Young children often rely on others when learning about the world, especially when direct experience is unhelpful or unavailable. Yet, relying on others has its dangers including that others can be unreliable—a source can be misinformed, misleading, or otherwise mistaken. Fortunately, children can avoid such dangers by being selective about which sources they trust. Past research has shown that children trust knowledgeable sources over ignorant or uncertain ones (Sabbagh & Baldwin, 2001) and previously reliable sources over previously unreliable ones (Koenig, Clément, & Harris, 2004). The current study examines a possible underlying reason for children’s trust in reliable sources.

Landmark studies by Koenig, Harris and colleagues (e.g., Clément, Koenig, & Harris, 2003; Koenig et al., 2004; Koenig & Harris, 2005; Pasquini, Corriveau, Koenig, & Harris, 2007) show that children trust sources with a history of being reliable over those with a history of being unreliable. In Koenig et al. (2004), 3- and 4-year-olds watched as two speakers gave conflicting names for unfamiliar objects. Importantly, one of the speakers had a history of naming familiar objects reliably (e.g., accurately calling a ball “ball”) while the other had a history of naming familiar objects unreliably (e.g., inaccurately calling a ball “shoe”). When later asked to name the unfamiliar objects themselves, children who were able to correctly identify the reliable and unreliable speakers tended to use the object names given by the reliable speaker. This tendency to trust the previously reliable speaker has been replicated and extended several times (e.g., Birch, Vauthier, & Bloom, 2008; Scofield & Behrend, 2008) and is often interpreted as evidence that children pay special attention to prior accuracy when determining the reliability and, ultimately, the trustworthiness of a particular source (see Lucas & Lewis, 2010).

However, an alternative possibility is that children attend to whether a source is conventional rather than whether a source is accurate (see Koenig et al., 2004, for brief discussion; also Lucas & Lewis, 2010). Conventions are “agreements that hold for their group or community on how to act” (Clark, 2007, p. 11) or, more simply, the “usual way” of doing something (Clark, 2007, p. 12). These agreements can be important for understanding complex social systems (e.g., language, traffic laws) as well as simple, everyday activities and actions (e.g., naming an object, Koenig et al., 2004; playing a game, Rakoczy, Warneken, & Tomasello, 2008; saying “sorry”; wearing formal attire, Nucci & Turiel, 1978). Because most people tend to do or say conventional things, someone who violates a convention (e.g., calls a ball “shoe,” cuts in line) may be difficult to understand (Koenig et al., 2004) or even seem “bizarre” (Lewis & Lucas, 2010, p. 168), while someone who follows a convention (e.g., calls a ball “ball,” waits patiently in line, etc.) may provide useful information about what kinds of things are appropriate to do or say. Thus, although an accurate source may be trustworthy for doing or saying the correct or “right” thing, a conventional source may be equally trustworthy for doing or saying the accepted or preferred thing (Clark, 2007; see Kalish & Sabbagh, 2007).

With object names, accuracy and conventionality often go hand-in-hand. That is, the right name for an object is often also the preferred name. For example, calling a ball “ball” is both accurate and conventional since a ball is a ball and since most people call a ball “ball.” In contrast, calling a ball “shoe” is neither accurate nor conventional since a ball is not a shoe and since most people do not call a ball “shoe.” Consequently, when children decide to trust a reliable source for the name of an object (as they do in Koenig et al., 2004), it is not clear whether accuracy or conventionality underlies that trust. The difference between accuracy and conventionality matters because attention to accuracy supports...
epistemic inferences about a source (e.g., this speaker knows about things), while attention to conventionality supports pragmatic inferences about a source (e.g., this speaker says what people do or say; a difference humorously though aptly characterized by Harris, 2009, as “Moses Versus the City Gent”).

One potential way to distinguish the role of accuracy from the role of conventionality would be to present children with sources who are accurate but unconventional and sources who are inaccurate but conventional and then see who they trust. However, word learning is not the right domain for making this distinction. First, it is difficult to find good examples of object names that are accurate but not conventional or that are conventional but not accurate. Accurate, unconventional names are easier to find (see Behrend, Ransom, & Schwartz, 2009, for object names provided by foreign speakers; also Diesendruck, Carmel, & Markson, 2010, Study 3), but children tend to be less familiar with unconventional names and may view them as inaccurate rather than simply unconventional. Conventional, inaccurate names are not easy to find because inaccurate names are simply not used by most people (that is part of why they are inaccurate). Second, the distinction between accuracy and conventionality is not very meaningful in examples of word learning. In word learning, and even language more broadly, accuracy and conventionality are intimately linked. The accuracy of a word’s meaning is rarely independent of its conventional status. It may be, however, a useful distinction to make when judging the reliability of a source in other domains and, ultimately, when deciding who to trust.

The current study attempts to distinguish accuracy and conventionality by asking children to reason about actions rather than words. Actions are good testing ground for distinguishing accuracy from conventionality because actions include a process or means that is independent of its outcome. For example, a person opening a jar can use a conventional process (e.g., twisting the top with his or her hands) to achieve an accurate (i.e., successful) outcome (e.g., opening the jar). In fact, opening a jar like this may be just as accurate and conventional as calling a ball “ball” because in both cases, the correct thing is done, and it is done in the preferred way. Importantly, with actions accuracy and conventionality can be crossed. Unlike with words, successful actions do not owe their success to their conventionality. An accurate or successful outcome can be achieved by using an unconventional process (e.g., there are many ways to open a jar including using one’s hands but also using one’s neck). Likewise, a conventional process can lead to an inaccurate or unsuccessful outcome (e.g., failing to open the jar). In the current study children saw actors perform unconventional but successful actions (US) or conventional but unsuccessful ones (CU) and asked (a) whether children could distinguish between the actors and (b) whether children would prefer trusting one actor over the other when learning a new action.

Method

Participants

Forty-eight preschool children including 24 three-year-olds ($M = 42.5$ months, $SD = 3.6$ months; range = 34.7–47.8 months; nine female and 15 male) and 24 four-year-olds ($M = 53.6$ months, $SD = 3.4$ months; range = 48.1–59 months; 18 female and six male) participated in the study. Children were recruited from childcare centers and preschools in a middle-class Southeastern area of the United States. Seventy-seven percent of the children were Caucasian, 17% were African American, 4% were Asian, and 2% were unreported.

Materials

A Mac laptop with QuickTime and PowerPoint software was used to display side-by-side videos of two actors performing various actions. Each child completed four test trials, with each trial featuring one unconventional but successful actor (US) and one conventional but unsuccessful actor (CU). During a trial, each actor performed three familiar actions followed by one unfamiliar action (for a total of 16 actions viewed across the four trials). The full set of 12 familiar actions is detailed in Table 1. For each familiar action, the US actor consistently got the right outcome but in an odd or unusual way (e.g., successfully opening a jar with his or her neck instead of with his or her hands), while the CU actor got the wrong outcome but in a normal or usual way (e.g., failing to open a jar with his or her hands). The full set of four unfamiliar actions included “daxing” the clips, “nudding” the ring, “bikking” the blocks, and “fepping” the stick (several of the unfamiliar actions were inspired by Meltzoff, 1995). Pilot testing was conducted on additional unfamiliar actions to ensure that these particular actions were not easier or more interesting than others. Each actor performed a unique version of the unfamiliar action, resulting in a unique outcome. The actors and actions were counterbalanced. See Table 2 for detailed descriptions of the actions and stimulus sets.

Procedure

Consented children were tested individually in designated interview rooms at their preschools. Each testing session lasted approximately 20 min. The session started with a warm-up task in which children watched two 10-s videos of actors performing familiar actions (e.g., waving hand/patting head). To complete the warm-up, children were asked simply to identify the familiar action and to perform it themselves (e.g., “Look, X is waving/patting his/her head. Can you wave/pat your head?”). After completing the warm-up, each child completed the four test trials in a counterbalanced order.

Familiar actions. Each test trial started with three familiar actions. See Table 1 for a complete list of the familiar actions. Before each familiar action, the experimenter introduced the two actors and announced what they were going to do (e.g., for “opening a jar” the experimenter said, “Let’s watch this video. Red and Green are going to open a jar.”) This may seem like a small detail, but it is not an unimportant one. Having the experimenter announce the familiar actions meant that the actors did not have to label their own actions. In turn, children understood that they were dealing with a bad actor but not a bad labeler. After the announcement, the actors performed the familiar action. The US actor always performed the action unconventionally (e.g., not like most people) but was successful (e.g., got an accurate outcome).

1 The actors used in the warm-up task were not the same as the actors used in the test trials.

2 The actors were always named for the color of their shirts.
whereas the CU actor always performed it conventionally (e.g., like most people) but was unsuccessful (e.g., got an inaccurate outcome). For example, for “opening a jar” the US actor used his or her neck to open the jar and was successful, whereas the CU actor used his or her hands to open the jar but was unsuccessful.

In addition to announcing what the actors were going to do, the experimenter also narrated each familiar action. For half of the participants, the narration began with “successful” phrasing and was followed by “conventional” phrasing (e.g., the narration for “opening a jar” for the US actor was “Look, Red did open the jar, but that is not how most people open a jar,” whereas the narration for the CU actor was “Look, Green did not open the jar, but that is not how most people open a jar”). For the other half of participants, the narration began with “conventional” phrasing and was followed by “successful” phrasing (e.g., the narration for the US actor was “Look, that is not how most people open a jar, but Red did open the jar” while the narration for the CU actor was “Look, that is how most people open a jar, but Green did not open the jar”). The gender, location (i.e., left or right side of screen), and presentation order of the US or CU actors were also counterbalanced.

Explicit judgment task. Immediately after the third familiar action in each trial, the video frames were frozen and children were asked to correctly identify each actor (e.g., for US then CU it was “OK, we just watched Red and Green do some things. Who did open the jar, color, and drink water, even though they did not do it the way most people do? Would you point to the person? . . . OK, now let me ask you another question about Red and Green. Who did not open the jar, color, and drink water, even though they did it the way most people do? Would you point to the person?”). The order of the questions about the actors was counterbalanced, as was whether the “success” or “conventional” phrasing came first. This explicit judgment task indicated whether children understood the difference between the two actors with respect to success and conventionality (see Koenig et al., 2004).

Unfamiliar actions. Each trial ended with one unfamiliar action. See Table 2 for a complete description of the unfamiliar actions. Before each unfamiliar action, the experimenter again announced what the actors were going to do (e.g., for “fepping” the stick the experimenter said, “Let’s watch Red and Green one more time. They are going to fep the stick.”) The actors then performed different versions of the unfamiliar action. For example, for “fepping” the US actor placed a wooden wheel on a wooden stick, balanced the stick and wheel horizontally over two wooden blocks, and then spun the wheel. In contrast, the CU actor placed the wheel flat on a table between the two blocks, inserted the stick into the wheel vertically, and then slid the wheel up and down. See Figure 1. The presentation of the US or CU actor and the action that they performed (e.g., spinning vs. sliding the wheel) were also counterbalanced. There was no narration for the unfamiliar actions.

Endorsing and imitating. After each version of the unfamiliar action was complete, the video frames were again frozen, and children were asked to endorse one of the actors (e.g., “Who do you think fepped the stick? Would you point to the person who fepped the stick?”). Then children were presented with the stimuli and asked to perform the act themselves (e.g., “Now it’s your turn to fep the stick. Would you show me how to fep the stick?”) Because each version of the unfamiliar action varied by both process and outcome, it was possible for children to either fully imitate the process and outcome from one actor or to combine the process from one actor

Table 1

Listing of the Familiar Actions Performed by the US and CU Sources

<table>
<thead>
<tr>
<th>Action</th>
<th>Unconventional successful</th>
<th>Conventional unsuccessful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open jar</td>
<td>Twisted jar with neck</td>
<td>Twisted jar with hands</td>
</tr>
<tr>
<td></td>
<td>Opened jar</td>
<td>Did not open jar</td>
</tr>
<tr>
<td>Color square</td>
<td>Held marker between wrists</td>
<td>Held marker in hand (with cap on)</td>
</tr>
<tr>
<td>Jump over line</td>
<td>Turned around backward</td>
<td>Faced forward, swung arms</td>
</tr>
<tr>
<td>Sit on ground</td>
<td>Laid down, rolled over on stomach</td>
<td>Bent legs, squatted</td>
</tr>
<tr>
<td>Throw ball</td>
<td>Placed ball behind ear and spun</td>
<td>Standard throwing motion</td>
</tr>
<tr>
<td>Clap hands</td>
<td>Crossed arms at elbows</td>
<td>Standard clapping motion, no contact</td>
</tr>
<tr>
<td>Kick ball</td>
<td>Laid down on ground</td>
<td>Did not clap hands (i.e., air clap)</td>
</tr>
<tr>
<td>Catch ball</td>
<td>Pulled out bottom of shirt</td>
<td>Opened hands</td>
</tr>
<tr>
<td>Open box</td>
<td>Used elbows to lift lid</td>
<td>Did not catch ball</td>
</tr>
<tr>
<td>Draw circle</td>
<td>Held marker in mouth</td>
<td>Used hands (i.e., failed to lift lid)</td>
</tr>
<tr>
<td>Step in hoop</td>
<td>Full squat</td>
<td>Did not open box</td>
</tr>
<tr>
<td>Drink water</td>
<td>Lifted cup with teeth</td>
<td>Standard stepping motion</td>
</tr>
<tr>
<td></td>
<td>Stepped in hoop</td>
<td>Stepped next to hoop</td>
</tr>
<tr>
<td></td>
<td>Drank water</td>
<td>Poured water on to shoulder</td>
</tr>
</tbody>
</table>

Note. US = unconventional but successful; CS = conventional but unsuccessful.
and the outcome from the other. For example, children could combine the conventional process from the CU actor with the successful outcome from the US actor, if preferred.

Results

The primary focus of this study was to determine whether children would differentiate between the US and CU actors and whether they would trust one actor over the other when learning a new action.

Explicit Judgment Task

The explicit judgment tasks (EJTs) were used to show whether children differentiated between the US and CU actors. Children who answered both EJTs for the CU and US actors in a single trial were coded as correctly answering the EJTs for that trial. Across age groups, children’s mean correct EJTs out of four trials was 3.23 (SD = 1.02), which was significantly different from chance, \(t(47) = 8.39, p < .001 \). This pattern was seen individually in both 3-year-olds (\(M = 2.88, SD = 1.19 \), \(t(23) = 3.60, p = .002 \), and 4-year-olds (\(M = 3.58, SD = 0.65 \), \(t(23) = 11.83, p < .001 \), with 3- and 4-year-olds patterns not differing from one another, \(t(46) = -2.55, p = .10 \). Forty of the 48 children (83%) correctly answered the EJTs in at least three of the four trials (\(M = 3.60, SD = 0.50 \), \(t(39) = 20.40, p < .001 \). Those few children who did not correctly identify one or both actors, including six 3-year-olds and two 4-year-olds, were corrected (e.g., “Actually, Red did not sit on the ground, throw the ball, and clap their hands, even though Red did it the way that most people do.”) and allowed to participate in the remainder of the video(s). However, the data from these children (\(N = 8 \)) have been excluded from the following analyses. In the end, it was hard to trust the endorsement or imitation of children who did not reliably distinguish between the two actors.

Endorsing and Imitating

The endorsing and imitating questions were used to show whether children trusted one actor over the other. For endorsing (e.g., “Would you point to the person who feped the stick?”), children’s overall mean for endorsing the US actor out of four trials was 2.73 (SD = 1.09), which is significantly different from chance, \(t(39) = 4.22, p < .001 \), indicating that children preferred to endorse the US actor’s novel action. This preference for endorsing the US actor at rates significantly different from chance was seen in both 3-year-olds (\(M = 2.72, SD = 1.27 \), \(t(17) = 2.40, p = .03 \), and 4-year-olds (\(M = 2.73, SD = 0.94 \), \(t(21) = 3.65, p = .002 \), with 3- and 4-year-olds’ preference for the US actor not differing from each other, \(t(38) = -0.01, p = .99 \). See Figure 2.

For imitating (e.g., “Would you show me how to fep the stick?”), children’s overall mean for imitating the US actor out of four trials was 2.50 (SD = 1.20), which is significantly different from chance, \(t(39) = 2.64, p = .01 \), indicating that children preferred to imitate the US actor. This preference for imitating the US actor at rates significantly different from chance was seen in 4-year-olds (\(M = 2.55, SD = 1.18 \), \(t(21) = 2.16, p = .04 \), but not in 3-year-olds, though their mean suggests a preference to imitate the US actor over the CU actor (\(M = 2.44, SD = 1.25 \), \(t(17) = 1.51, p = .15 \). As with the endorsing data, 3- and 4-year-olds’ preferences did not differ from each other when choosing which actor to imitate, \(t(38) = -0.26, p = .80 \). See Figure 2. Note, however, that chance was calculated as imitating the US actor on two out of four trials (i.e., 50%) since the actions most likely to be imitated were those observed from the US or the CU actor. These two actions were by no means a full list of the actions that children could, or did, perform. Children could combine parts of each observed action, or they could perform any number of other nonimitative actions. Calculating chance as two out of four trials is very conservative.

Finally, when evaluating children’s paired endorsement and imitation data, there was no difference in children’s tendency to endorse and imitate the US actor, \(t(39) = 1.60, p = .12 \). In other words, children who endorsed the US actor also tended to imitate the US actor. This was true for both 3-year-olds, \(t(17) = 1.57, p = .14 \), and 4-year-olds, \(t(21) = .85, p = .41 \).

Discussion

Although past studies clearly show that children trust previously reliable sources over previously unreliable ones (e.g., Koenig et al., 2004), it is not clear why. Often in these studies, the reliable source has been both accurate and conventional when naming objects, while the unreliable source has been both inaccurate and unconventional. When children ultimately decide to trust the reliable source, it is impossible to say whether they are emphasizing the source’s prior accuracy (i.e., a trustworthy source does or says the “right” thing) or the source’s prior conventionality.

Table 2

Listing of the Unfamiliar Actions Performed by the US and CU Sources

<table>
<thead>
<tr>
<th>Action</th>
<th>Unconventional successful (US)</th>
<th>Conventional unsuccessful (CU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bik the blocks</td>
<td>Lined up wooden blocks with rubber spatulas</td>
<td>Stacked wooden blocks with rubber spatulas</td>
</tr>
<tr>
<td></td>
<td>Pushed blocks to side with spatulas</td>
<td>Tapped block tower 3× with spatulas</td>
</tr>
<tr>
<td>Dax the clips</td>
<td>Poured paperclips back-and-forth in plastic egg halves</td>
<td>Covered paperclips with plastic egg halves</td>
</tr>
<tr>
<td></td>
<td>Closed and shook egg</td>
<td>Spun egg halves in circles</td>
</tr>
<tr>
<td>Fep the stick</td>
<td>Placed wheel on upright stick between two blocks</td>
<td>Placed wheel on sideways stick and laid stick across two blocks</td>
</tr>
<tr>
<td>Ned the ring</td>
<td>Slid wheel vertically up and down</td>
<td>Spun wheel on stick</td>
</tr>
<tr>
<td></td>
<td>Hooked teething ring on end of paper towel roll</td>
<td>Slipped teething ring around paper towel roll</td>
</tr>
<tr>
<td></td>
<td>Hammered ring on table</td>
<td>Slid ring back and forth</td>
</tr>
</tbody>
</table>

Note. Unfamiliar actions were counterbalanced with US and CU actors. US = unconventional but successful; CS = conventional but unsuccessful.
(i.e., a trustworthy source says and does things like most people). Indeed the distinction itself is somewhat artificial in the domain of word learning since accuracy and conventionality are so interdependent. The distinction may have more meaning in other domains in which children also rely on the testimony of others.

The current study used the action domain to examine whether children distinguished between accuracy and conventionality when deciding who to trust. Here, children saw two actors, one who performed unconventional but successful actions and one who performed conventional but unsuccessful ones, and were asked to decide which actor to trust when learning a new action. Compared to words, actions may better isolate children’s attention to accuracy and conventionality since actions can include a distinct process and outcome. An accurate or successful outcome can be achieved through an unconventional process, and a conventional process can result in an inaccurate or unsuccessful outcome. Importantly, the accurate or successful action does not owe its success to its conventionality nor does the conventional action owe its conventionality to its accuracy.

Findings showed that children were good at identifying each of the two actors on the explicit judgment task. In fact, 83% of children correctly identified both actors in at least three of the four trials. This rate of correct judgments was similar to the rate reported by Koenig et al. (2004). Although 3-year-olds’ and 4-year-olds’ performances on the explicit judgment task were not statistically different from each other, the data suggest a developmental trend, indicating that children might become better at tracking conventionality and accuracy as they age. Also, anecdotally, only two of the 48 children (i.e., 4%) protested one of the actions, and both protests were directed at the unsuccessful actor (e.g., “No! That’s not it.”) In the end, as with children who correctly identified the speakers in Koenig et al. (2004), children’s ability to correctly identify the actors shows that they are able to track information about a particular source over time and then use that information to make broad judgments about the source (e.g., this actor does things correctly albeit in an odd way).

Findings further showed that children who were able to correctly identify both actors also consistently preferred to learn a new action from the unconventional but successful actor over the conventional but unsuccessful one. This preference was seen both in the endorsement (e.g., “Would you point to the person who X?”) and the imitation (e.g., “Would you show me how to X?”) of the successful actor. For endorsement, where children needed only to point to the actor that they believed performed the action, 68% of children preferred to endorse the successful actor, even though he or she had historically performed actions in an unconventional way. For imitation, where children had to perform the action themselves, 58% of children preferred to imitate the successful actor, even at the possible expense of acting unconventionally in front of the experimenter. In both endorsement and imitation, children favored the successful or accurate actor over the conventional one.

Although a preference for accuracy was seen in both the endorsement and the imitation of the successful actor, children’s commitment to accuracy stood out during imitation. To endorse the successful actor, children only needed to point to an actor described as doing things in an unusual way. Children did not actually have to do anything unusual themselves. Although their preference for the accurate outcome is clear from the endorsement, it could be relatively superficial or fragile. However, to imitate the successful actor, children needed to actually do something that had been done by an actor described as doing things in an unusual way—and do it in front of another person (i.e., the experimenter). Imitating the accurate actor meant knowing and publicly doing something that was potentially as unusual as using one’s neck to open a jar. Yet, surprisingly, having to perform the act unconventionally had little effect on children’s willingness to perform it accurately. In fact, children were no less willing to imitate the accurate actor than they were to endorse him or her. Furthermore, the prospect of performing an unconventional act rarely caused children to combine actions so as to use the conventional process to get the accurate outcome. For example, when “fepping” the stick, children could have combined the process from the conventional actor (e.g., placing the wooden wheel on the wooden stick and balancing it horizontally over two wooden blocks) and the outcome from the accurate actor (e.g., sliding the wheel back and forth rather than spinning it)—but they rarely did.

Together, the endorsement and imitation results from this study clearly suggest that children pay special attention to prior accuracy when learning a new action. However, it is not clear from the current study whether children’s attention to accuracy would generalize to other domains. It is difficult to extend these findings directly back to the domain of word learning since, as discussed earlier, success in action does not equal accuracy in language. However, both unsuccessful actions and inaccurate statements constitute human failures or mistakes. It is this shared character-

Figure 1. Images of the US actor (left) and the CU actor (right) “fepping” a stick. US = unconventional but successful; CS = conventional but unsuccessful.
istic that was exploited in the current studies. To test domain generalizability, one interesting study might be to introduce children to an unconventional, but successful actor and a conventional, but unsuccessful actor and then ask children to use those prior actions to decide which actor to trust for the name of a new object. This might give clues as to whether children have any preference for sources with a history of accuracy or conventionality when deciding who to trust for a new word. It is possible that accuracy and success are especially important primarily in domains like language and action that emphasize facts about the world (e.g., actions have goals, objects have names, objects have functions, etc.). Perhaps children place a greater weight on being accurate in these domains because they associate knowing with having the right facts.

It is also not clear from the current study why children might prefer attending to accuracy over conventionality. One possibility is that children prefer, when possible, to make knowledge-based or epistemic inferences about a source. One might speculate that because accuracy reflects stable knowledge (i.e., the goals of actions, meanings of words, and functions of object, etc. are unlikely to change over the short term) and crosses conventional boundaries (i.e., accurate knowledge is still accurate whether or not it is conventional), children might pay special attention to it and conclude that a source who is accurate is also knowledgeable—although this would not have to be the case (see Birch et al., 2008, for discussion). Studies asking children to distinguish between two unsuccessful but conventional actors who’s failures vary by whether the actor is at fault (e.g., the jar is slippery versus the actor is clumsy) might also give clues as to when and why accuracy is preferred over conventionality.

One remaining point has to do with children’s distinction between the unsuccessful and unconventional acts. The current findings depended critically on children viewing the unsuccessful actor as unsuccessful rather than unconventional. For example, in the familiar action “drinking from a cup,” the unsuccessful actor lifted the cup with his or her hand but then poured the water down his or her shoulder. While this was designed as an unsuccessful act done in a conventional way, it is possible that children viewed it as an unsuccessful act done in an unconventional way. Children might believe that pouring water down one’s shoulder is so unlikely that a conventional process could not have produced the outcome. If this were the case, it might suggest that children were ultimately judging the trustworthiness of an actor who was both unsuccessful and unconventional against an actor who was merely unconventional (i.e., actors who differed in terms of accuracy but not in terms of conventionality). If so, then children’s preference to endorse and imitate the accurate speaker would not be best explained in terms of a preference for accuracy over conventionality.

There are several reasons to doubt this possibility though. First, children were very accurate (i.e., 83%) at correctly identifying both actors (even the conventional but unsuccessful one). Second, children who did not identify both actors were corrected, and if they made too many errors, they were excluded from the analysis. Third, in addition to seeing the actors perform the actions, children heard narration describing both the accurate and the conventional nature of each action (e.g., “Red did open the jar, but that is not how most people open a jar.”). Finally, although some of the unsuccessful actions (e.g., pouring water down one’s shoulder) might seem unconventional, there are other actions that do not (e.g., not catching a ball), and importantly, children never saw an actor who performed just one act. Instead, the actors performed three separate acts so that even a potentially unconventional unsuccessful act was seen in a series that included two other (probably less unconventional) unsuccessful acts.

The current findings extend the literature on children’s selective trust in an important way. Past studies have clearly demonstrated that children monitor an informant’s past reliability when deciding who to trust (Clément, Koenig, & Harris, 2003; Koenig et al., 2004; Koenig & Harris, 2005; Pasquini, Corriveau, Koenig, & Harris, 2007; Scofield & Behrend, 2008). Unclear however is whether children’s decision to trust the reliable informant is based on a history of being accurate or on a history of being conventional (Koenig et al., 2004; see Lewis & Lucas, 2010). Our study extends this literature by demonstrating that children pay special attention to an actor’s prior accuracy when it is placed in conflict with conventional means. Notably, past studies have also demonstrated that children are willing to treat conventionality as an indication of trustworthiness (see Harris & Corriveau, 2011, for discussion), such as when a speaker with a native accent is favored over a speaker with a foreign accent (Kinzler, Corriveau, & Harris, 2011).
a speaker who was part of a majority is favored over a dissenter (Corriveau, Fusaro, & Harris, 2009), and a speaker who had used other aspects of language correctly is favored over one who had used language incorrectly (Corriveau, Pickard, & Harris, 2011; Jaswal, McKercher, & VanderBourght, 2008). One interesting possibility is that children’s willingness to emphasize either accuracy or conventionality is balanced against what is being learned, the context in which it is being learned, in the importance of being “right” versus “fitting in,” and so on. In support of this possibility, follow-up data to this study suggests that adding a “teammate” to the current task increases children’s attention to conventionality at the expense of accuracy (Pierucci, Scofield, Gilpin, & Graham, 2011). In the end, while the results of the current study might not definitively suggest that children are making epistemic rather than pragmatic inferences about reliable sources, they certainly suggest that when children are determining the trustworthiness of a reliable source, accuracy matters.

References
Harris, P. L. (2009). Speaker credibility: Moses versus the city gent. Symposium conducted at the biennial meeting of the Society for Research in Child Development, Denver, CO.

Received June 12, 2011
Revision received June 13, 2012
Accepted August 3, 2012

438 SCOFIELD, GILPIN, PIERUCCI, AND MORGAN