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Abstract Information management systems improve the retention of information

in large collections. As such they act as memory prostheses, implying an ideal basis

in human memory models. Since humans process information by association, and

situate it in the context of space and time, systems should maximize their effec-

tiveness by mimicking these functions. Since human attentional capacity is limited,

systems should scaffold cognitive efforts in a comprehensible manner. We propose

the Principles of Mnemonic Associative Knowledge (P-MAK), which describes a

framework for semantically identifying, organizing, and retrieving information, and

for encoding episodic events by time and stimuli. Inspired by prominent human

memory models, we propose associative networks as a preferred representation.

Networks are ideal for their parsimony, flexibility, and ease of inspection. Networks

also possess topological properties—such as clusters, hubs, and the small world—

that aid analysis and navigation in an information space. Our cognitive perspective

addresses fundamental problems faced by information management systems, in

particular the retrieval of related items and the representation of context. We present

evidence from neuroscience and memory research in support of this approach, and

discuss the implications of systems design within the constraints of P-MAK’s

principles, using text documents as an illustrative semantic domain.
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Introduction

Memory provides the raw materials for intelligence. Without memory an intelligent

agent, whether mechanical or biological, would be unable to store and compare

ideas, or respond appropriately to changing circumstances. Memory’s associative

moves fluidly between related facts, and to narrow in on distinct information. It

provides us with the sense of a continuous personal identity, and a of our world.

Improved memory forms the basis for greater intelligence by providing an expanded

store of knowledge and experience. One theory concerning our evolutionary cousins

speculates (based on physiology and anthropological artifacts) that Homo Nean-
derthalensis had, despite a smaller working memory, an excellent long-term

memory that enabled them to compete with and sometimes even surpass us (Wynn

and Coolidge 2004).1 Clearly then, enhanced memory expands our cognitive

abilities, much as a crane extends our ability to lift, or a vehicle our ability to travel.

How can we design more sophisticated information-management systems still

comprehensible to our fallible ‘‘stone-age’’ brains? Words on paper have always

been subject to physical constraints—such as printing, shipping, filing, and

shelving—that make their management burdensome. In modern times, information
management has evolved from tactile filing of ink-based books, papers, and folders,

to channeling an increasing flow of digital media—a task beyond human capacity.

Instead, automated processes should summarize what users have available to them,

facilitate their searches, and direct them to the information that best suits their

needs.

Humans are predisposed to a particularly human structure of ideas: we can

communicate across language and culture barriers and anticipate how others think

(Ekman 1971; Osgood et al. 1975). Thus to make information management systems

more useful to a wider range of people, it seems reasonable to apply functional

cognitive principles to data storage and retrieval. Daily experience shows us that our

memories are highly associative: given a particular cue (e.g. red) our thoughts and

perceptions stimulate a wealth of contextually relevant memories (fire, apples,

cherries, stop, etc.). The general principle of associationism holds that higher

mental processes—and memory in particular—result from connections between

sensory and mental elements based on experience (Anderson and Bower 1973), and

associative network models are prominent in cognitive science as descriptions of

memory, knowledge, and reasoning (e.g. Anderson 1983; Collins and Loftus 1975;

Quillian 1969; Raaijmakers and Shiffrin 1981).

The physical medium underlying such mental functions is less intuitive: the brain

is massively parallel processor with billions of neurons, each of which typically

gains synaptic inputs from thousands of others. All neurons fire continually at

varying rates, and researchers have only the vaguest notion of how this roar of

activity resolves to our subjective experience of reality. Although connectionist

models that simulate brain activity at a neural level (e.g. Rumelhart et al. 1986)

1 However the archealogical record suggests a stoic state of mind, with little evidence of imaginative

artistry. Apparently the lesser working memory of Neanderthalensis eventually allowed the incremental

innovation of Homo Sapiens to pull ahead.
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have provided important insights into pattern learning, it would be an overwhelming

task to model higher-level memory processes in such detail. Instead we embrace the

motto ‘‘to the desirable via the possible’’ (Marr 1982), and take a pragmatic interest

in the overt functions of memory, which are more easily represented and

implemented. We simultaneously avoid an emphasis on human behaviour, since

behaviour is influenced by cultural contexts. Our goal then is to suggest culturally

neutral systems that are automated, simple, and easily understood: systems are

ultimately created to fulfill human needs, and in doing so should use metaphors that

are easily human-interpretable.

We propose the Principles of Mnemonic Associative Knowledge (P-MAK), a

framework for information management systems that is both inspired and guided by

several related fields: information retrieval, cognitive modelling, knowledge

representation, evolutionary psychology, and neurophysiology. The resulting set

of principles combines the functional strengths of machine computation and human

cognition. In the short term P-MAK can suggest improvements to current

information systems; in the long term it suggests the convergence of semantics,

contextual interaction, and human-centred information management (HCIM).

P-MAK exploits the brain’s useful information-processing paradigms and presents

information in a way that is familiar to human users—and thus easier to use.

Although we make no claims of whether particular cognitive models are complete

and accurate descriptions of mental function, they are useful starting points for

information systems in the principles that they embody. Human memory has

strengths to be mimicked, but also weaknesses to be scaffolded (as discussed in

section ‘‘The Challenge of Human Memory’’).

The P-MAK framework describes four sets of theoretical principles that

structure and guide the development of information systems: they are divided in

pairs into the fundamental principles of the properties of brains and the

constraints of machines, and the organizational principles of the accumulation of

semantic knowledge, and its contextual links to the real world. The fundamental
principles of the framework are comprised of two sets of principles describing the

necessary basis of processing in mind and machine (section ‘‘The Fundamental

Principles’’):

Mechanistic principles: These concern the computational constraints on the

design and operation of computing machines and information management

systems, which should be familiar to every computer scientist: minimal use of

resources, scalability, heterogeneity, extensibility, and reliability.2

Anthropic principles: These concern the properties and constraints of human

memory and knowledge that machines should incorporate to provide more

effective user interactions: human information processing is fundamentally

associative. It also requires simplicity, which leads the mind to quantize the world

into discrete objects, and form meaningful abstractions as summary ‘maps’.

2 The mechanistic principles also apply to the constraints of brain function, as suggested by Marr (1982),

but such an analysis is separate from our focus on improved human–machine interaction.
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The organizational principles are based on these, and describe how the structure

of information can facilitate information-management operations, especially when

supplemented by the context of time and place and using cognitive paradigms

(section ‘‘The Organizational Principles’’):

Epistemic principles: These describe the basics of inducting, organizing, and

retrieving information objects with an associative knowledge structure. Information

objects are described pragmatically in terms of discrete attributes, which are

assigned by a perceptual classification process. The similarity of objects is then

judged based on the attributes that they have in common. Objects are retrieved both

by queries that match specified attributes, and also ostensively via similar objects.

Situational principles: These describe the main contextual characteristics of

human memory: encoding regular and co-occurring events, the intervals at which

they occur, and the physical conditions that accompany them. The re-occurrence

of events can be predicted from this contextual structure.

Together, P-MAK’s principles imply a particular representation: associative

networks that optimally and explicitly encode relations between information

objects. When such networks are sparse and scale-free, they show advantages for

organizing, exploring, and analysing the information space (section ‘‘Associative

Network Representation’’).

Some of the terms in this paper have been used elsewhere in different contexts.

Since we take a functional approach, which focuses on information processing

common to all brains, P-MAK applies first to information management for

individuals. Human-centred information management (HCIM) is broadly defined by

both human information-seeking behaviours, and to the cultural (usually business)

context in which information-seeking takes place (Schlögl 2005). We believe that

our functional approach is complementary, and encourage the combination of

functional and behavioural factors in user-friendly systems. The challenges of

information management lie between the perspectives of function and behaviour, as

determined by human characteristics and shaped by cultural context. Ultimately, we

view HCIM as a cognitive prosthetic that extends memory to recover information

that we have already seen, and augments perception to find new, useful information.

The Challenge of Human Memory

The sapiens brain was well-matched to our ancestral environment (Wynn and

Coolidge 2004), but a fast-paced computer-mediated society requires increased

powers of recognition and recall in both semantic memory for general factual

knowledge, and episodic memory for events and experiences (Tulving 1972).3 As a

starting point for improved human interaction with information systems, we first

3 Information management is primarily concerned with long-term storage and retrieval. Thus we do not

directly discuss short-term working memory (Baddeley and Hitch 1974), which has more to do with

transient attentional processes that assemble cues to process retrievals.

448 M. Huggett et al.

123



examine the properties of human memory by way of its deficits, and how it has been

explained by computational models. We then look at how artificial memory aids

have been used to support memory-based tasks, and at systems specifically inspired

by models of human memory.

Failures of Memory

Brains can simultaneously execute diverse memory-based tasks, such as planning,

talking, risk assessment and the identification of stimuli. But as impressive as this

may be, human memory also experiences functional lapses every day. Some key

examples are:

Forgetting: The timely recall of important information is important to survival.

Human memory can be fast and efficient, but its failures are often frustrating, even

dangerous. The proposition that forgetting is nature’s way of keeping our minds

focused on important aspects of a changing environment (Anderson and Schooler

1991) is small consolation when facts need to be accurately recalled on demand.

Memory performance can be affected by poor initial encoding, such as through

wandering attention, or may be the result of poor cues, such as being forced to recall

context-dependent details in a different context. If memories are permanent, as some

researchers believe (e.g. Bahrick 1984), then there is much to be gained by making

their re-activation more reliable.

Fallacious Integration: Given several descriptions of similar situations, humans

tend to integrate the details erroneously into new hybrid memories. This

phenomenon increases with the complexity of the descriptions: facets of a situation

are combined into a single representation of the general idea, and this gist—not the

details—is well-remembered. Memories created in this way are taken as fact unless

some detail is so corrupted as to contradict the gist of the original descriptions

(Bransford and Franks 1971).

Presupposition & Inference: The gist itself is also subject to corruption. For

example, experiments on eyewitness testimony have found that choice of words

during questioning can alter memories of actual experiences, and subjects may even

claim to have seen details that did not occur. Memory is therefore a blend of true

facts and erroneous information implied later (Loftus and Palmer 1974). Distortions

also occur when people find themselves in a particular situation, and based on

expectations choose an inappropriate behavioural script for that situation, biasing

the gist and leading to misinterpretations that are mistaken for true memories

(Brewer and Treyens 1981).

Biased Memories: Changes in context can also have a significant effect on the

interpretation of a past experience during recall. Although people tend to believe

that, when queried, they draw from a stable semantic memory that has been

faithfully abstracted from hundreds of episodes, experiments on episodic influence

have shown that even a single experience can have a biasing effect and produce

low-probability responses (e.g. Jacoby and Witherspoon 1982).
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Machines have properties that are complementary to memory’s failures.

Machine-based data storage is less prone to decay, and can be backed up for

ensured permanence; where data indexing fails, brute-force searching can recover

data reliably in a way that brains cannot. Machines can retain raw data with high

accuracy, and different interpretations of the same information objects can then be

evaluated as goals and perspectives change. The relative permanence of machine-

based data storage makes it impervious to suggestibility, and although bias in brains

is hidden and difficult to detect, the biases of machines are inspectable in the

algorithms they use, and in how their code is written. Brains have powerful abilities,

but machines are more reliable, and seem promising as supports and scaffolds for

the miss-steps of human memory.

Computational Models of Memory

A great deal of work has been done to understand how human long-term memory

operates, by developing cognitive memory models that describe the functions of

human memory in implementable mathematical detail. These models follow the

information-processing paradigm that treats the brain as a computing device, and

the computer as a ‘‘thinking machine’’. As we prefer a simple, discrete approach,

we focus on functional symbol-manipulating models, rather than more detailed

and resource-dependent neural models; however these are not incompatible with

our approach, as we shall see later. Each of these models accurately, though not

completely, models various aspects of empirically observed properties of

memory.

The pioneering Teachable Language Comprehender (TLC) was written as a

computer program with the goal of recreating human inferential ability. It

organizes knowledge into a hierarchical conceptual organization much like a

taxonomy tree, with a general root node (e.g. animal) connected to subordinate

nodes (e.g. fish, bird, mammal, etc.) that are each connected to subordinates (e.g.

salmon, tuna, pike, etc.). At each node, defining properties are included by listing

physical characteristics and abilities. All of the characteristics of a superordinate

node (e.g. animal ? has-skin) are inherited by its subordinate nodes, so that a

shared attribute only has to be defined once, giving a cognitive economy of

attributes. The structure of TLC models the human category size effect: questions

in larger domains take more time to search, and the time required is directly

related to the number of links between nodes in the hierarchy (Collins and

Quillian 1969; Quillian 1969).

Building on TLC, the Spread of Activation Model (Collins and Loftus 1975) uses

links of different lengths to indicate relative strength of association. The length of

the links reflects the time required to activate related concepts, thereby encoding

their semantic distance and typicality. Spread of activation also accumulates

activation in the nodes related to the activated node; even when this may not be

enough to make them fire, there is still a priming effect that allows nodes to reach

full activation faster. In Associative Strength Theory (Anderson 1983), memories

are recovered according to how strongly related they are to a presented cue.

Activation spreads to related memory traces, which rise into consciousness if their
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activation exceeds a given threshold. The theory explains observed phenomena such

as slower response times when faced with more choices; this is modelled by the fan
effect, which treats activation is treated as a finite quantity to be shared among all

connected nodes.

Each of these uses spreading activation for relatively constrained computation in

long-term memory, which appeals to our goals of simplicity and pragmatism. By

contrast, global matching models perform retrieval based on the combination of cues

in short-term memory, and operate in highly parallel fashion. One example is the

Search of Associative Memory (SAM) model (Raaijmakers and Shiffrin 1981; Gillund

and Shiffrin 1984), which describes long-term memory as a set of ‘‘images’’ that are

‘‘closely interconnected, relatively unitized, permanent sets of features’’ describing

context as well as semantic content. For retrieval to occur, a set of cues is assembled in

short-term memory; these cues activate the images to which they are connected.

Parallelism reaches its zenith in models such as MINERVA 2 (Hintzman 1984), which

assumes that a query is matched against all memories in parallel, and that all memories

then respond in parallel, ‘‘the retrieved information reflecting their summed output’’.

Although these computational models successfully mimic specific characteristics

of human memory, they do not generalize well and fail outside the boundaries of

their assumed conditions. A more general approach has been the development of

cognitive architectures comprised of cognitively justified tools and theoretical

constraints, with the goal of performing a full range of human cognitive tasks; they

are used to develop and test new cognitive models. The two most well-known

architectures are Soar (Nason and Laird 2005) and ACT-R (Anderson et al. 2004).

ACT-R describes neural-like computation, and assumes that human cognition is

optimally evolved to reflect statistical trends in the environment. By contrast, Soar

is based on the premise that humans use knowledge in a rational way in order to

achieve goals, and assumes that human cognition is a symbol system built upon a

connectionist neural physiology (Johnson 1997). Although more complete in their

description of human cognition, cognitive architectures are too broad and powerful

to serve as the basis of a cognitive information retrieval system. Together with

global matching models, cognitive architectures are beyond the scope of informa-

tion management; thus we look to more computationally tractable models for the

storage and retrieval of information objects.

Memory Prosthesis

The challenge of human-centered information management (HCIM) is to compensate

for the weaknesses of human memory while still taking advantage of its strengths. Its

development has taken two paths. The first has been to develop systems that support
human memory by whatever means—not that model, mimic, or explain it. The scope of

these systems has been relatively narrow, acting as reminders or trackers, or sometimes

as special-purpose task assistants. Their operation is seldom based on functional

cognitive processes, and as such could be further improved. The second path has been

to develop systems with a deep structure designed to work with the known

characteristics of human memory. There have been relatively few of these, and as

research testbeds they have seldom provided full functionality or been widely used.
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Artificial Associative Memory Aids
The use of mnemonics—devices intended to assist the memory—began with cave

paintings and progressed through clay tablets to the invention of paper. Comput-

erized systems have since given us powerful indexing and search functions to

organize large sets of items with relative speed and ease. Today portable personal

devices (such as phones and digital notepads) are probably the most ubiquitous and

familiar memory aids. They can access online information, and serve a useful

prospective (or forward-looking) task if used to plan schedules and chime notices,

but they do not yet fulfill the promise of human-like associative information

management, as presciently described by Vanevar Bush (1945). The invention of

the computer led Bush to imagine a hypothetical multimedia information system

called memex that would contain all of a person’s books, records and communi-

cations in ‘‘an enlarged intimate supplement’’ to memory, ‘‘mechanized so that it

may be consulted with exceeding speed and flexibility’’. It would store enduring

associative ‘‘trails’’ of items collected on a subject, to provide a form of clustering,

navigation, and memory cuing.4

Although Bush’s vision exceeded the technology of his time, its inspiration has

since driven researchers to create personal information management systems that

record the salients of a person’s activities (Want et al. 1992), automatically index

everything saved on their computer (Dumais et al. 2003), and display personally

relevant items on a timeline (Fertig et al. 1996). However, these systems do not allow

users to create ‘‘trails’’ between objects as would Bush’s memex. Although other

systems allow users to manually create their own link trails (e.g. Gemmell et al.

2002), they do not automatically induct and link objects. None leverage associative

similarity between objects to build memory-like knowledge structures. Rather,

modern memory aids typically focus on indexing and mining items from a database,

primarily by leveraging user annotations and searching on existing property fields.

A few commercially available systems employ an associative model, with

templates describing various ways of organizing and displaying archived information.

MindManager (2007) and TheBrain (2007) provide little in the way of automated

classification of information, but are rather enterprise-wide ‘‘knowledge platforms’’

that consolidate data into a single repository and provide users a common graphical

interface; they require users to input and link items together explicitly to create a

communal knowledge structure ‘‘map’’. Where the goal is the ‘‘automation of

unstructured information’’, associative enterprise systems can be complex and

expensive. Autonomy (2007) is a state-o f-the-art Bayesian-inference system that

provides real-time information retrieval: it analyses words as they are typed and opens

new windows showing related news releases, archived reports, and diagrams, and also

displays the contact information of related experts.

Cognitively Inspired Systems
Although the fields of cognition and computation are sometimes directly compared

(e.g. Anderson 1989; Foltz 1991), the field of memory has not yet enjoyed the same

4 As ‘‘an enlarged intimate supplement’’ to memory, memex is the earliest system design to embody the

crucial human-centred principles of associationism and persistence.
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migration of concepts between human sciences and computation as seen for vision

in (Marr 1982). Computer simulations are commonly used in cognitive science to

support particular cognitive theories, but are rarely used to form the basis of an

actual information system. One notable exception is the Memory Extender (Jones

1986), a ‘‘personal filing system’’ that seeks to combine the benefits of human

memory and electronic storage. Its network representation reflects the principle of

associationism, while its weighted node-and-link architecture connects computer

files with the terms that describe them best, in an analog of symbolic memory. A

query using a particular term activates the term’s node, which then passes activation

to the nodes of files that contain the term. Queries with multiple terms increase

activation in the nodes that share those terms, which then rise to the top of a ranked

list of retrieved items. Terms can also be combined with reference to a context node,

which is associated with new files as they are created under particular

circumstances. The system also decays the activation levels of unused nodes so

that they are eventually ‘‘forgotten’’. The system is intended as an enhancement (or

replacement) of the standard file-and-folder (FaF) desktop idiom. As such, it is

concerned only with file retrieval—it does not extend its model, for example by

connecting files directly based on shared characteristics, or by offering an overview

of themes in the corpus.

A very different but significant development is Latent Semantic Analysis (LSA)

(Deerwester et al. 1990), an indexing system that scores candidate documents

against a representative corpus, basing its similarity scores on the co-occurrence

patterns of keywords within them. It has been successfully used for various tasks

such as cross-language information retrieval, information filtering, text analysis and

essay grading. While LSA has shown expert human-like classification abilities

(Landauer et al. 1998), it has some drawbacks. As a matrix-based method in a high-

dimensional space, it requires significant amounts of storage space and computation,

and as a black-box method its parameters must be hand-tuned for each collection. It

is a batch process that requires the induction of a large training set before use, the

semantic dimensions of which are determined algorithmically at an abstract

mathematical level and difficult to describe in humanly meaningful terms. Once the

knowledge structure has been built, it cannot be easily edited or updated with new

concepts (Lemaire and Denhière 2004; Zha and Simon 1999). While LSA has been

advanced convincingly as a cognitive knowledge model of synonymy (Landauer

and Dumais 1997), its vector-based approach assumes symmetrical similarity

between terms, which contradicts psycholinguistic findings.5

Human-Centred Information Management

For computing machines, ‘‘the performance of the device is characterized as

a mapping from one kind of information to another’’ (Marr 1982, p. 24), a

transformative process that takes a stream of raw input and interprets it to produce a

5 A possible method of coding asymmetry of relation between words is mentioned briefly in (Landauer

and Dumais 1997), although not elaborated.
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structured output. Here we apply this perspective to information-management

systems with respect to the functions of human memory. The goals of information

retrieval are two-fold: the prospective finding of new relevant information, which

maps new information into a growing knowledge structure, and the retrospective

recovery of information that has already been seen, which maps user queries and

behaviour onto relevant retrieved objects. These mappings are equally pertinent to

human memory and computational information systems.

The Basic Operations of Information Management

Human memory varies according to changing goals, which affect how items are

perceived, encoded, organized, and retrieved (Barsalou 1983; Mandler 1984). As

humans begin to recall information and use it to decide their next actions, they refine

their search iteratively by repeating an interaction loop that brings them closer to

their goal. The data stream then involves more than a direct mapping from input to

output: learning and retrieval are inextricably entangled, as retrieval primes memory

to prioritize items similar to those that have previously proven themselves of

interest (Fig. 1). This sort of retrieval interaction between attentional processes and

long-term memory is typical of prominent human memory models (e.g. Anderson

1983; Raaijmakers and Shiffrin 1981).

Information management systems should be designed to support and exploit this

human characteristic, and for this require an appropriate, simple, pragmatic, easily

understood ontology: discrete objects that may be organized into sets, and a set of

basic operations that create and manipulate these objects. In the broad sense, an

information object is comprised of two parts: a physically instantiated entity—

typically a discrete stored datum such as a document or image—and a descriptive

reference that serves as a pointer to that entity. The object reference sits within the

information management system, which uses it to retrieve the entity, to compare it

to other data, and to determine clusters of topics. By contrast, the entity is stored in a

database that may be at some remote location. These basic operations and objects

necessarily apply to any agent—human or otherwise—that interacts with an

information source:

• Specification—the definition of an object’s ontology: its structure, composition,

properties and elements, and how objects may be related to each other.

observation knowledge structure retrieval

affects

affords

maps to 

Fig. 1 Information-mapping within minds and machines. The shaded area reflects a mapping from raw
data to representation. Memory retrieval adds a feedback loop in which user actions adjust the knowledge
structure to reflect the context of a user’s interests. The mapping process itself, if adaptive, can be
dynamically biased toward higher-value objects
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• Induction—the incorporation of objects into a knowledge structure.

• Modification—the mutation of objects and their relations intended to increase

their utility, either by inferring trends or through direct user intervention.

• Retrieval—the recovery of desired objects from within the knowledge

structure.

Mind–Machine Symbiosis

Machines need not be like humans, but human–machine symbiosis is important for

systems to function as an extension of human memory. Physical human–machine

comparisons are misleading. How machines achieve this symbiosis cannot depend

on mimicking the details of brain architecture: the brain contains billions of

massively connected neurons, versus an upper bound for machines of only a few

thousand linked processors. This difference in scale is likely to hold for some time.

Wang and Liu (2003) estimate the relative capacity of human memory at a

staggering 108,432 bits. Comparative estimates of processing power show a similar

imbalance: Moravec (1998) estimates human processing power at an impressive

100 million MIPS (Million Instructions Per Second), or 1014 individual ‘com-

mands’. Yet despite the massive parallelism of the brain, the human capacity for

attending to multiple information sources is very limited (e.g. Baars 1993;

Kahneman and Treisman 1984). For this reason human interaction with information

sources typically involves a sequence of simple actions that narrow in on a target:

the serial presentation of a few well-chosen items is less overwhelming than

presenting an entire corpus all at once.

The feedback loop in Fig. 1 applies also the interactive nature of information

management, which requires a sequence of interaction between user and

information system. Interaction is improved if the system’s function is easily

understood by the user, and if the user’s actions are properly interpreted by the

system. The design of effective systems requires that users should be presented

with a set of rational and predictable behaviours, while machines should relieve

users of more repetitive or complex operations, and adapt to user preferences

Hoffman et al. (2002).

Current information systems are prone to a number of frustrating problems. Even

technically fluent users experience operational failures on a regular basis, such as

hardware failures and accidental deletions, and so continue to use paper documents

(Whittaker and Hirschberg 2001). Automated sorting in a file-and-folder (FaF)

system is rare, which forces users to judge the relevance of their files repeatedly, to

create (often naı̈ve) ad hoc organization schemes, to remember where things are

stored, to remember what search terms are applicable, to search exhaustively for lost

files, and so forth. Other problems touch on the nature of knowledge, such as how

machines should recognize and manipulate semantic subtleties, or how they should

adapt to unanticipated changes of context. Other problems are purely algorithmic,

and affect the efficient management of data in large, ever-growing archival storage

systems. The goal of the P-MAK framework is to define constraints for any system

that wishes to avoid these problems.
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Introduction to Principles: P-MAK

If minds are to interact well with machines, care must be taken to design systems that

support the best aspects of both. The principles that apply are divided by two general

aspects. The first concerns the scope of the constraints: universal principles are applicable

to any intelligent agent, while human-centred principles are specific to the nature of

human cognition. Universal principles originate in the information-management task

itself, independent of the agent that performs it, and define general computational

considerations for the design of optimal systems. For example, that an operation should

remain tractable as the size of a dataset increases is clearly desirable, regardless of how an

agent processes information. By contrast, human-centred principles include cognitive

properties that would improve interaction between users and information management

systems; as such, they are descriptive rather than prescriptive. For example, that

humans require meaningful summaries is clearly human-centred, since it is uncertain that

any non-human agent (natural or artificial) would necessarily operate this way.

The second general aspect concerns a principle’s functional application: funda-
mental principles define the (internal) constraints and qualities that directly affect an

agent’s knowledge structures, while organizational principles concern a system’s

interpretation of and interaction with the external world including the user. That data

structures be scalable is a fundamental principle, since it is independent of both the

semantics of the data and the goals of the user. Meanwhile, comparing objects based

on shared attributes pertains to an agent’s organization of information to make sense

of its environment. Although fundamental and organizational principles can be

separated out in theory, in practice they often interact. Indeed, the fundamental

principles set the constraints by which the organizational principles function.

The aspects of scope and function divide the principles as follows (Fig. 2):

1. Mechanistic principles (universal, fundamental):

The necessary properties for efficient computation and data retrieval.

2. Anthropic principles (human-centred, fundamental):

The inherent properties of human memory that would usefully be incorporated

into information-management systems.

3. Epistemic principles (universal, organizational):

The processes necessary for an intelligent agent to induct, classify, and retrieve

information.

4. Situational principles (human-centred, organizational):

The environmental aspects of how humans organize knowledge: by combina-

tions of co-occurrence, time, and physical context.

Next we lay the cognitive and computational foundations, after which we apply

them to the creation of knowledge and its contexts.

The Fundamental Principles

The purpose of computers is to help people think: computers then become as much

extensions of human cognitive efforts as reading, writing or drawing. But computers
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often do not appear collaborative, since they are primarily designed to maximize

various hardware properties such as bit depth and MIPS. The need for improved

usability has led to the founding of human–computer interaction (HCI), a field that

seeks to facilitate the flow of information between humans and computers (see e.g.

Baecker et al. 1995). The goal of HCI is not to improve the fundamental operation

of machines per se, but to interpose a layer of translation between human and

machine. Thus HCI seeks to accommodate and support cognitive properties at the

interface level, but seldom applies them directly to machine function.

P-MAK takes the opposite approach: it proposes that information within

machines should be stored and retrieved in a manner that is inherently biomimetic

(i.e. based on forms in nature) so that it is inherently comprehensible. Human

memory represents a clearly successful approach to information retrieval and

processing. One goal then is to transfer this efficient memory structure to machines

for better organization and retrieval of information. Conversely, the implementation

of evolved human information-management solutions, such as associative retrieval,

makes machines more comprehensible by providing a familiar (in fact ingrained)

information-management paradigm, instead of an ad hoc system-specific one.

Mechanistic Principles: Making Machines Effective

Compared to brains, the relative simplicity of machines leads to a set of

fundamental computational concerns that must be assumed for effective informa-

tion-management implementation. These are encompassed by the mechanistic
principles:

Parsimony: Systems should minimize the use of storage and computational

resources. Computing systems can clearly maximize simplicity and efficiency by

reducing the usage of computational resources (such as cycles or storage space) to a

practical minimum. With good design of algorithms and data types, more can be

computed in less time. Even as computers become more powerful, the questions that

FUNCTION

FUNDAMENTAL  ORGANIZATIONAL

UNIVERSAL

mechanistic 
Parsimony 
Scalability 
Portability 
Plasticity 

Robustness

epistemic 
Identification 

Perception 
Similarity 

Navigation

SCOPE

HUMAN-
CENTRED

anthropic 
Associationism 

Simplicity 
Quantization 

Abstraction

situational 
Persistence

Temporal Cueing 
Sensorial Cueing 

Event Convergence

Fig. 2 The P-MAK framework. In terms of scope, the universal principles apply to any optimal general-
purpose intelligent agent that interacts with information, while the human-centred principles describe the
nature of human information processing: its key strengths and constraints. In terms of function,
fundamental principles define the (internal) constraints and qualities that affect knowledge structures,
while organizational principles concern an intelligent system’s interpretation of and interaction with the
external world, of which the system’s user is a part
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users ask of their systems will become more demanding, requiring continued use of

appropriately minimal designs that maximize efficiency. Parsimony has a direct

influence on choice of data representation and tractability of computation (Smith

1996; Moravec 1998).

Scalability: Systems should use scalable structures for efficient retrieval in

growing datasets. As information repositories grow, systems should continue to

retrieve their items in a reasonable amount of time. But information systems do not

automatically scale well as more data is added, and while most people are willing to

wait a few seconds for a search to complete, beyond that they become impatient

(Wickens and Hollands 1999). Indexing algorithms build reference structures that

group the items of a corpus semantically so that items can be more easily found.

Indexing should partition the semantics of an archive in a balanced and organized

way, allowing rapid navigation from the general to the specific. For example,

indexing is straightforward where items can be sorted alphabetically in binary

search trees, guaranteeing fast log-time access, but complex semantic spaces can

resolve to many dimensions—hundreds or even thousands (Burgess and Lund 2000;

Deerwester et al. 1990)—which would be intractable to index in real time. Access

times can be kept low by pre-calculating and storing relationships, but then the

incorporation of new data may require an expensive re-calculation of corpus-wide

properties.

Portability: Systems should apply readily to different and diverse domains.

Systems should be adaptable to new uses and new applications with a minimum of

effort. In the domain of information retrieval, the classification of data is dependent

on its type; a classifier appropriate to sorting textual documents is useless for images

or sound (Witten et al. 1999). A heterogeneous dataset will therefore require a

classifier appropriate to each of its expected data types. For machines to fulfill their

function as ‘‘thinking tools’’, ideally they should be able to accept data from any

domain, since mining through such an enlarged and diverse set could find new and

interesting relations.

Plasticity: Systems should use structures that are easy to reconfigure. A simple

representation that can be quickly elaborated and updated to reflect changes in data

relations would be ideal, and contributes to parsimony by improving efficiency and

reducing usage of resources during reconfiguration. Plasticity is useful where

inferring categories depends upon the needs and perspective of users; the data

representation should promote assembly of ad hoc categories that match user

interests. The antithesis of plasticity is found in the traditional database model,

where every field in a data record is of a particular type (e.g. an integer), is allocated

a set amount of memory (e.g. 32 bits), and represents a fixed property (e.g. name,

address, age, income, etc.). Few such presuppositions can be made about the content

of data in a heterogeneous, ever-changing, real-world situation.

Robustness: System operation should degrade minimally as the quality of

information deteriorates. The brain is extremely good at reasoning under

uncertainty, since human survival has depended upon making mostly correct

choices under uncertain conditions. Information systems, on the other hand, follow

fixed instructions; traditional database models do not easily support robust retrieval

with imprecise queries, which confounds users who do not know the words best
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describing an item, or who erroneously consider different combinations of words to

be equivalent. To counter the requirement of exact query terms, information

retrieval systems have used statistical term weighting, truncation, and synonymy

(Witten et al. 1999); other methods such as vector-space, singular-value decom-

position, or Bayesian comparison of terms between documents have also been

successfully employed to increase robustness (Foltz 1991).

Anthropic Principles: Making Knowledge Comprehensible

Human memory exhibits various characteristics that should be applied to

information management systems; these are described by the anthropic principles.

The goal of these principles is to meet ingrained user expectations of how

information should be managed, and to suggest possible new algorithms.

Associationism: Human memory is—functionally speaking—associative, and the

most important associations are semantic. Cognitive science has provided strong

evidence for the semantic associativity of human memory, which affects most

aspects of acquiring, structuring, and exploring knowledge. Semantic priming has

been observed where subjects judge word pairs to be real words more quickly if they

are semantically related (Meyer and Schvaneveldt 1971), and words seem to be

encoded by their semantic relatedness (Blank and Foss 1978). Associationism lends

itself to straightforward implementation on a machine, essentially as a stimulus–

response model in the functional tradition of Skinner (1977). As such it includes

well-specified learning behaviours such as the association of co-occurring pairs and

the principle of reinforcement (Hebb 1949).

Simplicity: Humans cannot easily use information if it is too plentiful or complex.

To manage information effectively, humans need clear and simple representations.

Humans can hold only about 4–7 items in working memory (Cowan 2000; Miller

1956), and have inherent bounds on their rationality which require shortcuts in

reasoning (Todd and Gigerenzer 2000). Information systems should therefore

emphasize simple knowledge structures where possible, to avoid overwhelming

human comprehension—simplicity refers to the limits on quantity of information

that can be absorbed at one time.

Quantization: Humans perceive the world as a collection of discrete objects and

concepts. Quantization describes how humans divide up the world into types and

tokens. This ‘‘chunking’’ seems to derive from evolutionary pressures: symbolic

abstraction is a fast and efficient way to identify and reference known entities and

their descriptive properties. Since language is commonly modelled as a symbol

system with a generative grammar (Chomsky 1965), and since human thought

seems to occur in the context of discrete words (Carroll and Whorf 1956),

biomimetic information management can be justifiably based on a symbolic

cognitive paradigm. The Language of Thought hypothesis (Fodor 1975) further

supports the notion that thought is explainable by the manipulation of symbol

tokens, that complex ideas are compositions of simpler (atomic) symbols, and that

symbols are combined in the same structure-sensitive compositions as language.

Indeed, quantization appears to be a necessary principle: the alternative continuous

ontology, the representation of one’s world by a real-valued density function, would
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require an infinite amount of information and calculation to produce reactions and

decisions (Smith 1996).

Abstraction: Humans require meaningful summaries in order to make sense of

their world. Although instance theories of human memory claim that people store

images of all their experiences (Medin and Schaffer 1978; Hintzman 1984;

Nosofsky 1984), there is no doubt that human intelligence is primarily defined by

the ability to abstract—essentially, to generalize and make theorems for rapid,

informed decision-making. Complex information can be made comprehensible

through good organization, which can be described in two ways. First in informatic

terms, organization can be modelled by similarity functions and by clusters of

concepts. Second, organization is central to comprehension, as humans construct

interpretations around a central idea (e.g. Bransford and Johnson 1973), classify

identical items differently depending on current goals (e.g. Barsalou and Sewell

1984), and attribute different meanings to items depending on context (e.g. Labov

1973; Lakoff 1987; Medin and Schaffer 1978). Abstraction produces better quality

of information: inadequately accurate or descriptive summaries tax our limited

human attention.

The Organizational Principles

The organizational epistemic and situational principles describe how knowledge

is created and used. The epistemic principles describe universal processes for

encoding and retrieving semantic information, while the situational principles

describe non-semantic organization according to regularities of time and

environment.

Epistemic Principles: Building Knowledge

The epistemic principles describe the transformation of raw information into useful

knowledge; as such they encompass the basic operations of information manage-
ment described earlier. The principles of identification, perception, and similarity
describe how information is encoded and organized into knowledge, while the

principle of navigation describes how stored information is retrieved. Raw

information is inducted into discrete objects (the principle of identification) that

are identified by their salient properties (perception), organized based on alikeness

(similarity), and retrieved through an interactive process of one or more steps

(navigation).

Identification: Objects are discrete, and described in terms of semantically

discrete attributes.

Identification is a necessary information management, following on the principle

of quantization: the alternative to discreteness, a continuous density function, is

intractably complex. Identification specifies how a semantic object describes the

entity that it represents. It is based on the idea that humans tend to notice the salient
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attributes of an object, and use those attributes to compare objects and generalize

abstractions about their world, as described in a number of feature-based knowledge

models (e.g. Medin and Schaffer 1978; Posner and Keele 1970; Rosch and Mervis

1975). Feature Set Theory (Smith et al. 1974) is typical of these, and describes

objects in terms of defining features (those shared by all objects of a class) and

characteristic features (those common but not essential). In information manage-

ment, words that consistently identify a type of document would be descriptive,

while words giving minor differentiation between documents of that type would be

characteristic.

Attributes in the P-MAK framework need not be limited to keywords, but could

also encode continuous values in discrete dimensions. In an information-space of

related concepts, an attribute can be defined as any semantic description that is

meaningful to humans. Osgood (1952) uses a set of Likert scales of opposing

qualities to describe a concept; choosing a real-valued number on a scale denotes

the relative strength of its qualities. For example, the qualities wet–dry and active–

passive, rain would score toward wet and active, whereas sand toward dry and

passive. Other methods define words in terms of semantic microfeatures such as

humanness, softness, and form (McClelland and Kawamoto 1986), or derive the

semantic components of words by collating the subjective valuations of a large

number of people (McRae et al. 1997). These are good ways to describe entities in

terms of meaningful continuous attributes (cf. LSA: Landauer and Dumais 1997;

Lemaire and Denhière 2004), but they also require labour-intensive surveys of

human subjects to determine where a particular object lies on each scale. Automated

extraction of attributes would clearly be preferable in real-world situations with

large corpora.

Although identification occurs at a level above the operation of individual

neurons, some fundamental concepts may be represented in the brain in the form of

neuronal clusters (such as the impression of redness being contained in a cluster in

the visual cortex), while compound concepts are synchronously distributed in

clusters throughout the brain (such as the colour, texture, and behaviour components

of a dog node). Thus an associative knowledge structure can be mapped onto the

physical structure of the brain by assuming that an object or attribute is an abstract

representation of a neuronal cell assembly comprised of some 10–100K neurons

(Goertzel 1997; Huyck 2001; Pulvermüller 1999). Indeed, the firing patterns of

actual neural signalling systems have been be interpreted as ‘‘the state symbol-

alternatives of the higher-level symbol-processing description’’ (Cariani 2001).

Such comparisons suggest a link between low-level, high-granularity connectionist

neural networks and more abstract symbolic structures.

A symbolic approach to identification has several clear advantages. Whereas file-

and-folder indexing and the desktop metaphor of typical information management

systems emphasize an object’s physical location, an object identified by its

attributes can be retrieved through content-based addressing, so that remembering

where it is less important than specifying what it is. Attributes are human-readable,

conforming to the principle of simplicity—objects are then comprehensible given

the set of component attributes by which they are identified. Thus identification is
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fundamental to any information management system that uses a language or symbol

system to reference distinct objects.

Perception: Objects should be distinguished and assigned descriptive attributes

by perceptual classification.

Perception isolates and identifies individual objects by extracting and registering

their attributes. Automated attribute extraction is essential for information

management systems, particularly where large numbers of new, uncategorized

items are inducted. This requires the design of individual classifiers sensitive to the

key attribute types of a particular domain—for instance, the features of images are

different from those of sounds, and are processed differently. The constraints of

human perception and comprehension usually determine what qualities are

important in each case, but since what is notable about an object often varies

according to the perspective of the observer, the best strategy is to extract as many

of an object’s salient attributes as possible so that the object may be interpretable in

many different contexts.

Information systems use the equivalent of perception to perform adequately in

their ‘‘environment’’ of data streams. For example, data-mining systems may be

considered perceptual since they detect patterns in data sets. However, the patterns

that they find may be difficult to define in human terms—this is a larger challenge of

automated intelligent tools: to explain clearly the basis of their decisions. If their

actions are not understandable and inspectable, it is difficult to know whether they

actually provide their intended service. The goal of a perceptual classifier then is to

observe a real-world entity, create a data object to reference it, and extract the

comprehensible semantic attributes that best describe it. Each object’s attributes are

weighted to reflect how descriptive they are; attributes above a certain threshold will

be interpreted as descriptive, while the rest are characteristic.

Since documents are a ‘‘cognitively plausible’’ source material for a semantic

system (Frank et al. 2003; Landauer 2002; Lemaire and Denhière 2004), they make

an instructive example domain. Information retrieval is concerned with the

classification, clustering, and recovery of documents in large collections. Tfidf, an

acronym for ‘‘term frequency, inverse document frequency’’ (also written tf-idf), is

one of the simplest and most illustrative classification algorithms (Salton and

McGill 1983). It extracts human-readable identifying attributes (‘‘keywords’’) for

each document in a corpus, and thus acts as a perceptual classifier for documents.

The intuition behind tfidf is that frequently appearing terms (i.e. words) in a

document tend to be most descriptive of that document, and should be used as its

keywords. At the same time, in a corpus of documents describing for example the

many fates of fish, the term fish is itself clearly a poor choice for a keyword, since it

will not help to differentiate between documents. If the corpus has many subtopics

treating the different species of entrée, more specific terms such as salmon, herring,

and bream would make useful descriptors.

With N the number of documents in a corpus, nk the number of documents

containing term k, and tfik the number of times term k appears in document i, the

expression:
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idfk ¼ log
N

nk

� �
for some term k

wik ¼ tfik � idfk for some document i

guarantees, in the first line describing inverse document frequency, a bias against

terms that appear in many documents in the corpus. The second line calculates the

weight of each term in a given document; the number of times that the word appears

in the document is tempered by the term’s corpus-wide idf. Once all the words in all

the documents in the corpus have been weighted, the top-weighted words in each

document are used as that document’s attributes.

Classifiers such as tfidf are consistent in principle with cognitive global matching
models of memory such as SAM (Raaijmakers and Shiffrin 1981) and MINERVA 2

(Hintzman 1984), which describe a simultaneous matching of cues against all

images in long-term memory. Unfortunately, the computational expense of global

matching models is impractical for serial machines: in the case of tfidf all of the

words in the corpus are counted before a document’s keywords can be extracted.

Clearly it would be costly to repeat such a search as new objects are added to a large

corpus. Fortunately there are more parsimonious alternatives such as (Matsuo and

Ishizuka 2004), which uses the distribution of term clusterings in individual

documents to extract their keywords, and shows comparable performance to tfidf
without requiring a corpus-wide summation.

The implication of perception for the design of information management systems

is that a homogeneous (e.g. document-only) data source requires just a single

classifier tuned to its domain. Heterogeneous databases pose a greater problem:

classifiers are necessarily data-dependent. For instance, the automatic extraction of

attributes from images should cope with the specifics of pictorial data (e.g. Barnard

and Forsyth 2001). Thus a suite of classifiers will be needed to cover each of a range

of expected data types.

Similarity: Object similarity should be based on shared attributes.

Objects are compared by the attributes that they share: the more two objects share

attributes, the greater their similarity score. Similarity valuations between all pairs

of objects are then used to build semantically based associative knowledge

structures. In humans the judgment of similarity is a real-time process that compares

an object’s attributes against those of other objects stored in memory. Objects are

organized first by their sensory qualities, and as people learn more about them their

mental representations gain additional attributes and become more strongly

associated with similar objects. The similarity principle applies this process to the

organization of information within information-management systems.

Objects that have all attributes in common are highly similar, while those with

none in common are completely dissimilar. More accurate judgments are possible if

attribute weights (such as provided by tfidf) are considered. For example, a

document with descriptive attributes ‘‘fish, depletion, conservation, migration’’

would be related to another document with attributes ‘‘recipes, baking, cream, fish’’

at least to some degree, since both documents elaborate further on the fate of fish.
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Many different similarity equations are possible, depending on the desired ontology

and how it should be tuned by weighting its components (see e.g. Tversky 1977).

For example, the following assumptions would be congruent with P-MAK’s

principles:

• Attributes that are more strongly weighted are the dominant attributes of the

object (analogous to the defining features of Feature Set Theory; Smith et al.

1974).

• Two objects that share dominant attributes are more similar than are two objects

that share weaker attributes.

• Two objects that share dominant attributes but whose weaker attributes diverge

might be two different descriptions of the same thing.

• Where one object’s set of attributes is larger than that of another object, the

attributes of the latter may simply be incomplete.

From these constraints, the following simple similarity measure can be derived.

Given two objects defined by attribute vectors N and M of arbitrary lengths:

similarityðn;mÞ ¼ w
X

i2N\M

w Nið Þ þ w Mið Þ
 !

adds the weights w of all shared attributes i, and w is a function normalizing the

output score to the range [0,1]. Clearly we could make further refinements, for

example by penalizing non-matching attributes or by biasing toward supra-threshold

attributes, but the determination of similarity is dependent on what similarity
means—it could be context-dependent or include asymmetric relations between

objects (such as chili being more closely related to red than vice versa), to better

capture the nuanced inter-dependencies of language.

Explicitly storing the results of similarity calculations between objects, thereby

building an associative data structure, yields significant advantages: once

determined, information of relatively low volatility—such as overt similarity—

does not need to be re-calculated. The strength of relationship between two objects

can be immediately determined, and an item’s nearest neighbours can be

immediately retrieved, giving an amortization of searching that obeys the principle

of parsimony. By contrast, one problem with vector-space representations is that all

vectors must be scanned to find the closest match, resulting in greater time costs.

Since information management often deals with large data sets, high dimensionality,

and expensive similarity measures that would be impractical to re-calculate in real

time (Moreno-Seco et al. 2003), the storage of cumulative results in an associative

knowledge structure can lead to significant time savings.

Navigation: Objects and categories should be organized to allow efficient

retrieval from a knowledge space.

Since information retrieval in the broadest sense represents an interaction
between user and information space—involving judgment, learning, and change of

state of both user and space—the principle most associated with retrieval is called

navigation. The interaction may involve only a single step, as in direct querying, or
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it may involve iterative searching based on the local and global attributes of the

information space.

Direct Querying: The simplest form of retrieval is direct querying, which takes

users to their final goal in one step by matching search criteria against a corpus

to find the best matches. Direct querying can be performed as a spreading

activation process, such as in the memory model of (Anderson 1983) where

highly activated items are retrieved as most relevant to the query, with the single

most highly activated item being the target. Similarly, since objects in P-MAK

are indexed by descriptive attributes, a search using those attributes will retrieve

the most relevant objects. While direct queries are fast when the target is well-

known, they may retrieve too many objects when search criteria are too vague.

Conversely, an overly specific query may return few or no results, and exclude

some that may have been highly relevant. Direct queries will also definitely fail

if the query’s target attributes (or its synonyms) do not appear in the knowledge

structure.

When direct querying fails, a more costly search process must be used. The

amount of time required can be considerable if objects are not associated by

some useful property such as similarity or co-occurrence. Moreover, if only

partial information is available (in either objects or query), additional time-

consuming reasoning processes may be necessary (Russell and Norvig 1995).

Searching is also inevitable when the size of an information space grows to

exceed a critical size as documents are added, while the capacity of users to

enlarge and refine their queries is ultimately constrained by the limits of human

patience and attention. In the worst case, the system may need to check each

item in turn.

A faster, more effective form of navigation through an information space is

possible given two complementary sources: (i) local cues (or signposts), based

on attributes visible in an object’s most similar ‘‘neighbour’’ objects, and (ii)

global overviews (or maps), based on a summary description of a large

knowledge structure. These search strategies are also found in human wayfind-

ing, both in determining the next move with respect to immediate surroundings,

and in reviewing available resources from a situating overview such as a map.

Seeking behaviours seem to come naturally to humans, possibly because they are

similar to the foraging and hunting behaviours of our ancestors (Sharps et al.

2002).

Local Search with Signposts: In human wayfinding, local sign-following is based

on nearby cues in the environment, and occurs quickly since these cues are

usually present (Hunt and Waller 1999). Cognitive models such as (Anderson

1983; Raaijmakers and Shiffrin 1981) posit that recovering a memory begins with

a best guess that retrieves a set of items. The best of these items is activated to

retrieve its cohorts, and then an item selected from among those cohorts is

activated, repeating until a satisfactory item is found or the search is abandoned.

Similarly, users of an information-management system are likely to pick a next

step that appears to bring them closer to their intended target, based on attributes

visible in currently retrieved objects (Teevan et al. 2004). During the search, a
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document’s nearest neighbours will share a significant number of keywords, but

will have some distinguishing keywords closer to what is being sought—the

likelihood of a successful search is improved if local attribute ‘‘signage’’ is

adequately complete and non-ambiguous. Such iterative searching approaches

items of interest, in a semantic gradient descent that quickly narrows the search

for relevant items. Ideally, the system will assist in suggesting next steps, such

that items are retrieved based on their relation to previous user choices.

Such semantic traversal is more efficient if objects are not too highly inter-

related, and show the necessary small-world property of many short-range

connections and a few long-range ones (Milgram 1967; Watts and Strogatz

1998). Small-world systems (typically represented as networks) tend to have

diameters exponentially smaller than their size, so that on average a short path may

be found between any two items. For example, when the Web contained a billion

pages, only 18.59 clicks on average separated any two (Albert et al. 1999). The

organizing principle of the Web (its ‘‘classifier’’) involves authors linking their

pages to others based on subjective similarity judgments. This property of local self-

organization has positive implications for improved navigability in other semantic

information spaces, such as the sort of automatically constructed similarity-based

knowledge structures described by P-MAK.

Global Search with Maps: Global map-following occurs where users coordinate

their searches using high-level summary overviews that act as guides (or substitutes)

to exploration (Hunt and Waller 1999). By itself, local sign-following does not

reveal the big picture, and with too many choices at every step users can quickly

become overwhelmed and disoriented. To judge quickly the relevance of a corpus to

one’s information needs, a summary of its offerings would be useful.

Users unfamiliar with the contents of a corpus will have difficulty developing

retrieval strategies since they will not know what comprises a good cue. They will

also have difficulty in judging the relevance of what is retrieved relative to other

items in the system. The principle of abstraction is applicable here, by providing a

high-level summary that exposes points of interest and imposes some inspectable

order upon them, permitting users to jump to dominant items and use local sign-

following from there. Users can then ascertain how the information space may be

useful to them, and orient themselves wherever they happen to be within it.

To create such a semantic index, the attributes of the corpus’s objects can be used

to build a tree of descriptors, with the most common at the top, connected to major

sub-descriptors, each of which are connected to their sub-descriptors, etc. down to

the leaf level of individual objects (cf. Koller and Sahami 1997). Objects that are

general enough in content can appear at higher levels of the tree. The resulting map

exposes the main topic, as well as describing subtopics at increasing levels of detail,

in a general-to-specific containment hierarchy of categories—such an organized

summary of the semantics, in human-readable form, offers a comprehensible mental

model that improves navigation through the information space (Hunt and Waller

1999; Rainsford and Roddick 1999).

Because they highlight configural information, maps are in some ways superior

to exploration based on local cues. First, they show the topic categories available in
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an information base, how they are related (by semantic distance, or by intervening

topics), the relative importance or amount of material in certain topics, the biases of

over- or under-represented topics, and how the knowledge structure has been

organized. Second, maps support orientation by showing users the best entry points

from which to start local sign-following, where the users are currently situated

within the knowledge structure, their semantic ‘‘bearing’’ (the topics that they

appear to be approaching or leaving), and wayfinding clues such as well-used

pathways, neighbourhoods, and landmarks.

Local signposts and global maps are complementary; humans use either

according to need and preference. Information management systems should

purposely exploit them as well, since systems become more useful if they store

information in a way that promotes quick contextual retrieval, and their interfaces

become more useful if they include human-centred searching, browsing, and

indexing facilities (Bertel et al. 2004).

Situational Principles: Capturing Context

Situational principles describe how an information management system should

interact with the world—and the users that inhabit it—by encoding the temporal and

environmental context that humans find important. Since computers are not

inherently sensitive to such properties, the most pragmatic approach is to examine

how humans incorporate the statistical regularities of their experiences into their

memory structures. Human memory is by definition time-based and dynamic,

requiring the formation of new memory traces, the fading of less-important traces,

and the formation of new associations based on discovered similarities. Cognitively

inspired information systems should therefore take into account the observed

persistence of items. The dynamics of persistence is applicable, with the addition of

modality-specific attribute types, to the temporal and sensorial coding of the

regularities of events. The situational principle of temporal cueing encodes temporal

patterns of observed behaviours which can then be used to trigger reminders, while

sensorial cueing triggers reactions based on real-world stimuli captured by sensors.

An event is then defined as the context of interaction with an information object that

encodes combinations of temporal and sensory data in an event convergence.

At a functional level, the dominant cognitive theory of episodic memory is

encoding specificity (Tulving and Thomson 1973), in which memories of events are

better retrieved if the cues that were present as an event was encoded are also

present at retrieval. This description has formed the basis of several computational

memory models, such as the Search of Associative Memory (SAM) (Raaijmakers

and Shiffrin 1981): given a set of attributes as cues, both semantic memory images
and episodic memory of events and can be retrieved.

Although instance theories of memory assume that each encounter with an object

is stored individually (Medin and Schaffer 1978; Hintzman 1984; Nosofsky 1984),

and that cues are matched against all of these images in real time for a best fit, such

a large and detailed amount of information would overwhelm an information

management system. Instead some form of summarization is necessary. With

reference to human memory models, the approach should be more constructive (e.g.
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Kintsch 1974) than reconstructive (e.g. Loftus and Palmer 1974): storing trends that

emerge from the details, but not the details themselves. Human memory tends to

integrate the details of experience, particularly those of repeated, similar experi-

ences, as efficiently stored summary heuristics for rapid reasoning Bransford and

Franks (1971).

Once these patterns are encoded, they can be used to trigger prospective episodic

memory, which cues recall of intended tasks at particular times and under particular

circumstances. Three types of prospective memory have been identified (Einstein

and McDaniel 1990): time-based, which refers to actions that will occur at a

particular time of day, such as taking medicine at 0900h; event-based, such as

returning an item the next time you see its owner; and activity-based, such as

remembering to return a book the next time you go to the library. Event-based and

activity-based prospective memory are relatively straightforward: if the appropriate

contextual cues are strongly enough stimulated, then memories of appropriate

actions will gain activation and rise to consciousness. Time-based prospective

memory is more problematic: although episodic memory models describe the

retrieval of specific snapshots, the explicit coding of temporal information in

episodic memory has been little studied in cognitive science (Tranel and Jones

2006). However, the contexts of time and space are important for human-centered

information retrieval. The situational principles capture this context as follows:

Persistence: Human memory emphasizes events that are recently, consistently,

and concurrently experienced.

Items that appear regularly, those that show some degree of persistence, represent

the key factors of our environment. Persistence is closely bound to the phenomenon

of human forgetting: items that rarely appear in the environment are considered less

useful, and memories for them are less highly activated, than items experienced

more recently and regularly (Anderson and Schooler 1991). A bias for items that

regularly co-occur is also useful: Hebbian learning describes the cognitive process

whereby two items that appear together consistently become associated regardless

of their similarities; retrieving one then automatically retrieves the other (Hebb

1949). Persistence appears to reflect a deeply ingrained aspect of human

intelligence: even the extremely young are good at learning the statistical

regularities of their environment, even when events are not semantically related

(Munakata 2004).

An information management system that models persistence should similarly

encode such regularities. Persistence records the degree to which objects have been

used, and used together. Encoding the prominence of an individual object is

achieved simply by assigning the object a weight; the greater the value, the more

that object is used. As the object is ignored in preference for other objects, its weight

falls. Thus over time, persistence weights indicate the most useful and important

objects in a corpus, as some must rise in activation over others that are ‘‘pushed

further back’’ as their usage diminishes. The co-occurrence of objects is similarly

encoded: when two items are used together, the system should infer provisionally

that there is some meaningful, unseen relation between them, even if they are not

otherwise related. A weight is assigned to the pair of co-occurring objects, and as
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objects continue to be used at the same time, the weight between them strengthens,

until eventually as one is retrieved the other will be also. However as any one object

is used without its peers, the association between them weakens, and an association

may disappear altogether if the correlation that it represents is not repeated.

Co-occurrence and similarity are fundamentally different. Two objects will

remain similar to the extent that they share attributes. How objects are used is

something more fluid: there is a categorical difference between items related by

overt similarities (such as cats and dogs), and items related by co-occurrence (such

as leashes and dogs). Similarity relations allow the retrieval of declarative

knowledge, while co-occurrence relations reflect events experienced over time—

how objects have been visited and combined, and what trails have been followed

through an information space. Objects clustered based on usage indicate a context of

activity, as per the ad hoc categories of (Barsalou 1983). Thus P-MAK uses two

fundamental types of association: those that represent the (relatively static)

similarity of objects, and those that represent the dynamic concurrence of objects

and cues.

The principle of persistence is the basis for all adaptive learning in the P-MAK

framework: temporal and sensorial cueing use the same kind of dynamic

association weights to represent how objects persist at—in fact co-occur with—

particular times and stimuli.

Temporal Cueing: Humans encode the temporal regularities of past experiences.

Temporal cueing describes the human tendency to retain images in episodic

memory that encode when events experienced first-hand have typically occurred, for

instance ‘‘every morning’’, or ‘‘at the solstice’’. Episodic memory often includes

defining details and context, along with a subjective impression of when the

memory was formed (such as minutes, days, or years ago). Human awareness of

time is built-in at the cellular level: the suprachiasmatic nucleus is a cell assembly

at the base of the hypothalamus comprising some 10,000 neurons; it triggers the

daily secretion of melatonin that induces sleep (Yamaguchi et al. 2003). This

sensitivity to time—common among living things—appears to be based on the

natural periods to which humans are exposed, such as heartbeats, daylight, lunar

phases, and seasonal variations. New temporal information is encoded by adjusting

neuronal time delays to particular temporal combinations of inputs (Cariani 2001);

the neocortical microcircuit appears to maintain a virtual continuum of timescales,

with time constants ranging from milliseconds to years (Denham and Tarassenko

2003).

Encoding specificity can be used to infer the recurrence of events in temporal

terms. Memories of one-time, unremarkable incidents are clearly less useful than

memory for events that have repeated, ongoing significance in our lives. Such

temporal trend-based encoding is enormously useful in information management: it

extends retrieval beyond basic similarity judgments to enable users to ask such

questions as, ‘‘when do I usually do X?’’, or ‘‘what do I regularly do at time T?’’

Although this seems like a useful function, we know of no information management

systems purposely designed to answer these sorts of questions.
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Such time-based indexing of events requires the definition of temporal
attributes. These should not be confused with time-related terms used as semantic

keywords. For example, a document that contains repeated references to a

particular temporal epoch (e.g. Monday) may include it as an attribute, but this

says nothing about how the document itself has been used. Rather, an

implementation of temporal cueing must provide a priori a scale of permanent,

weighted time-unit attributes (or rather cues) appropriate to the expected time

scales that the system will encounter: for example the minutes, hours, days, etc. of

the calendar.

Temporal cues representing particular times become associated with information

objects if the objects are used at those times. Just as with persistence, the cues gain

activation the more their corresponding information objects are used, and the

association weights between each object and its cues grow stronger. The cues, and

their associations with objects, will weaken if the objects are not used at the

expected times. The strongest cues then represent the times that see the most

activity, and the strongest associations indicate which objects are used most at

which times.

Sensorial Cueing: Humans are sensitive to their surroundings, and react

appropriately in the presence of contextually relevant stimuli.

The use of sensors is clearly related to the epistemic principle of perception.

Perception can occur both abstractly, such as when ‘‘sensing’’ the word content of

a document, and physically in quantifying motion, temperature, illumination, etc.

In this case however, the ‘‘classifier’’ is the array of sensors connected to the

system. Sensors act as inputs to a probabilistic decision process. Given a particular

set of stimuli, each sensor determines to what degree its conditions have been

met; its activation is then proportional to the strength of the stimulus. Sensor

correlations are learned by associating objects and sensors if the objects are used

while the sensors are active. With an appropriate combination of sensors an

information system can learn correlations in the environment, enabling queries

such as, ‘‘under what conditions are object O used?’’ and ‘‘which objects are used

under condition C?’’

As with temporal cueing, sensorial cueing is based on the principle of persistence
in its use of dynamic weights and associations. The more a sensor is stimulated, the

stronger its weight becomes. The more an object is used while a sensor is

stimulated, the stronger the association between them becomes. A sensor’s weight

diminishes if it is idle while other sensors are active, and if an object is used while

an associated sensor is idle, the association between them weakens and may

eventually disappear. The strongest sensors represent the dominant actions in the

environment, and the strongest associations indicate objects that are used most in

particular contexts.

Sensorial cueing is critically dependent on the choice of sensors, which may be

too specific or lack sensitivity. If important properties can be identified in advance, a

sensor with perfect alignment can be designed to pick out the desired attribute

cheaply and without fail. Perfect alignment requires no intelligence: it will respond

immediately to a stimulus and trigger a reflex (as per Skinner 1977). An
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inappropriately chosen or poorly aligned set of sensors may lead to perceptual

biases that result in concept blindness, where important themes go undetected due to

gaps in the sensor array. A system may diagnose such problems, for example by

detecting events that are registered in the absence of a consistent stimulus pattern,

and may then assume that its domain has been too narrowly specified. If greater

generality of domain is assumed, then more intelligence will be required to learn a

pattern of activations across a set of noisy sensors to uncover new relationships and

to maintain reliably correct classifications, and the necessary computations may not

be bounded by time. Expert systems reduce this burden by functioning in a well-

described restricted domain, where efficient algorithms can be written given prior

knowledge and assumptions about the data (Thornton 2000).

Event Convergence: Humans experience an event as a discrete entity comprised

of a dynamic set of cues.

An event represents an occurrence in the world, specifically an encounter with

information objects at the specified time(s) and under the specified condition(s).

Although temporal and sensorial cues may be associated individually and

directly with an object, when more than one cue is used to describe a compound

context they must be represented as a conjunctive set to avoid ambiguity. An

‘‘event’’ is precisely this conjunctive set of some combination of both temporal

and sensorial cues. A single event representing multiple cues may then be

associated with one or more information objects that occur in that context, and

the relative typicality of the pattern’s components is reflected in their individual

weights. For example, both weather-report and bus-schedule objects may be

consulted according to the conjunctive set ‘‘every Tuesday and Thursday when

it’s cloudy.’’

This we call the cue-event-object (CEO) model: temporal and sensorial cues

are combined in an event that mimics cognitive convergence zones, which

similarly synchronize perceptions and concepts (Moll et al. 1994; Amedi et al.

2005). We represent those concepts in the P-MAK framework as information

objects, and event convergence is clearly related to associationism in its dynamic

relation of disparate elements, and also abstraction in representing dynamic

situations as single events, and quantization in summarizing an entity from a set

of cues.

Concept drift can then be easily simulated with the CEO model in the

associations between each cue and the event, and between the event and its objects.

These associations strengthen or weaken as objects conform to or deviate from the

event’s pattern. An event’s conjunctive set can fragment as necessary: if a user’s

schedule changes, then the event associated with the bus-schedule and weather

objects can migrate to just ‘‘every Tuesday when it’s cloudy’’. The determining

factor is the strength of the event’s associations with its component time units. An

event may be represented as rare by its weak association strengths, but it will

remain stable as long as all its cue associations are uniformly supported within some

tolerance.

Reminders of upcoming, contextually relevant events are modelled on human

prospective episodic memory, based on the notion that a structure’s past usage can
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predict its current usage Anderson (1989) and Anderson and Schooler (1991).

Prospective memory has two principal components: cue identification that

recognizes the appropriate context, and intention retrieval of the appropriate

reaction to the cues Simons et al. (2006). In our model, cue identification is

performed by stimulating the timers and sensors of current conditions, and if all the

components associated with an event are active, intention retrieval is performed by

spreading activation to objects associated with the event. If the retrieved objects are

used following retrieval, the associations become stronger, otherwise they weaken.

Thus objects are retrieved at appropriate times by temporal cueing, mimicking time-

based prospective memory. Objects are also retrieved under appropriate conditions

by sensorial cueing, mimicking event- and action-based prospective memory. In the

sense that objects that have been previously used in particular contexts can be

retrieved automatically when the same conditions recur, the CEO model is similar to

models of stimulus–response learning (e.g. Skinner 1977). In the sense that if certain

preconditions are observed, then certain responses must follow, the model’s timers

and sensors also act as inputs to production rules represented as events (cf. Taatgen

et al. 2006).

Although rare, information management systems that use temporal and sensorial

cues as triggers include the experimental CybreMinder (Dey and Abowd 2000) that

generates reminders when user-specified temporal and situational conditions are

satisfied, and the wearable Forget-Me-Not (Lamming and Flynn 1994) that records a

user’s wanderings and interactions for later analysis.

Associative Network Representation

We have referred repeatedly to ‘‘associative knowledge structures’’ without

committing to any particular representation. Here we commit to a graph-based

network design; we believe this to be the best representation, although others are

possible. For example, relations between objects could be represented in a matrix,

with similarity scores in the cells indexed by object identifier labels. This

representation is fine if the pattern of relationships is dense within a corpus: a large

proportion of cells will then be filled. But there is evidence that semantic knowledge

structures tend to be sparse, and may generally exhibit small-world properties

(Barabási 2002; Steyvers and Tenenbaum 2005), as found in patterns of inter-word

relations within languages (Motter et al. 2002; Sigman and Cecchi 2002). In this

regard, matrices do not appear to be the best choice for representation since

resources would be wasted on unused cells, violating the principle of parsimony.

Since matrix-based representations cannot accommodate new relation types without

the addition of new tables, their inflexibility and rapid growth also violate plasticity
and scalability.

The Advantage of Networks

Networks on the other hand seem ideal in many ways. They are the most

parsimonious associative knowledge structure, since they only use resources to
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represent what is actually there.6 Using the rules of graph theory (see e.g. Harary

1969) networks are simple to define: each object appears as a node, with nodes

linked by edges if they are related. Relationships of different kinds may be

represented by typed links. Networks are easy to reconfigure and may even be

nested inside the nodes of other networks to create more complex structures, such as

compound concepts and dynamically organized categories. Networks are also

inherently graphical: they are straightforward to draw, and people often use network

diagrams to clarify and communicate their ideas. Humans are good at wayfinding,

and since networks are navigable from node to node along links, they encourage

explorative browsing to supplement more typical query-based searches. As we have

seen, networks are also popular in associative models of human knowledge and

memory.7

Although networks are de facto the most flexible means of organizing data, they

are also potentially costly since any node may be directly connected to any other: a

fully connected network of n nodes would have (n2–n)/2 links connecting them—

implying a quadratic increase in links as new nodes are added. However if a domain

exhibits a small-world distribution in the associations between its objects, an

explosion of links will be averted by emphasizing local connections. There are other

possible benefits. A network’s small-world parameters could be monitored to

maintain its navigability (Kleinberg 2000); a skewed distribution of similarity links

would indicate a poorly tuned classifier for a given corpus, since the classifier

extracts the attributes that determine connections. Maintaining a network’s small-

world property would be important for avoiding the phase transitions that occur as

node connectivity increases, causing non-optimal changes in behaviour such as a

dramatic expansion of the number of nodes activated by the spreading-activation

‘‘event horizon’’ (Shrager et al. 1987). But despite these potential advantages,

information management systems do not test for or exploit small-world properties in

their domains of application (Perugini et al. 2004).

A network-type topology offers further benefits through graph-theory analyses.

Highly-connected authority (or hub) nodes indicate semantic trends by their many

links. In a cognitive sense authorities are like concepts that come readily to mind,

since they are related to so many things, while from the point of view of graph

theory, the distance from authorities to other members of their group is on average a

minimum (Adamic 1999). As with landmarks in human wayfinding, authority-nodes

may act as meaningful entry points to the network.

Meanwhile, clusters of nodes that are closely connected represent semantic

trends; they can be organized into a clique graph (Harary 1969) that summarizes

clusters into semantic ‘‘neighbourhoods’’ connected by ‘‘highways’’. Cut-points in

6 Different knowledge structures are optimal for different types of representation. For instance, as Bayes

nets provide a compact representation of joint probability distributions, so the network representation of

P-MAK provides a compact representation of semantic and contextual relations.
7 ‘‘Network thinking is poised to invade all domains of human activity and most fields of human inquiry.

It is more than another helpful perspective or tool. Networks are by their very nature the fabric of most

complex systems, and nodes and links deeply infuse all strategies aimed at approaching our interlocked

universe.’’ (Barabási 2002, p. 222).
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the clique graph indicate natural divisions between larger sections of the network.

Topology can also serve as a diagnostic metric: for instance a large number of

unconnected nodes could also indicate a poorly tuned or inappropriate classifier.

Conversely, if too many nodes are clustered by the same set of attributes, the cluster

could be subdivided into smaller distinct groups by increasing the sensitivity of the

classifier until additional differentiating attributes emerge. This is equivalent to the

mental processes that provide us with a sense of distinctiveness: the more people

know about something, the less it seems like other things (e.g. Rabinowitz and

Andrews 1973).

Basic Network Elements

In the P-MAK framework, different types of nodes and links are used to represent

different types of elements. There are two types of nodes:

• semantic nodes represent the meaningful entities of the world: objects, ideas,

and events. They are defined by the descriptive attributes that they contain:

� object nodes represent an individual data object, such as a document or

image.

� event nodes represent events in the environment, such as a user’s behaviour

or the stimulation of environmental sensors.

� action nodes are activated by the system to trigger an effect in the

environment, such as sounding a notice or dispensing medication.

• index nodes encode the contexts in which entities described by semantic nodes

occur. In particular:

� temporal nodes index the particular times at which events occur, and contain

only a time-stamp.

� sensor nodes index the observable circumstances under which events occur.

� conjunctive nodes combine two or more temporal or sensor nodes into a

more specific context representation.

Although research into semantic networks has identified many different link

types, mostly with respect to linguistic relationships between words (e.g. Woods

1975), for fundamental information management it is enough to begin with bi-

directional edges that represent strength of relatedness. For the basic operations of

information management, two types of relatedness are necessary:

• similarity links represent the degree to which two nodes share attributes. The

more attributes they share, the more they represent similar things.

• usage links represent the degree to which two nodes are activated at the same

time.

With these node and link types, we are able to represent knowledge in several

useful ways: by the similarity between objects, by the objects with which they are

typically used, and by the temporal and environmental context in which objects

occur.
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Networks for Similarity, Usage, and Situations

Three network types conform to the basic operations of information management

and P-MAK’s principles, using the node and link elements just described. The

similarity network is used to search for items based on their content; as items are

retrieved, similar items can be found by navigating to them along connected links.

Apart from semantics, items can also be retrieved from a usage network that links

items to the degree that they co-occur, and from a situational network that indexes

items by when and under what conditions they are activated.

Similarity Networks: As the epistemic principles are used to induct a corpus,

objects (such as documents) are represented by object nodes created according to

the principle of perception, such that each node contains a list of attributes that

describe its semantics.8 A similarity network is formed as nodes are connected by

weighted similarity links—according to the similarity principle nodes are more

strongly linked the more that they share attributes and thus represent similar things.

The calculated similarity value can be used as the link’s weight; pairs of nodes with

low similarity scores would not be linked. The network thus organizes and stores the

results of the classification process in the pattern of connections between nodes

(Fig. 3); relations do not then have to be re-calculated in real time.

There is strong evidence from brain scans (Habib et al. 2003) that semantic and

episodic memory are largely processed in different parts of the brain. It therefore

seems reasonable to disentangle episodic and similarity information into separate

representations that reference the semantic object nodes separately.

Usage Networks: As items represented by existing object nodes are used

concurrently and consistently over time, a new usage link can be created to

connect them, based on the principle of persistence. The more the two objects occur
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Fig. 3 An example of a simple similarity network. Each node is defined by discrete attributes, here
represented as letters in lists. Nodes are linked to the degree that they share attributes. Thus object nodes
n0, n1, and n2 are all equally connected for sharing the same two attributes; n0 and n3 are more strongly
connected for sharing three. n4 is unconnected—it shares no attributes with any node but n3, and in this
example one shared attribute that they share is not enough to overcome the similarity function’s weight
threshold; such tuning of a similarity measure can prevent nodes from being linked when their
relationship is too weak, and be used to preserve large semantic network’s small-world property

8 Attributes could themselves be represented as nodes, as in (Jones 1986) and following on our use of

index nodes to represent cues. However, for illustrative purposes we use a simpler formulation of nodes

with self-contained semantics here; a simple device such as an inverted index (Salton and McGill 1983)

can then be used to retrieve all nodes that contain a given attribute.
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together, the stronger the link grows, otherwise it decays and disappears. Once

linked, spreading activation can be used to activate nodes and retrieve objects that

tend to co-occur, whether or not they are semantically similar. The combination of

all usage links forms a usage network.

To adhere to the principles of parsimony and scalability, activation values used

for information management should be finite and bounded, so that as the activation

of some links and nodes in the usage network rises, normalization limits these

elements and decays all others in the network, in a process analogous to human

forgetting. For an information system this is particularly useful: nodes with a long-

term activation approaching zero have a low apparent utility. Depending on the

information-management protocol, these nodes and the entity that they represent

could be deleted, or the nodes retained but the entity moved to long-term storage,

freeing up real-time resources for more important, recently activated items.

Similarity and co-occurrence links are grouped into separate networks to avoid

entanglement: usage should not affect similarity valuations, since the same object

may be used in different ways, in different contexts, and by different people

(nonetheless, the semantic and usage networks can work together to recover, say, all

similar items that also tend to be used together). While the weights of usage links

change with every user interaction, similarity links are virtually static: their weights

are not re-calculated unless the classifier’s similarity metric changes, or unless more

detailed knowledge is gained about the objects.

Situational Networks: Situational networks simulate human episodic memory by

describing the times and conditions where objects are used. Parallel episodic

memory models such as (Medin and Schaffer 1978; Hintzman 1984; Nosofsky

1984; Raaijmakers and Shiffrin 1981) would be impractical to implement on a

serial machine, violating the mechanistic principle of parsimony; this motivates our

use of networks to store relationships that would otherwise be expensive to

recompute. Situational networks encode the occurrence of events using both

temporal and sensorial index nodes representing timers and sensors external to the

system. Once an event’s temporal and environmental patterns have been encoded,

the network structure can be queried, reminders can be generated, and actuators can

be triggered.

An event node represents a real-world occurrence that involves an information

object, such as a document retrieval, and may contain attributes that describe the

occurrence. Systems are programmed a priori to respond to a finite number of input

types, each of which can be described by attributes, and thus systems can assign

attributes to events as they occur; users could edit these and also add their own

‘tags’ as attributes. Events can then be clustered by their similarities. An event node

is created the first time a particular event type co-occurs with a given information

object. Following the CEO model, the index nodes of timers and sensors that

correspond to the event are linked to a new conjunctive node that is then linked to

the event node. The event node is then linked to the information-object node

(Fig. 4).

As the event re-occurs at other times, more conjunctive nodes are added to

describe unique circumstances. Where the units of two conjunctive nodes agree,
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those conjunctive nodes may be aggregated to produce a more compact

representation. For example, an event that occurs every day at 0900h can be

reduced to a single time unit, and connected directly to the temporal node that

represents 0900h. A conjunctive node’s well-formed-formulas can also include

disjunctions such as 0900h ^ fMon _Wedg to represent partial adherence to a

particular scale, in this case the days of the week. As events re-occur at the time

specified by a pattern, the weights of the nodes involved increases asymptotically, as

do the weights of the links that connect them. Thus the weights indicate the

frequency with which a pattern as a whole and each of its components are true.

Events must receive support in order to persist, otherwise they are ‘‘forgotten’’: if an

event does not re-occur as expected, then the weights of its corresponding elements

decay.

If an event pattern becomes only partially supported, then a conjunctive nodes is

disaggregated as the entropy of its link weights exceeds a threshold, fragmenting a

single pattern into two or more with different levels of support. Together, the

processes of aggregation and disaggregation are essential for modelling concept

drift. Like human memory, the situation network encodes unique events, but also

integrates similar events into a gist-like summary.

Once event patterns have been encoded into the situation network, they can be

queried to determine when events tend to occur, what combinations of sensors tend

to be engaged, and what times are busiest, by examining the stronger weights in the

network. For specific queries, activation flows from objects through event nodes to

index nodes to find out when they occur, and activation flows from time or sensor

nodes through conjunctive nodes (if any) and event nodes to determine what
occurred.

Queries can also be automated to act as reminders: as time moves forward, index

nodes corresponding to the current time and stimuli are activated, and the activation

spreads to connected conjunctive nodes and events. Conjunctive nodes whose input

links (including any sensors) are all activated will pass activation on to connected

events. The events activate any objects that correspond, retrieving them in the

appropriate context. Support is then increased for objects that are used after recall,

while it decays for those that are ignored. Users may set their own reminders by

1100 Wed @work

n1 e1 0900

@workWed1100

n2

n0

1100 Wed

e0

Fig. 4 An example of the cue-event-object model implemented as a network. Temporal and sensorial
index nodes typify observed events. Grey rectangles represent time and sensor nodes; white rectangles are
conjunctive nodes. In this example, event node e0 is associated with usage on Wednesdays at 1100h,
when objects n0 and n2 are used. Object n1 is also used on Wednesdays at 1100h, but only when the at-
work sensor is active; n1 is also used every day at 0900h, regardless of location. The network can be used
to retrieve objects automatically by spreading activation from index nodes when their temporal and
sensorial conditions are repeated
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connecting events to desired conditions. Here high link weights act as alarms by

guaranteeing forceful retrieval, and users can also program the system to produce

real-world effects by setting their own patterns and connecting them to action nodes
that trigger actuators (Fig. 5).

Although we are unaware of previous work that uses associative networks and

spreading activation for temporal encoding, symbolic networks have been used in

some models that include sensory processes. The perceptual maps of Convergence-
Zone Episodic Memory (Moll et al. 1994), use a handful of perceptual stimuli to

retrieve full episodic memories, and the Memory Extender (Jones 1986) uses

‘‘context’’ nodes that serve a sensory role by biasing node activation according to

changing circumstances. Adding sensors to such models would allow the embodiment
of associative networks in a machine, with potential applications in robotics and

contextual computing.

Conclusion and Future Work

P-MAK describes a framework at the intersection of cognitive science and

informatics that fulfills the basic operations of information management—specif-

ically the collection, identification, classification, and retrieval of meaningful

objects. These processes are analogous to cognitive memory faculties of learning

and recall, while for information systems these processes are the foundations of

machine learning and information retrieval. Using cognitive properties in system

design provides users with increased familiarity of function, which leads to

improved usability. The assertion is that the functional processes of existing highly

refined and powerful biological systems—such as the brain—may suggest new and

more efficient models of human–machine interaction.

Based on the constraints and properties of memory and machines, and on the

basic operations of information management, P-MAK inducts information as

discrete objects that are described by discrete attributes, the objects are associated to

the degree that they share attributes, and their use is recorded as events indexed by

a0 n0

object: information on Xaction: dispense X 

event: taking medicine X

2100
1500

e0> blood pressure 

< temperature 
bp t

bio-sensors

0900

bp 0900

Fig. 5 Index nodes for triggering an event node. In this case, medicine will not only be dispensed at
given times, but also if biomedical sensors detect a potential problem. If the user’s blood pressure rises
above a certain level and their temperature falls, dispensation is triggered strongly connected links.
Sensor and temporal index nodes can also be combined: dispensation will also occur if blood pressure is
high at 0900. The event node can also be linked to the object nodes of documents that describe the
medicine’s properties and dosage. Each of the nodes can be queried to determine its role with respect to
other nodes, following connected links to ask such questions as what happens at 0900h, when medicines
should be taken, and which medicines are available for dispensation
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context. Objects are thus described both by internal attributes and external cues.

Although P-MAK’s principles are each already well-known, their assembly into an

information-management framework is novel.

An associative knowledge structure is most simply and flexibly represented as an

associative semantic network. Networks are a cognitively plausible representation,

forming the basis of popular cognitive memory models; they are also well-

understood with respect to exploitable topological properties—such as clustering,

hubs, and the small world property—that appear in various real-world semantic

domains. A network representation is also compatible with neurophysiological

models that equate neural cell assemblies with semantic nodes, and neural

synchronization pathways with links that represent strength of similarity.

P-MAK’s symbolic associative model avoids the computational complexity of a

fully parallel cognitive model by storing similarity evaluations as links for rapid

retrieval. Once similarity associations are stored, an object’s nearest neighbours can

be immediately retrieved; all retrieval in P-MAK occurs using a constrained

spreading-activation model. P-MAK’s network can in principle accommodate other

association types; as an illustrative example a second link type is introduced that

encodes Hebbian-type learning due to usage. Objects may also be indexed by

temporal and sensorial index nodes that register when an object is used and under

what circumstances. Objects can then be retrieved automatically at a particular time,

or in the presence of particular stimuli.

Together, this defines a set of principles for information management that

responds in a plausible, user-comprehensible way to changing conditions, derived

from well-known cognitive models and usefully applied to automated information

management. P-MAK is widely applicable and domain-independent.

Implications

P-MAK’s generality suggests that it can be extended into epistemology, dynamic

behaviour, data visualization, and applications. Further ideas from cognitive science

could be applied to abstraction:

• Any subset of interest, such as categories implicit in node clusters, could be

represented by a generated meta-node (as per the prototypes of Posner and Keele

(1970)) or by an existing centroid node (as per the exemplars of Brooks (1978)).

More generally, an ad hoc context—such as personalized starting points for

navigation, or the set of nodes retrieved by a query—could be saved for re-use in

a template of relevant node and link activations (as per schema theory, e.g.

Mandler 1984).

• To make high-dimensional semantic spaces more comprehensible, the

network could be summarized with the cognitive abbreviations found in

human wayfinding, such as landmarks, paths, districts and boundaries
(Vinson 1999).

• P-MAK could be expanded to include rule-mining and rule inference, nodes that

act as processors, and a wider assortment links as found in the semantic

Cognitive Principles for Information Management 479

123



networks appropriate to semantic networks and expert systems (see Sowa 1991);

this implies in due course a graph-based programming language.

Several possibilities relate to learning. Based on the context of a user’s interests

and actions:

• Semantic link strengths could vary dynamically, reflecting the notion that

meaning is not abstractly fixed, but contextually dependent on the link pattern

among a number of features (Lakoff 1987).

• P-MAK’s perceptual classifier could adapt to the composition of a corpus by

increasing its sensitivity within subtopics; it could similarly adjust to the drifting

bias of a corpus as items are added.

• Rates of link and node decay could vary to reflect greater utility and persistence.

• To index popular subjects, a dynamic usage map could be generated as a

minimum spanning tree of often-used nodes and link pathways (cf. the semantic
index of the retrieval principle).

• To extend P-MAK from personal to group information management (GIM) and

Computer-Supported Collaborative Work (CSCW), users could be matched by

similar interests to share usage maps; this points to possibilities in collaborative

filtering and resource administration.

Some improvements are fundamental:

• An explicit activation strategy could define—for different circumstances—how

activation spreads between nodes, how its strength is calculated, how far it

should reach, and how forgetting is modelled. (see e.g. Crestani 1997).

• To refine semantics, attributes could be represented as nodes related through

networks of their own, both within individual nodes and across an entire corpus.

P-MAK-based systems may be implemented on devices of various types. Its

temporal and sensorial cueing are useful for context-sensitive portable devices and

ubiquitous computing; for example with the inclusion of metabolic and affective

sensors, it could support medical applications and critical tasks that demand

concentrated user attention. The cognitive plausibility of P-MAK’s various

components suggests that it could be applied to cognitive modelling simulations

as well as to information systems, as an empirically based testbed. As a personal

assistant, if run continuously a P-MAK-based system can reflect ongoing trends, and

as such form the basis of a prosthetic cybernetic system, a true memory extender.
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