Congruency) analysis of variance on the corrected proportion scores showed a significant main effect for Acquisition Task, F(1, 24) = 6.09, p < .02; a significant main effect for Congruency, F(1, 24) = 13.10, p < .002; and a significant Acquisition Task x Congruency interaction, F(1, 24) = 10.84, p < .003. These effects are gener-

Overall Summary and Conclusions

The results of the present studies suggest a need to reconsider certain assumptions basic to the levels of processing framework. In particular, arguments that nonsemantic or shallow levels of processing are necessarily inferior to deeper levels of processing are questionable. To be sure, so-called nonsemantic levels of processing may look inferior if subjects are asked to perform subsequent test tasks (e.g., reproducing the nominal stimuli) that are not directly related to what was learned during acquisition. In such cases, however, the reasons for the inferiority may be due to the inappropriateness of the relationship between acquisition and test rather than the inherent inferiority of the acquired memory traces. If one wants to know the number of words in a list that contains es, the number containing two syllables, and so forth, then "checking" or "syllable counting" would appear to be appropriate modes of processing. Similarly, if one wants to learn about rhyming information, it would seem beneficial to pay attention to the rhymes of words. In the present studies, acquisition manipulations that directed subjects to attend to the rhyme of inputs resulted in better performance on a rhyming test than did acquisition activities that prompted subjects to process the "semantic meaning" of inputs. Similar results were obtained following a 24-hour delay between acquisition and test and when number of potential rhyme items was controlled.

Results such as these suggest that it might be useful to replace the concept of "levels of processing" with one emphasizing "transfer appropriate processing." The latter concept emphasizes that the value of particular acquisition activities must be defined relative to particular goals and purposes. Furthermore, assumptions about the quality and durability of the resulting memory traces can only be determined relative to the appropriateness of the testing situation. The concept of transfer appropriate processing suggests that it is no longer beneficial to simply assume that the traces of certain items are less durable or adequate than others because those items were processed at a shallower level. The evidence that appears to support this latter assumption involves test situations that are not optimal for assessing what was actually learned.

The current assumptions about the potential durability of even superficial memory traces are congruent with results from other studies. For example, a number of researchers report data indicating that so-called superficial aspects of encoding activities (e.g., orthographic case, sound of voice, orientations of presented words or sentences) are retained for surprisingly long periods of time (see Arbuckle & Katz, 1976; Craik, 1974; Kirsner, 1973; Kolkers, Kolkers & Ostry, 1974). Note that studies did not prompt subjects to attend to these superficial aspects of acquisition and that test items are the particular inputs examined but instead, subjects appear to attend to the inputs at a number of levels of semantic level. The data appear as well as semantic and that the former informat-
TRANSFER APPROPRIATE PROCESSING

The concept of "transfer of training" suggests that the quality and durability of memory traces can only be made to the appropriateness of the task. The concept of transfer training suggests that it is not simply to assume that the items are less durable or easier because those items were allowed lower level. The evidence is an even superficial memory even with results from other, a number of researchers using that so-called super-encoding activities (e.g., sound of voice, orientations Is or sentences) are required one periods of time (see Arbuckle & Katz, 1976; Craik & Nisbett, 1974; Kirsner, 1973; Kolers, 1975, a, b, Kolets & Osty, 1937). Note that these latter studies did not prompt subjects to enact solely to these superficial aspects at time of acquisition and then test them on memory for the particular inputs exemplifying these aspects. Instead, subjects apparently processed the inputs at a number of levels (including the semantic level). The data indicate that superficial as well as semantic information played a role in remembering, thereby indicating that the former information was in fact processed and must indeed be capable of being well retained.

One further aspect of the present data needs to be considered. In the present experiments, rhyme acquisition was superior to semantic acquisition for the rhyme test. Overall, however, the semantic acquisition-semantic test conditions needed it better performance than the rhyme acquisition-rhyme test conditions. Do such results necessitate a concession to the levels of processing claim that superficial nonsemantic processing results in inherently less adequate and durable memory traces? In actuality, the present results suggest that so-called superficial aspects of "memory traces" were at least as durable as semantic traces (i.e., both were maintained over 24 hours). Nevertheless, in terms of absolute values, there is a superiority of semantic acquisition-semantic test over nonsemantic acquisition-nonsemantic test given both immediate and delayed tests. Do data such as these thereby require acceptance of the levels of processing approach?

The beginnings of an alternate conception of data such as those noted above have been discussed by Jenkins (1974). He asks whether optimal memory might be more fruitfully viewed as being a function of (a) semantic processing as (b) skills possessed by the learning-rememberer. An implication of his discussion on skills is that semantic modes of processing may result in better memory for most college students, not because of any inherent advantages of semantic memory traces, but because college students are usually prided to utilize their semantic skills in an experimental setting. On the other hand, consider that an experienced poet or an expert in speech perception, linguistic dialetics, and so forth may be as efficient at remembering certain types of auditory information (given appropriate testing situations) as the or he is at remembering semantically processed information. This approach suggests a need to formulate theoretical conceptualizations of memory that do simply assume that certain types of memory traces are inherently inferior because of the "level" at which they were processed.

Following the lead of Jenkins (1974) let us assume that the adequacy and durability of memory traces are a function of whether or not a subject has and uses appropriate knowledge and skills to precisely comprehend (encode) each input and hence differentiate it from other potential inputs. In contrast to the levels of processing framework, let us further assume that there are no inherent differences in the nature of the memory traces resulting from semantic versus nonsemantic levels of processing, instead the emphasis is on the activation of appropriate skills and knowledge structures that "set the stage" for knowing precisely how and in what ways certain inputs differ from other potential inputs (e.g., see Bransford & Franks, 1976). The importance of differentiation has been discussed elsewhere (e.g., Gibson, 1940; Salsz, 1971). We emphasize that even semantic processing may not facilitate remembering if it does not result in precise differentiation of the acquisition and test stimuli (e.g., see Bransford, McCarrell, Franks, & Nitch, in press; Stein, in press). Furthermore, the term "semantic processing" is usually used in a very ambiguous way (see also Piaget, 1975). Note that the term "semantic processing" is not necessarily equivalent to meaningful processing and that "meaningless processing"
is not necessarily equivalent to meaningful or superficial processing. For example, we have suggested that the linguistic semantic meaning of words presented during an exercise designed to teach speech articulation or rhyming are not necessarily meaningful components of the task. Similarly, the semantic meaning of the first and last words in a sentence like *Altitude precedes window* are not relevant for understanding the sentence. Instead, comprehension is enhanced by focusing on orthography and noting that “A” precedes “W” on an alphabetical scale (cf. Bransford, Nitch, & Franks, 1976). Studies of comprehension (e.g., Bransford & Johnson, 1973; Bransford & McCarrell, 1975; Bransford & Franks, 1976; Bransford, Nitch, & Franks, 1976) suggest a need to distinguish between the semantic meaning of inputs and their understood meaning (i.e., their significance). Indeed, perceptual artifacts, gestures, bruske strokes, sounds, and so forth may or may not be meaningful to a person depending on whether or not an appropriate knowledge framework, or set of skills, is both available and activated at the time (e.g., see Bransford & McCarrell, 1975; Bransford, Nitch, & Franks, 1976).

The preceding discussion suggests that even superficial aspects of inputs can be meaningful depending on the knowledge possessed by subjects. In order to be well remembered, subjects also need to be able to use their past knowledge and skills to comprehend (encode) inputs in precise and unique ways. It seems useful to note that the current assumptions about the use of past knowledge structures to set the stage for more precisely comprehending (encoding) the unique aspects of particular inputs are different from assumptions about uniqueness that have appeared in the levels of processing literature. For example, a recent article by Moscovitch and Craik (1976) argues that uniqueness is somewhat important, but only in addition to assumptions about levels of processing.

The latter authors cite studies by Goldstein and Chance (1970) indicating that nonmeaningful visual patterns are poorly recognized, even though each pattern is unique, as well as an experiment by Craik and Tulving (1975) indicating that recognition of case encoded words was not facilitated even though the number of such instances was reduced from 40 to four items.

From the present perspective, the Craik and Tulving (1975) experiment did not test what was actually learned. It would be more appropriate to test memory for orthographic case information than for the individual inputs illustrating such cases. Furthermore, the Goldstein and Chance (1970) study says nothing about the stage-setting role of past knowledge for helping one uniquely encode an input and hence precisely differentiate it from other inputs. Appropriate past knowledge permits one to know precisely how and in what ways particular inputs (plus acts of encoding them; e.g., see Keers & Ostry, 1974) differ from other aspects of one’s knowledge. Without appropriate knowledge structures, one lacks precision with respect to differentiation (see especially Garner, 1974). For example, In-Japanese words would be unique for most English speaking subjects, but the latter subjects would have few knowledge structures for uniquely differentiating each word from other words known (especially one another). Precise memory for such “unique” inputs would therefore be quite poor.

Note, however, that inputs (e.g., words from another language, nonsense syllables, etc.) can always be differentiated from the rest of one’s knowledge at some level. They are never totally meaningless. Subjects hearing a list of nonsense syllables could easily differentiate them from meaningful words, pictures of triangles, and so forth in a forced choice recognition experiment. Furthermore, such abilities to differentiate would probably persist over a relatively long period of time. The importance of focusing on levels at which people are asked to differentiate inputs from other things that they know is reflected in the effects on recognition of the memory traces of related meaningful unique items that are durable if subjects are tested with case can be differentiated at the test known, higher-order invariants perceived during acquisition. In abstract, higher-order invariants are more readily acquired and remain lower-level specific, much as sub Bransford and Franks (1971) seem more apt to acquire higher-level invariants than they are to acquire acquisition inputs that were ‘content’ (Bransford, McCarrill, Franks, 1977). Arguments about “trace traceability” of disability must therefore be relative to the levels of precision subjects are asked to or are able to, as well as defined relative to the levels of the test tasks.

In conclusion, it appears useful to analyze the differences in the approach and the levels of processing work, particularly since Craik and Tulving (1975) and Moscovitch and Craik (also Lockhart, Craik, & Jacoby, 1972) suggested modifications of the original proposal by Craik and Tulving that “spheres of encoding or elaboration” may also be important in memory. At the same time, maintain assumptions about interpretative differences among various levels or domains. For example, Tulving (1975) state.

We assume that “depth” still refers to one of the major qualitative shifts in a word (from an analysis of physical features to semantic). Within one encoding domain, however, or “nurture” of encoded features in descriptions (p. 34).

Assumptions of inherent, qualitative differences between nonsemantic &
indicating that nounmea-
sms are poorly recognized
attern is unique, as well as
RAI and Tulving (1975)
ignition of case encoded
ilates even though the
ances was reduced from
perspective, the Craik and
ornt did not test what
ed. It would be more
emory for orthographic
an for the individual
 such cases. Furthermore,
ance (1970) study says
age-setting role of past-
ng one uniquely encode
 precisely differentiate it
Appropriate past know-
 know precisely how and
ular inputs (this acts of
g. see Kolers & Ostry,
other aspects of one's
appropriate knowledge
on precision with respect
to especially Garner, 1974).
ian words would be
lish speaking subjects,
would have few know-
 uniquely differentiating
 things known (especially
Precise memory for such
would therefore be quite
that inputs (e.g., words
age, nonsense syllables,
: differentiated from the
edge at storage level. They
lingless. Subjects hearing
 syllable could easily
meanings of words,
 and so forth in a fur-
 experiment. Furthermore,
tentiate would probably
 long period of time,
ecising on levels at which
differentiate inputs from
other things that they know is reflected in
the large effects on recognition of the foil items.
Even the memory traces of relatively non-
meaningful unique items may seem quite
 durable if subjects are tested with foils that
can be differentiated at the level of well-
known, higher-order invariants that were
perceived during acquisition. These more
abstract, higher-order invariants seem to be
more readily acquired and remembered than
deeper-level specifics, much as subjects in the
Bransford and Franks (1971) experiments
seem more apt to acquire higher-level semantic
invariants than they are to acquire the precise
acquisition inputs that were heard (see
Bransford, McCarrell, Franks, & Nitsch,
1977). Arguments about "trace strength" or
"ducksbill" must therefore be defined re-
 lative to the levels of precision at which
subjects are asked to, or able to, differentiate,
as well as defined relative to the appropriate-
ness of the test tasks.

In conclusion, it appears useful to
summarize the differences between the present
approach and the levels of processing frame-
work, particularly since Craik and Tulving
(1975) and Moscovitch and Craik (1974) (see
also Lockhart, Craik, & Jacoby, 1975) have
suggested modifications of the original formu-
lation proposed by Craik and Lockhart
(1972). In particular, these authors suggest
that "spread of encoding" or "encoding elaboration"
may also be important des-
giminants of memory. At the same time, they
maintain assumptions about inherent, quali-
tative differences among various processing
levels or domains. For example, Craik and
Tulving (1975) state:

We assume that "depth" still gives a useful account
of the major qualitative shifts in a word's encoding
(from an analysis of physical features through
phonemic features to semantic properties).
Within one encoding domain, however, "spreads"
or "number of encoded features" may be better
descriptors.

Assumptions of inherent, qualitative dif-
fferences between nonsemantic and semantic
levels of processing also seem to play impor-
tant roles in theorizing about spread or
elaboration of encoding. For example, Craik
and Tulving (1975) state:

It should be borne in mind that retention depends
on the qualitative nature of the encoding
operations performed — a minimal semantic analy-
sis is more beneficial for memory than an elaborate
structural analysis. (p. 46)

The present data suggest that evidence for
this latter assumption is based on inadequate
tests of what was learned, that is, a "struc-
tural" analysis of inputs was more beneficial
than a "semantic" analysis for a subsequent
rhyme test.

It seems clear that the two above-mentioned
quotes from Craik and Tulving (1975) refer to
the nature of the "traces" necessary for
remembering the actual inputs (e.g., words)
presented during acquisition. However, the
levels of processing approach uses the term
memory trace in an ambiguous manner.
There are important differences between the
term memory trace to refer to a trace of
the nominal stimulus and the use of the term
trace to refer to the result of a particular
learning experience.

The major difference between the levels
of processing and transfer appropriate processing
frameworks involves their orientations toward
the general problem of learning. In the current
literature, the term "learning" is usually used
synonymously with "learning a list of inputs,"
and the test is usually a test of memory for
these inputs (e.g., see Craik & Tulving, 1975).
The value of particular acquisition or learning
activities is assessed in relation to the goal of
remembering the acquisition inputs. However,
even given the goal of remembering inputs,
assumptions about the value of particular
types of acquisition activities must be defined
relative to the type of activities to be per-
fomed at the time of test. For example,
acquisition processes optimal for recognition
are not necessarily optimal for free recall or
cued recall, and vice versa (e.g., see Tulving,
1973; Tulving & Thomson, 1973; Bransford,
Nisbett, J., & Frank, S. (1976). However, the transferal appropriate processing framework goes beyond measures of people's ability to remember the actual inputs presented during acquisition. The problem of learning is broader than this.

The present orientation assumes that learning involves learning the inputs as well as learning inputs (e.g., see Bransford & Franks, 1976; Bransford & Nisbett, in press; Haringan, Note 1). For example, attention to the position of the legs and the tongue can allow one to learn from a set of inputs presented as examples, but it will not necessarily allow one to learn (and hence remember) the exact inputs. Depending on what one desires people to learn (e.g., sound—mouth and tongue relationships; sound—sound relationships), processes optimal for learning may therefore be different from those optimal for remembering the exact inputs presented during acquisition. Tasks designed to help people learn about speech sounds, word syllables, orthography, and so forth are not necessarily nonmeaningful, and nonsemantic levels of processing need not result in inherently inferior traces representing what was learned. In short, transfer appropriate processing may sometimes involve the superficial levels of analysis that are deemed less adequate by the levels of processing approach.

REFERENCES

Bransford, J. D., & Nisbett, R. K. Coming to understand things we could not previously understand. In J. F. Kayvanl & W. S. Strang (Eds.), Implications of basic speech and language research for schools and clinics (working title). Cambridge, Massachusetts: MIT Press, in press.

TRANSFER APPROPRIATE PROCESSING

SCHMUKLER, A. I. Memory for words recently classified. Memory and Cognition, 1974, 2, 47-52.

REFERENCE NOTE

(Received February 23, 1977)