Brief Report

Learning how to help others: Two-year-olds’ social learning of a prosocial act

Rebecca A. Williamson *, Meghan Rose Donohue, Erin C. Tully

Department of Psychology, Georgia State University, Atlanta, GA 30302, USA

A R T I C L E I N F O

Article history:
Received 12 July 2012
Revised 8 November 2012
Available online 25 December 2012

Keywords:
Imitation
Emulation
Observational learning
Prosocial behavior
Toddlers
Social cognition

A B S T R A C T

Engaging in prosocial behaviors (acts that benefit others) is associated with many positive outcomes in children, including the development of positive peer relationships, academic achievement, and good psychological functioning. This study examined the social learning mechanisms toddlers use to acquire prosocial behaviors. This brief report presents a new experimental procedure in which 2-year-olds (28–32 months, N = 30) saw a video of an adult performing a novel prosocial behavior in response to another person’s distress. Children then had the opportunity to imitate and implement the behavior in response to their own parent’s physical distress. Children who saw the video were more likely to perform the novel action and to display non-demonstrated prosocial behaviors relative to (a) children who did not view the video but saw a parent in distress and (b) children who saw the video but witnessed their mother engage in a neutral activity. These results suggest that toddlers imitate and emulate prosocial behaviors for social interaction and that children can apply such behaviors in appropriate situations.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Prosocial behaviors encompass a range of helpful, affiliative, and supportive behaviors that are aimed at benefitting others (Eisenberg & Fabes, 1998). Learning to interact in a prosocial manner is an important and potentially challenging developmental task for young children (Zahn-Waxler, Radke-Yarrow, Wagner, & Chapman, 1992). Prosocial acts begin to emerge during infancy and increase in number and sophistication through toddlerhood as children learn to cooperate with parents and
peers and to provide aid and comfort to people in physical or emotional distress (Dunfield, Kuhlmeier, O’Connell, & Kelley, 2011; Hay & Cook, 2007; Svetlova, Nichols, & Brownell, 2010; Warneken & Tomasello, 2007; Zahn-Waxler et al., 1992). This study investigated social learning as a means through which 2-year-olds acquire these social behaviors.

Observational learning in toddlers

Guided by the comparative literature, developmental researchers have identified distinct social learning mechanisms (for a review, see Want & Harris, 2002). At a basic level, when children observe another person acting in a particular situation, it may increase their interest to that situation, prompting more trial-and-error learning. This stimulus enhancement may lead children to rediscover the model’s acts. Children also may emulate another’s example, by learning and reproducing the general outcome or goal that the other person obtained, or may imitate, by reproducing both the model’s outcome and the exact acts the model used to attain that end. It is important to understand which of these learning mechanisms children use in order to pinpoint what they can be expected to learn from a prosocial example.

Beginning in infancy, imitation is an effective way for children to learn how to interact with objects. For example, 14-month-olds who see an adult perform an unusual act reproduce both the physical outcome with a novel object (turning on a light) and the specific manner used to bring about the outcome (bending and touching with the head) (Meltzoff, 1988b). There is also evidence that infants will emulate others’ acts. When presented with a tool that was difficult for them to use, 12-month-olds used their hands instead of the tool even after seeing an adult employ the tool (Nielsen, 2006). Imitation and emulation are powerful learning mechanisms for children; even infants can learn others’ body movements, acts on objects, and sequences of behaviors from live demonstrations (e.g., Barr, Dowden, & Hayne, 1996; Bauer & Mandler, 1992; Carpenter, Akhtar, & Tomasello, 1998; Meltzoff & Moore, 1977) or from video (e.g., Barr & Hayne, 1999; Meltzoff, 1988a).

Social learning of prosocial behaviors

Past studies indicate that others’ examples influence children’s prosocial and antisocial behaviors. A classic example of the uptake of antisocial behaviors comes from Bandura and colleagues’ Bobo doll studies, in which 3- to 5-year-olds showed increased and novel forms of aggression after witnessing adults’ aggressive behaviors (e.g., Bandura, Ross, & Ross, 1961, 1963). Similar methods demonstrate children’s use of prosocial examples; preschoolers who saw an adult demonstrate caretaking behaviors increased their general nurturing behaviors toward a sick child (Gray & Pirot, 1984). Furthermore, kindergarteners were more likely to help a distressed peer after hearing an adult’s attempt to comfort the child, particularly when the adult first interacted with the participant in a nurturing way (Staub, 1971). In a longitudinal study, Zahn-Waxler, Radke-Yarrow, and King (1979) found that 1.5- to 2.5-year-olds were more likely to respond to others altruistically if their mothers frequently explained or otherwise addressed others’ distress, demonstrating the importance of everyday examples on children’s prosocial behaviors.

Live prosocial examples are likely more effective (Rushton & Owen, 1975), but children also have been shown to learn from video examples (e.g., Bandura, 1965; for a review, see Calvert, 2006). Kindergarteners who saw a prosocial television show in which friends tried to help and understand a character’s feelings were more likely to later help a puppet and another child than were children who saw only neutral content (Friedrich & Stein, 1975). Indeed, a meta-analysis of studies supports consistent benefits of prosocial television content on social behaviors, particularly altruism, relative to viewing antisocial or no video content (Mares & Woodard, 2005).

Although this past work indicates that others’ prosocial examples influence children’s behaviors, it is not clear through what social learning mechanisms modeling has its effect. Most studies have examined whether children increase anti- and prosocial responding of any type (e.g., general nurturing responses) after seeing a model’s example. These studies support learning prosocial acts through processes akin to emulation. However, children might also learn specific prosocial strategies from imitating a model’s example; a child may know to apply a bandage to a friend’s cut after seeing her mom
do this when her brother was hurt. The current experiment tested for both imitation and emulation in young children’s social learning of a prosocial behavior.

The specific purpose of this project was to determine what social learning mechanism(s) 2-year-olds’ use to reduce parents’ distress, a situation with particular salience for young children (Cole, Barrett, & Zahn-Waxler, 1992; Hastings, Rubin, & DeRose, 2005). We chose this age group due to changes in the use and sophistication of prosocial behaviors during the third year of life; prosocial behaviors become increasingly selective and spontaneous, are prompted by less explicit distress cues, and are more governed by social conventions (Hay & Cook, 2007; Svetlova et al., 2010). In this experiment, the 2-year-olds saw one adult use an object in a novel manner to ease the physical pain of another adult. Then, children were presented with a similar situation; a parent bumped his or her knee and displayed distress. We tested whether children would (a) imitate the acts the adult used to alleviate the parent’s distress and/or (b) emulate by using other conventional acts (e.g., giving a hug) to produce the same outcome.

Method

Participants

A total of 30 2.5-year-olds (M = 2.52 years, range = 28–33 months, 20 boys and 10 girls) were recruited through Georgia State University’s participant list. According to parental report, the sample was 67% White, 20% Black/African American, and 3% Pacific Islander, with 10% not reporting. The sample was generally middle to upper middle class. An additional 6 children’s data were excluded due to experimenter/parent error (n = 5) or unwillingness to participate (n = 1).

Materials

A blue cleaning mitt (24 × 18.5 cm) with multiple 1-inch cloth tentacles covering one side (see Fig. 1A) was used in a novel prosocial act. This unusual object was chosen as something that (a) children were unlikely to recognize, (b) children would not have previously used in a prosocial context, and (c) could feasibly be used to comfort a person.

A 51-s video-recorded vignette (presented on a 9-inch screen) introduced the novel prosocial behavior. In the video, two adults sat at a table coloring pictures. One actor bumped her knee. She demonstrated a facial expression of pain, rubbed her knee, and stated, “Oh. Ow. I banged my knee. It really hurts.” The second actor said, “I’ll help you.” He put the blue mitt on his hand, leaned over, and patted the first actor’s head with the mitt four times, first with palm down and then with palm.

Fig. 1. Photo of mitt stimulus (A) and still image from the video of the prosocial target act (B).
up in an alternating fashion (see Fig. 1B). The first actor then settled down and said, “I feel better now.” The two actors returned to coloring.

Two procedures were developed to guide parents’ behaviors. For the physical distress procedure, parents stood up, pretended to bump their knee, bent to rub their knee, and feigned distress while stating specific phrases from a short script: “Oww! I banged my knee. It hurts. Oww.” For the neutral procedure, parents stood up, pretended their shoe slipped off, bent to fix it, and used a neutral tone as they stated phrases from a script: “Oh. I need to fix my shoe. It’s off. Oh.” The physical distress and neutral scripts were matched for approximate duration, body position, and vocalizations. Parents referred to the scripts during the test session.

Procedure

Children were tested individually in a university lab room, and their behavior was video-recorded. Each child was randomly assigned to one of three groups: experimental, no-video control, or no-distress control. A researcher reviewed the appropriate procedure with each parent (physical distress or neutral) and described when during the session the parent would act out the scenario.

Experimental group

Children first watched the video of the prosocial interaction. Immediately following the video, an experimenter placed the mitt on the table in front of the child and then left the room. The parent of the child followed the physical distress script.

No-video control

Children did not see the video. The experimenter simply placed the mitt on the table in front of the child and left the room. This was the first time the child had seen the mitt. Then the parent presented the physical distress script. This condition assessed children’s spontaneous prosocial responses and use of the mitt when confronted with a parent in pain.

No-distress control

This control group tested whether target behaviors in the experimental group were produced only for prosocial ends. As in the experimental group, children watched the video, and the experimenter placed the mitt in front of the child on the table before leaving the room. However, during this test phase, the parent engaged in the neutral script.

In sum, children in the experimental group saw both (a) the video and (b) the parent’s distress. Children in the control groups saw only one of these. Children in the no-video control group did not see the video but witnessed the parent’s distress, and those in the no-distress control group saw the video but did not see the parent’s distress.

Dependent measures and scoring

Research assistants who were blind to whether children watched the video scored children’s behaviors and parents’ expressions of pain from videos. The test phase was defined as a 30-s period beginning when parents started to act out the appropriate script (physical pain or neutral). Two measures of prosocial responding were rated from the videos. The target acts score was used to measure production of the demonstrated prosocial act (imitation), and the conventional acts score measured production of other, non-demonstrated prosocial acts (emulation). Two additional measures, parental displays of pain and time off video, were scored to evaluate the control conditions.

Target acts

Children’s production of the target acts during the test phase was scored on a 3-point scale. In all groups, children received 1 point for wearing the mitt, 1 point for performing the demonstrated comforting behavior (patting the parent with the mitt), and 1 point for using the demonstrated style of action (rotating the mitt from palm down to palm up). This scheme was designed to give children some credit for partial fulfillment of the target act.
Conventional acts

Children's attempts to relieve distress during the test phase were also scored for all groups. This measure focused on the use of other, non-demonstrated means of helping or comforting (e.g., hugging the parent, asking if the parent needed a bandage, using statements of concern or affection). The presence and intensity of these behaviors were rated on a 3-point scale (0 = none/minimal, 1 = moderate, 2 = strong) based on one used by Zahn-Waxler, Cole, Welsh, and Fox (1995).

Time off video

As a measure of their attention to the video, the length of time children spent looking away from the 51-s video was recorded for the two groups who watched the video.

Parental displays

For the two groups who used the physical distress procedure, parents' expressions of pain during the test phase were rated (based primarily on tone of voice) using a 4-point scale ranging from no evidence of pain to strong evidence of pain.

Reliability scoring

Scoring agreement was assessed by comparing scores of two coders for a randomly selected subset of at least 25% of the children. The interrater reliabilities were strong for the target acts score, intraclass correlation coefficient (ICC) = 1.00; conventional acts score, ICC = .74; time off video duration, ICC = .82; and ratings of parent's pain, ICC = .82.

Results

Preliminary analyses showed no significant effects of child's gender on the target acts, conventional acts, ratings of parent's pain, or time off video scores. We collapsed across this factor for subsequent analyses. Even though children were randomly assigned to a group, we performed checks for systematic differences in children's attention to the video and parental affect during the distress procedure. A t test showed no significant difference in the amount of time children in the experimental group (M = 3.2 s [of 51 s], SD = 4.5) and children in the no-distress control (M = 7.4 s, SD = 7.5) looked away from the video, t(18) = 1.51, p = .15, d = 0.71, suggesting that the two groups were equally attentive to the video. Ratings of parent's pain were also not significantly different in the experimental group (M = 1.80, SD = 0.92) and the no-video control group (M = 1.80, SD = 0.92), t(18) = 0.00, p = 1.00, d = 0.00, indicating that expressions of distress did not vary as a function of group.

Tests of our hypotheses involved analyzing children's responses to the parent during the test phase of the experiment. First, we examined the target act score to investigate children's imitation of the prosocial behavior demonstrated in the video. A between-participants analysis of variance (ANOVA) showed a significant effect of group (experimental, no-video control, or no-distress control) on target act score, F(2,27) = 5.23, p = .002, η² = .37 (see Fig. 2A). Tukey's HSD (honestly significant difference) test showed that children in the experimental group had significantly higher target act scores than children in either the no-video control group (Mdiff = 1.20, SE = 0.37, p = .008) or the no-distress control group (Mdiff = 1.30, SE = 0.37, p = .004). There was no significant difference in the target act scores in the two control groups (Mdiff = 0.10, SE = 0.37, p = .96).

Non-parametric statistics support these results. Half of the children in the experimental group (n = 5) received a score of 2 or more during the test period, thereby reproducing at least two target acts (wearing the mitt, patting the parent, and/or rotating the mitt). In contrast, none of the children in either control group scored above a 1. Indeed, the only target act that children in the control groups ever produced was to wear the mitt. Fisher's exact tests indicate a significant difference in the number of children who scored 2 or more versus less than 2 between the experimental group and each control group (p = .03).

1 The outcome measure could not be scored for one child in the no-video control group due to a bad camera angle.
We also examined children's use of non-demonstrated acts to comfort the parent. There was a significant effect for group predicting ratings of children's production of conventional acts, $F(2,26) = 4.73$, $p = .018$, $\eta^2 = .27$ (see Fig. 2B). Tukey's HSD test indicated that children in the experimental group produced significantly more conventional acts than children in the no-distress control group ($M_{diff} = 1.09$, $SE = 0.37$, $p = .02$) and more than children in the no-video control group at a level that approached significance ($M_{diff} = 0.80$, $SE = 0.36$, $p = .09$), and there was no difference between the no-video and no-distress control groups ($M_{diff} = 0.29$, $SE = 0.37$, $p = .72$).

Non-parametric statistics support this pattern of findings. More than half of the children in the experimental group ($n = 6$) earned a score of 2 (strong presence and intensity) on the conventional acts scale, whereas very few children in the no-video ($n = 2$) and no-distress group ($n = 0$) control groups earned a score of 2. Fisher's exact tests revealed a significant difference between the experimental group and the no-distress control group ($p = .001$), a nearly significant difference between the experimental group and the no-video control group ($p = .09$), and no differences between the two control groups ($p = .26$).

The target acts scores were not related to the conventional acts scores using the full range of the scales, $\chi^2(6) = 4.23$, $p = .65$, or using the dichotomized scores, Fisher's exact, $p = .11$. In addition, the magnitude of a Spearman's rho correlation between these two variables was small and nonsignificant, $r(29) = .14$, $p = .44$. Some children in the experimental group had a score greater than 1 on both the target act and conventional act measures ($n = 3$), but more children had a high score on either the conventional act measure ($n = 3$) or the target act measure ($n = 2$), suggesting that the conventional behaviors were not simply additional prosocial behaviors accompanying children's imitation.

Although there was little relation between the scores, considering children's performance on the two measures shows that children in the experimental group were likely to attempt to reproduce the overall goal of making the adult feel better. Of the 10 children in this group, 9 achieved a score greater than 1 on at least one of the measures. In contrast, only 2 children in the control groups showed this high of a score on either of the measures (2 children in the no-video control group achieved a 2 on the conventional acts score). Fisher's exact tests show a significant difference in scores greater than 1 on either task between the experimental group and each control group ($ps < .03$).

Discussion

Researchers have differentiated several social learning mechanisms, including imitation and emulation. To date, most studies of these mechanisms have examined how children learn to manipulate and use novel objects (for a review, see Want & Harris, 2002), although researchers have also recognized that these mechanisms can be used to interact socially with others such as through turn-taking.
The current project extends these investigations by examining which social learning mechanisms underlie children's acquisition of a particular social behavior—alleviating distress in a parent.

The results suggest that, through observation, children learn and appropriately apply behavioral solutions for specific social problems. After observing an adult use a novel prosocial act to help a hurt person, 2-year-olds reproduced the novel act to comfort their injured parent (experimental group). Children who did not see the demonstration of the novel prosocial act (the no-video control group) did not produce the complete target act in response to their parent's pain. This indicates that children in the experimental group imitated the demonstration. Furthermore, children who saw the prosocial demonstration but were not exposed to the parent’s distress (the no-distress control group) also did not produce the complete target behavior, indicating that children in the experimental group applied the response to a directed meaningful situation—that of easing another’s pain.

Children who saw the video and were exposed to the parent’s pain were also more likely than children in both control groups to engage in non-demonstrated, conventional prosocial acts when confronted with a hurt adult. That is, children who saw the video were more likely to display behaviors such as hugging, kissing, and verbally comforting the parent than children who did not see the video (no-video control group) or did not see a distressed parent (no-distress control group). The adult’s example led children to intervene and attempt to alleviate the hurt parent’s pain, suggesting emulation. In sum, children in the experimental group intervened more to help the parent, with some children imitating the demonstrated prosocial behavior, some children using conventional prosocial acts, and some children using both behaviors.

A child’s capacity to acquire new prosocial behaviors has implications for his or her competence in various domains, including peer relationships, academic achievement, and psychological functioning (Eisenberg et al., 1996; Warden & Mackinnon, 2003; Zahn-Waxler & Van Hulle, 2011). Programs for promoting prosocial behaviors are often implemented in school contexts and typically employ positive reinforcement (Eisenberg, 2006), induction (e.g., Ramaswamy & Bergin, 2009), or perspective-taking training (e.g., Frey, Nolen, Van Schoiack Edstrom, & Hirschstein, 2005). Our findings suggest that demonstrations may be effective for teaching new prosocial behaviors and for promoting previously acquired ones as toddlers develop their social repertoire.

References

