Affective Response Patterns as Indicators of Personality in Virtual Characters

Conference Paper · June 2014
DOI: 10.13140/2.1.4236.0642

2 authors:

Ulysses Bernardet
Aston University
75 PUBLICATIONS 678 CITATIONS

Steve Dipaola
Simon Fraser University
83 PUBLICATIONS 548 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Bio-responsive Interactives View project
- aMoth View project

All content following this page was uploaded by Ulysses Bernardet on 02 January 2015.
The user has requested enhancement of the downloaded file.
Affective Response Patterns as Indicators of Personality in Virtual Characters

Ulysses Bernardet*, Steve DiPaola
iVizLab, Simon Fraser University, Surrey, British Columbia, Canada
*ubernard@sfu.ca

Introduction

- Inter-individual differences in cognition, emotion, and behaviour are pervasive mediators of social interaction
- Personality is revealed through motivated preferences and biases in the way people interact with their environment (Higgins & Scholer, 2008).
- BIS/BAS personality theory (Carver & White, 1994)
 - Behavioral Inhibition System (BIS): Sensitivity to punishment and avoidance behavior
 - Behavioral Approach/Activation System (BAS): Sensitivity to reward and approach behavior
- BIS/BAS suitable because of mechanistic nature, and relationship to overt behaviour

Implementation

- The system as a whole implements the virtual experiment:
 - Control of virtual experiment
 - Control of character
 - Control of reaching behaviour
 - Control of facial expression
 - Control of gaze behaviour

- Hybrid continuous-discrete controller implemented in Matlab/Simulink/StateFlow
- SmartBody character animation system (smartbody.ict.usc.edu, Shapiro (2011))
 + Ogre3D renderer (www.ogre3d.org)
- Overall integration using M+M middleware (www.mplusm.ca); allows for extension to real-time interaction

Summary and Outlook

- Evoke different impressions of personality by varying mapping between affective quality of the stimulus and behavioral response
- Illustrates how autonomous virtual characters can be used as a platform to develop models of human cognition, affect, and behavior
- Facial expression: Mapping PAD to AU directly
- Empirical evaluation of personality attribution
- Spatial behaviour and posture: Approach vs avoidance (Karimaghalu, Bernardet, & DiPaola, 2014)
- Extension of paradigm:
 - Interactive experiment: Human decides which images are presented to the virtual character

Methods

- We evoke different impressions of personality by varying the characteristics of the mapping between affective quality of the stimulus and overt behavioral response of the virtual character
- Mapping from stimulus to response (Balconi, Falbo, & Conte, 2011)
 - Valence
 - High BIS: Negative pictures more negative
 - High BAS: Positive pictures more positive
 - Arousal
 - High BIS: Negative pictures more arousing
 - High BAS: Positive (and negative) pictures more arousing

Hence we formulate our mapping hypotheses as follows:

\[
V' = \begin{cases}
V + V + BIS & \text{for } V < 0 \\
V + V + BAS & \text{for } V > 0
\end{cases}
\]

\[
A' = \begin{cases}
A + A + BIS & \text{for } V < 0 \\
A + A + BAS & \text{for } V > 0
\end{cases}
\]

Scenario

- The basic idea of the paradigm: Experiment within an experiment
- Human user is observing a virtual character reacting to stimuli
- We use graphical stimuli for which we know the affective rating
- Participants rate the personality of the virtual character
- Artificial lab scenario allows to plausibly constraint what the virtual character can do

- Stimuli: International affective picture system (IAPS, Lang, Bradley, & Cuthbert, 2008)
- Images drawn from IAPS based on Valence and Arousal

REFERENCES

ACKNOWLEDGMENTS

This work was partially supported by “Moving Stories” and “Moving +oiding” Canadian Social Sciences and Humanities Research Council (SSHRC) and CANARIE grants, respectively.