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Statistical techniques for analyzing the results from a set 
of studies in aggregate—often called meta-analysis—are 
popular in psychology and many other scientific disci-
plines because they provide high-powered tests, the abil-
ity to examine moderators across studies, and precise 
effect-size estimates that are useful for planning future 
studies and making policy decisions. However, just as 
bias can make the results from individual studies com-
pletely misleading (e.g., Simmons, Nelson, & Simonsohn, 
2011), it can do the same to meta-analytic results. To 
address this problem, researchers have developed statis-
tical techniques designed to identify and correct for bias. 
In this article, we present a neutral comparison 
( Boulesteix, Wilson, & Hapfelmeier, 2017) of how several 
promising methods perform when applied to simulated 

data that could have plausibly been produced by research 
in psychology. Our goal is to help researchers in psychol-
ogy know what to expect from different methods when 
conducting meta-analyses in the face of bias.

Meta-Analysis

Meta-analytic techniques involve synthesizing a set of 
results from studies investigating the same empirical 
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Abstract
Publication bias and questionable research practices in primary research can lead to badly overestimated effects in meta-
analysis. Methodologists have proposed a variety of statistical approaches to correct for such overestimation. However, 
it is not clear which methods work best for data typically seen in psychology. Here, we present a comprehensive 
simulation study in which we examined how some of the most promising meta-analytic methods perform on data 
that might realistically be produced by research in psychology. We simulated several levels of questionable research 
practices, publication bias, and heterogeneity, and used study sample sizes empirically derived from the literature. 
Our results clearly indicated that no single meta-analytic method consistently outperformed all the others. Therefore, 
we recommend that meta-analysts in psychology focus on sensitivity analyses—that is, report on a variety of methods, 
consider the conditions under which these methods fail (as indicated by simulation studies such as ours), and 
then report how conclusions might change depending on which conditions are most plausible. Moreover, given 
the dependence of meta-analytic methods on untestable assumptions, we strongly recommend that researchers in 
psychology continue their efforts to improve the primary literature and conduct large-scale, preregistered replications. 
We provide detailed results and simulation code at https://osf.io/rf3ys and interactive figures at http://www.shiny 
apps.org/apps/metaExplorer/.
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phenomenon (Borenstein, Hedges, Higgins, & Roth-
stein, 2011). Most often, the results from the individual 
studies take the form of effect-size estimates, and 
because meta-analyses are usually applied to studies 
with dependent variables measured on different scales, 
effect-size estimates are typically standardized. The 
typical goal of a meta-analysis is to produce a single 
summary estimate of the hypothetical true underlying 
effect, δ, estimated by each effect size in the data set. 
This approach is usually called fixed-effect meta-anal-
ysis (Cooper, Hedges, & Valentine, 2009) and can be 
modeled as di = δ + ei, where di is the observed effect 
size for study i, which differs from the true underlying 
effect, δ, by some amount of sampling error, ei, which 
is normally distributed with a mean of 0 and a variance 
of vi. (See Box 1 for a glossary of the statistical symbols 
and terms used in this article.)

Another common model, known as random-effects 
(RE) meta-analysis (Cooper et al., 2009), holds that each 
study provides an estimate, di, of a different, related 
true effect, Ti—that is, di = Ti + ei. This approach allows 
for the possibility that researchers attempting to study 
the same phenomenon may nonetheless be studying 
different underlying effects that vary as a function of, 
for example, the operationalization of the independent 
variable or the population sampled in the particular 
study. In this model, the study-specific true effect, Ti, 
is calculated as δ + ui, where δ is the mean of the true 

effects estimated by the individual studies and the ith 
study’s deviation from this mean, ui, is normally dis-
tributed with a mean of 0 and a variance of τ2. Applying 
the RE model to an observed set of studies provides an 
estimate of the average true underlying effect, δ, and 
the amount of between-study heterogeneity, τ2. In this 
article, we use RE meta-analysis as our baseline for 
“uncorrected” meta-analysis. It should be noted, how-
ever, that determining which uncorrected estimator for 
the average true underlying effect to use is an active 
area of study itself (Baker & Jackson, 2013; T. Rice, 
Higgins, & Lumley, 2017; Schmid, 2017; T. D. Stanley & 
Doucouliagos, 2015; Veroniki et al., 2016).

Bias

The effects being estimated by meta-analysis can be 
systematically over- or underestimated in the face of 
bias, which is caused by factors that affect the analysis 
and reporting of the individual studies in the meta-
analytic data set. We considered two primary sources 
of meta-analytic bias in our simulation study: publica-
tion bias and questionable research practices (QRPs).

Publication bias occurs when the probability of 
results entering the published record is affected by the 
results themselves (Rothstein, Sutton, & Borenstein, 
2006). For example, if researchers strongly believe that 
an effect is real and positive, reports of statistically 

Box 1. Glossary

δ. Under the fixed-effect model, δ is the hypothetical true underlying effect estimated by each study. Under the random-effects 
model, δ is the mean of the distribution of hypothetical true underlying effects.
di, vi. The observed effect size (d) and its associated variance (v) for the ith study. We calculate d as M M

S
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M2 are the means of the two groups and S is the pooled standard error of the two groups. The variance of d can be calculated 
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, where n1 and n2 are the sample sizes of the two groups.

τ. The standard deviation of the distribution of hypothetical true underlying effects assumed by the random-effects model. It 
is also referred to as measuring between-study heterogeneity.
k. The number of studies in a meta-analytic sample.
Mean error. The average of the deviations of the estimates from the true effect (often called bias). Nonzero mean error 
indicates that the expected value of the estimate does not converge on the true value in the long run—that the estimate is too 
high or too low. Mean error is not sensitive to variance in estimates, so it is possible for a method to produce low mean error 
as a result of large but equal over- and underestimation. Such a case would yield estimates that are accurate on average, but 
any individual estimate could be quite far from the truth.
Root mean square error (RMSE). RMSE incorporates information about the average error as well as the variance (i.e., the 
efficiency) in the estimates. Low RMSE is possible even when a method produces estimates that are consistently biased in one 
direction. For example, if a very narrow distribution of estimates is centered a bit above the true value, the estimates are too 
high, on average, but the variability of these estimates is low. Thus, both mean error and RMSE must be considered when a 
method’s estimation performance is evaluated. For both mean error and RMSE, values as close to zero as possible are desirable.
95% coverage probability. The percentage of 95% confidence intervals that include the true value of δ. Optimally, a 
method’s coverage probability is at the nominal level of 95%. Low coverage is problematic, as it means that most confidence 
intervals do not contain the true value. Coverage rates higher than 95% may indicate exceedingly wide confidence intervals.
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nonsignificant or negative estimates of that effect may 
never be submitted for publication or may be rejected 
by reviewers and editors (Ferguson & Heene, 2012; 
Greenwald, 1975; Rothstein et  al., 2006; Sterling, 
 Rosenbaum, & Weinkam, 1995). In other words, statisti-
cally nonsignificant results, or results that contradict 
accepted theory, are left in the “file drawer.” Because 
the data set collected by the meta-analyst depends on 
the availability of studies on the topic of interest, and 
published data are much easier to find than nonpub-
lished data, publication bias can result in a meta-analytic 
sample that overrepresents studies yielding statistically 
significant, theory-consistent results. This can result in 
misleading meta-analytic findings, such as inflated esti-
mates of the average true underlying effect. And 
although we do not focus on heterogeneity here, it is 
important to note that such bias also affects estimates 
of heterogeneity in complex, nonlinear ways (e.g., 
Augusteijn, van Aert, & van Assen, 2019; Jackson, 2007).

A related but independent form of bias is the use of 
QRPs (also referred to as the undisclosed use of 
researcher degrees of freedom or p-hacking). QRPs are 
said to occur when researchers favor a specific analytic 
approach (e.g., removing outliers or covariates) from 
the variety of potential approaches on the basis of the 
results that it yields. Such choices may be justifiable, 
yet simultaneously arbitrary and motivated (Simonsohn, 
Simmons, & Nelson, 2016). As is the case with publica-
tion bias, QRPs can result in overestimates of the true 
effect, as analyses that yield significant results are high-
lighted and analyses that do not yield such results are 
censored. We note that all bias-correcting methods that 
we applied in our study were designed to address pub-
lication bias, not QRPs.

Simulation Studies of Bias Correction 
in Meta-Analysis

Many simulation studies have been conducted to com-
pare the performance of methods that correct for bias 
in meta-analysis (e.g., Hedges & Vevea, 1996; McShane, 
Böckenholt, & Hansen, 2016; Moreno et  al., 2009; 
Rücker, Carpenter, & Schwarzer, 2011; Simonsohn, 
 Nelson, & Simmons, 2014; T. D. Stanley, 2017; T. D. 
Stanley & Doucouliagos, 2014; van Aert, Wicherts, & van 
Assen, 2016; van Assen, van Aert, & Wicherts, 2015). 
However, there is very little overlap among these studies 
in either the methods they have examined or the simu-
lated conditions they have explored. Different simulation 
studies have implemented bias differently, have drawn 
sample sizes from different distributions, and have varied 
widely in the value and form of the simulated true under-
lying effects. This lack of overlap is not surprising given 
that there is an effectively infinite number of possible 

combinations of different conditions to explore and no 
way of determining which conditions actually underlie 
real-world data. In other words, not only is there an 
inherent dimensionality problem in these simulation 
studies, but there is also no ground truth. These prob-
lems are often not discussed in reports of simulation 
studies, and indeed, many of the reports just cited—
explicitly or implicitly—recommended the use of a single 
method, despite the fact that each study examined per-
formance of only a handful of correction methods in 
only a limited subset of possible conditions.

In this article, we do not identify a single method 
that we believe should be used in all situations. Instead, 
we aim to add to the existing literature by (a) exploring 
a further set of conditions that may plausibly represent 
real data from research in psychology; (b) comparing 
a larger set of meta-analytic methods that, to our knowl-
edge, have yet to be directly compared; and (c) discuss-
ing how our results can facilitate sensitivity analysis in 
meta-analysis.1

Disclosures

R (R Core Team, 2016) scripts for our analyses and simu-
lation are available at the Open Science Framework 
(https://osf.io/rf3ys). Furthermore, we have made avail-
able interactive figures and tables that allow a detailed 
exploration of the results (http://www.shinyapps.org/
apps/metaExplorer/). Supplemental material, which 
includes a comprehensive presentation of our results, 
is also available at the Open Science Framework 
(https://osf.io/rf3ys). We report how we determined 
our sample size, all data exclusions, all manipulations, 
and all measures in the study.

Method

Simulation

We simulated the number of meta-analyzed studies, k, 
as one of four values (10, 30, 60, 100). All simulated 
individual studies had a two-group experimental design, 
so all effect sizes took the form of a standardized mean 
difference, Cohen’s d. Notably, there is reason to think 
that this may be the most commonly used effect-size 
measure in psychology (see Table S1 in Fanelli, Costas, 
& Ioannidis, 2017). Cohen’s d is an estimate of the true 
underlying effect, δ, which we chose to simulate as tak-
ing one of four values (0, 0.2, 0.5, 0.8), corresponding 
to the null hypothesis and Cohen’s rule-of-thumb values 
for small, medium, and large effects, respectively.

Heterogeneity. As mentioned, variation in the true 
underlying effect, δ, is described by the heterogeneity 

https://osf.io/rf3ys
http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
https://osf.io/rf3ys
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parameter, τ. We simulated three values for τ (0, 0.2, 0.4)2 
that may plausibly represent research in psychology: In 
an analysis of 187 meta-analyses that used standardized 
mean differences and were published in Psychological 
Bulletin from 1990 through 2013 (van Erp, Verhagen, 
Grasman, & Wagenmakers, 2017), 50% of all estimates of 
τ were smaller than 0.2, and 80% were smaller than 0.4.3

Study-level data. Independent samples were randomly 
generated for the control and experimental groups; 
observations in the control group were drawn from a 
normal distribution with a mean of 0 and standard devia-
tion of 1, and observations in the experimental group 
were drawn from a normal distribution with a mean of Ti 
and standard deviation of 1. Ti was defined as the sum of 
δ and ui, where ui was drawn from a normal distribution 
with a mean of 0 and standard deviation of τ. Note that 
Ti, therefore, represented a study-specific true effect that 
varied randomly if τ was greater than 0. Cohen’s d and 
the associated variance, v, were calculated for each simu-
lated study, and a two-tailed independent-samples t test 
was applied to generate a t value and a p value.

Simulated sample sizes were based on an empirical 
distribution (Marszalek, 2011; Marszalek, Barber, Kohl-
hart, & Holmes, 2011) of per-group sample sizes from 
1,225 studies published in 1995 and 2006 in four jour-
nals (Journal of Abnormal Psychology, Journal of 
Applied Psychology, Journal of Experimental Psychology: 
Human Perception and Performance, and Developmen-
tal Psychology). After we removed sample sizes smaller 

than 5, the strongly right-skewed per-group sample-size 
distribution had a median of 23 (25% quantile: 14, 75% 
quantile: 50). We found that an inverse gamma distribu-
tion (compared with negative binomial, log-normal, 
gamma, and Weibull distributions) clearly showed the 
best fit, according to the log likelihood. To sample per-
group sample sizes in our simulations, we used a trun-
cated inverse gamma distribution (truncated at n = 5 
and n = 1,905, the latter being the largest observed 
per-group sample size in Marszalek et al.’s data set). 
The distribution had a shape of 1.153 and scale of 
0.046. Figure 1 compares the empirical per-group 
 sample-size distribution with the best-fitting curve.

Publication bias. For the simulation of publication 
bias, we used two censoring functions (“medium publica-
tion bias” and “high publication bias”) that mapped a 
probability that a study was published to the study’s one-
tailed p-value. If the effect was in the “correct” direction, 
both functions returned a 100% probability of publication 
when pone-tailed was less than .025. Studies with “marginally 
significant” effects, .025 ≤ pone-tailed < .05, were published 
with an exponentially decreasing probability that reached 
20% in the medium-publication-bias condition and 5% in 
the strong-publication-bias condition at pone-tailed = .05. 
The probability of publication then remained constant for 
all p values up to, but not including, .5. If the effect was 
in the “wrong” direction (pone-tailed ≥ .5), the probability  
of publication was constant at 5% in the medium-
publication-bias condition and 0% in the strong-publication-
bias condition for all values of pone-tailed up to, but not 
including, .995. The probability of publication then increased 
exponentially until, at pone-tailed = .9995, it reached a constant 
level of 50% in the medium-publication-bias condition and 
20% in the strong-publication-bias condition (see Fig. 2). In 
our simulation, a random Bernoulli draw using the proba-
bility computed by these censoring functions determined 
whether a study was published.4 Studies were continually 
simulated until the target number of k studies had been 
reached. In the no-publication-bias condition, all studies 
were included regardless of the value of pone-tailed.

To our knowledge, this specific implementation of 
publication bias is comparable to, but different from, 
the implementations used in previous simulation studies 
(e.g., Bayarri & DeGroot, 1991; Guan & Vandekerckhove, 
2016). Our primary reason for choosing this approach 
was that we did not want our publication-bias functions 
to exactly match those assumed by any of the bias-
correcting methods being examined (e.g., Iyengar & 
Greenhouse, 1988; McShane et al., 2016), as this might 
result in an overly optimistic assessment of those meth-
ods’ performance (Simonsohn, Simmons, & Nelson, 
2017). Furthermore, we wanted to test whether results 
obtained previously with more straightforward 
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Fig. 1. Comparison of the empirical per-group sample-size distri-
bution (histogram) from Marszalek, Barber, Kohlhart, and Holmes 
(2011) with the best-fitting inverse gamma curve (continuous line). 
The x-axis has been truncated at n = 400 for better visibility. This 
figure is available at https://osf.io/av285/, under a CC-BY4.0 license.
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publication-bias functions would be robust to our more 
nuanced implementation.

Questionable research practices. We studied four 
forms of QRPs: (a) optional removal of outliers, (b) optional 

selection between two dependent variables, (c) optional 
use of moderators, and (d) optional stopping. Each data 
set that had QRPs applied to it was designed to simulate 
a study with a 2 (group: experimental vs. control) × 2 
(level of the moderator: Level 1 vs. Level 2) design and 
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Fig. 2. Implementation of publication bias in the simulation. The graphs show the probability of publication as a function 
of the one-tailed p value of the simulated results in (a) the no-publication-bias condition, (b) the medium-publication-bias 
condition, and (c) the strong-publication-bias condition. The x-axes have a logarithmic scale on both sides of pone-tailed = 
.5 to increase the visibility of the function at the high and low ends of the scale. This figure is available at https://osf.io/
f6esc/, under a CC-BY4.0 license.

https://osf.io/f6esc/
https://osf.io/f6esc/


120 Carter et al.

two dependent variables. Each dependent variable was 
measured across n observations. The moderator divided 
the simulated data set in half in a way that was indepen-
dent of the dependent variable (i.e., the moderator had 
no main effect on the dependent variable) and the treat-
ment (i.e., there was no collinearity between moderator 
and treatment). The Pearson’s correlation between the 
two dependent variables was .20.

QRPs were applied so as to simulate the behavior of 
a researcher fishing for statistical significance. To test 
different levels of severity, we created three individual 
QRP strategies a simulated researcher could adopt: (a) 
pure (no use of QRPs), (b) moderate usage (use of 
optional dependent variables and the addition of 3 
observations per cell for up to three data-collection 
efforts), and (c) strong usage (optional removal of outli-
ers, use of optional dependent variables and optional 
moderators, and the addition of 3 observations per cell 
for up to five data-collection efforts).

In the case of the strong-usage strategy, the simulated 
researcher first tested the main effect of experimental 
manipulation on the first dependent variable. If this 
effect was not statistically significant and positive, the 
simulated researcher removed outliers (defined as 
observations with a z score greater than |2|).5 If this 
second test was not positive and significant, the simu-
lated researcher moved to the second dependent vari-
able and repeated these steps. If no positive and 
significant effect was found, the researcher moved back 
to the first dependent variable and tested for an interac-
tion effect between the experimental manipulation and 
the moderator. If there was a significant interaction, the 
researcher compared the experimental and control 
groups in only the subgroup defined by the first level 
of the moderator. This examination was conducted first 
with and then without outliers. If no positive and sig-
nificant effect was found, the subgroup defined by the 
second level of the moderator was assessed in the same 
way. If a positive and significant effect was not found 
at the second level, the researcher moved to the second 
dependent variable and repeated the same procedure.

Additionally, simulated researchers could collect 
some additional amount of data (see two paragraphs 
earlier). After each additional collection effort, the QRPs 
just described were repeated. Thus, for each data-col-
lection effort, simulated researchers could potentially 
apply 12 comparisons. If none of these analyses pro-
duced a positive and significant effect, the first test 
(comparison of the experimental group and the control 
group on the first dependent variable, with outliers 
untouched and no subgroups created with the modera-
tor) was taken as the final result. The moderate-usage 
strategy represented a subset of the approach described 

in the previous paragraph, in combination with less 
additional data collection.

Given the sample sizes of our simulated primary 
studies, the moderate QRP strategy resulted in an 
inflated false-positive rate of 9% (computed in condi-
tions without heterogeneity and publication bias, and 
counting only directionally consistent results), and the 
strong QRP strategy resulted in a false-positive rate of 
27%. Note that more aggressive p-hacking beyond our 
strong setting is easily possible, for example, by exam-
ining even more dependent variables or excluding only 
directional outliers. Indeed, Simmons et  al. (2011) 
reported a false positive rate of 61% produced by com-
bining certain types of p-hacking.

As it is unlikely that every researcher in a field applies 
QRPs in the same fashion, we defined three QRP envi-
ronments to describe possible prototypical research 
fields characterized by different specific severities of 
QRP application, according to the strategies of indi-
vidual researchers. In the no-QRP environment, 100% 
of the simulated researchers adopted the pure strategy. 
In the medium-QRP environment, 30% of the simulated 
researchers adopted the pure strategy, 50% adopted the 
moderate strategy, and 20% adopted the strong strategy; 
this mixture led to a false-positive rate of 11%. In the 
high-QRP environment, 10% of the simulated research-
ers adopted the pure strategy, 40% adopted the moder-
ate strategy, and 50% adopted the strong strategy; this 
mixture led to a 17% false-positive rate.

Not all QRPs have the same distorting impact on a 
meta-analysis. Furthermore, some QRPs lead bias- 
correcting techniques to overestimate the true effect, 
whereas others lead to underestimation (van Aert et al., 
2016). Our goal was not to investigate the differential 
impact of distinct QRPs on bias correction, but rather 
was to investigate some combinations of QRPs that may 
be plausible in real settings ( John, Loewenstein, & 
Prelec, 2012). As there are infinite possibilities of how 
QRPs can be implemented, and an infinite number of 
ways in which these individual researcher strategies 
can be combined in QRP environments, our study is 
best considered a sensitivity analysis that explored the 
effect of a range of three plausible QRP environments 
on meta-analytic results. Our results do not necessarily 
generalize to other implementation of QRPs.

Design. To summarize, we simulated data for 432 
unique combinations of five fully crossed factors (Table 
1). We simulated 1,000 meta-analytic data sets for each of 
the 432 conditions. For a random selection of conditions, 
we also simulated 10,000 meta-analytic data sets and 
computed the Monte Carlo simulation error (Koehler, 
Brown, & Haneuse, 2009). These comparisons clearly 
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demonstrated that 1,000 simulated meta-analytic data sets 
lead to sufficiently stable estimates (see the supplemental 
material at https://osf.io/rf3ys).

Performance metrics

For each meta-analytic method, to test the hypothesis 
that the estimate provided differed from zero, we evalu-
ated the false-positive (Type I error) rate at δ = 0 and 
the true-positive rate (i.e., the statistical power) at δ = 
0.2, 0.5, and 0.8.

Following the recommendations of Burton, Altman, 
Royston, and Holder (2006), we measured the estima-
tion performance of each method in terms of mean 
error, root mean squared error (RMSE), and 95% cover-
age probability (see Box 1).

Meta-analytic methods

We examined the performance of seven estimators: our 
baseline estimator, RE meta-analysis, and six estimators 
that adjust for bias. Further details on our specific 
implementations are available in the supplemental 
material at https://osf.io/rf3ys.

Random-effects meta-analysis. We applied the RE 
meta-analysis as described earlier using the metafor 
package in R (Viechtbauer, 2010). This approach makes 
no adjustment for publication bias or QRPs. We used the 
restricted maximum likelihood method for estimating 
between-study variance.

Trim-and-fill method. The trim-and-fill method (Duval 
& Tweedie, 2000) was introduced as a diagnostic test for 
publication bias and is based on the asymmetry of a fun-
nel plot (a scatterplot showing effect-size estimates as a 
function of the standard error of those estimates). Publi-
cation bias introduces clear rightward asymmetry in a 
funnel plot (see the supplemental material) because non-
significant and negative observations are censored. The 
trim-and-fill method involves iteratively removing (i.e., 
trimming) observations from one side of the funnel plot 
until a criterion for symmetry is met, and then “filling” 
these observations back into the funnel plot along with 

imputed observations that are identical to the trimmed 
observations but on the opposite side of the mean along 
the horizontal axis. Standard meta-analytic methods can 
then be applied to a data set including both observed 
and imputed studies.

Several previous simulation studies suggest that, 
although the trim-and-fill method can correct for bias 
in some cases, it tends to be outperformed by other 
methods and generally fails as heterogeneity increases 
(e.g., Idris & Ruzni, 2012; Moreno et al., 2009; Peters, 
Sutton, Jones, Abrams, & Rushton, 2007; Simonsohn, 
Nelson, & Simmons, 2014; Terrin, Schmid, Lau, & Olkin, 
2003). For example, Terrin et al. (2003) examined the 
coverage probability of this method both with and with-
out heterogeneity. They observed that coverage 
decreased as heterogeneity increased, primarily because 
the method imputed studies that were not missing when 
effect sizes from large studies (i.e., those near the top 
of the funnel plot) were far from the average overall 
effect. More recently, it has been suggested that in addi-
tion to unnecessarily correcting for bias, the trim-and-
fill method does not correct enough for bias that does 
exist (Simonsohn, Nelson, & Simmons, 2014; Simonsohn, 
Simmons, & Nelson, 2014; van Assen et al., 2015).

Overall, no conclusion has been reached on the best 
way to implement the trim-and-fill method, as its per-
formance can vary widely depending on the version of 
the algorithm and the conditions in which it is used 
(Moreno et al., 2009; Peters et al., 2007). Therefore, we 
used the default algorithm provided by the metafor 
package. Notably, results for this method did not always 
converge. Across all conditions, it returned a valid esti-
mate in 95% of data sets. Nonconvergence happened 
mostly when k was at or above 60 and publication bias 
was strong.

Weighted average of the adequately powered studies.  
T. D. Stanley and Doucouliagos (2017) proposed the 
use of an intercept-only weighted-least-squares (WLS) 
metaregression estimator as a replacement for the naive 
fixed-effect and RE meta-analytic models. Simulation 
studies (T. D. Stanley, 2017; T. D. Stanley & Doucouliagos, 
2017; T. D. Stanley, Doucouliagos, & Ioannidis, 2017) 
suggested that the WLS estimator performed on par with 

Table 1. Simulation Parameters

Experimental factor Levels

True underlying effect (δ) 0, 0.2, 0.5, 0.8
Between-study heterogeneity (τ) 0, 0.2, 0.4
Number of studies in the meta-analytic sample (k) 10, 30, 60, 100
Publication bias None, medium, strong
Questionable-research-practices (QRPs) environment No QRPs, medium use of QRPs, high use of QRPs

https://osf.io/rf3ys
https://osf.io/rf3ys
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the fixed-effect and RE models when the assumptions 
underlying those models were true, but outperformed 
both of them when the assumptions were violated (e.g., 
in the presence of publication bias).

Researchers have suggested extending this WLS esti-
mator to reduce the impact of potential publication bias 
(Ioannidis, Stanley, & Doucouliagos, 2017; T. D. Stanley 
et al., 2017). In this extension, one first performs a WLS 
meta-analysis on all primary studies to obtain a (poten-
tially biased) estimate of the true underlying effect. 
Then, one performs a second WLS meta-analysis on 
only those studies that had 80% statistical power to 
detect an effect of the size estimated by the first WLS 
meta-analysis, so as to obtain a weighted average of 
adequately powered (WAAP) studies. This approach is 
intended to avoid bias by discarding underpowered 
studies, which must overestimate the true effect to find 
statistical significance. If there are no adequately pow-
ered studies or only one adequately powered study in 
the data set, the WLS estimate for the entire data set is 
used. Thus, this conditional estimator, called WAAP-
WLS, applies WAAP when there are at least two ade-
quately powered studies and WLS otherwise.

Across all conditions, the WAAP-WLS method 
returned 77% WAAP and 23% WLS estimates. In small-k, 
small-δ conditions, there were not enough adequately 
powered studies, and 100% of estimates used WLS. In 
large-k, large-δ conditions, 100% of estimates used 
WAAP.

Previous simulation studies have suggested that the 
WAAP-WLS method is comparable to the WLS method, 
standard fixed-effects meta-analysis, and RE meta-anal-
ysis in the absence of heterogeneity and publication 
bias; however, as those conditions changed, the WAAP-
WLS method has outperformed both WLS and standard 
meta-analysis (T. D. Stanley et  al., 2017). The same 
simulation study suggested, however, that in terms of 
efficiency and overall bias, the WAAP-WLS method is 
outperformed by the precision-effect test/precision-
effect estimate with standard error (PET-PEESE) method 
(described later in this section).

p-curve. A p-curve is the distribution of all statistically 
significant p values from the set of studies of interest (i.e., 
ps < .05; Simonsohn, Nelson, & Simmons, 2014). The 
shape of the p-curve is a function of the statistical power 
of the studies, which is itself a function of the sample 
sizes and the true effect size. When studies have no sta-
tistical power (i.e., when the null is true), the distribution 
of significant, independent p values is uniform between 
.00 and .05. With increasing power, this distribution 
becomes increasingly right skewed. Because the degree 
of right skew is a function of the average study power, 
one can use the degree of right skew in a p-curve to (a) 

test the absence of a real effect and (b) estimate the aver-
age effect size corrected for publication bias.

Simonsohn, Nelson, and Simmons (2014) demon-
strated that some typical QRPs cause the p-curve 
method to underestimate the true effect size. Later work 
by van Aert et al. (2016), however, suggested that bias 
can be upward or downward, depending on the specific 
type of QRPs. Additional work demonstrated that the 
p-curve method overestimates the average true underly-
ing effect when there is heterogeneity (Simonsohn, 
Nelson, & Simmons, 2014; van Aert et al., 2016).

Simonsohn, Nelson, and Simmons (2014) interpreted 
the p-curve estimate as “the average effect size one 
expects to get if one were to rerun all studies included 
in the p-curve” (p. 667; see also Simmons, Nelson, & 
Simonsohn, 2018). In our view, however, meta-analysts 
generally aim to recover the average of the distribution 
of all true effects related to the phenomenon of interest 
(i.e., δ). Indeed, that is the purpose of the other estima-
tors we examined. For consistency, therefore, we inter-
pret p-curve results in the same fashion; however, in 
the supplemental material, we also assess this method’s 
ability to recover the average true effect size of the 
studies submitted to it.

We implemented the p-curve method as recom-
mended by Simonsohn, Nelson, and Simmons (2014), 
with the following settings. Only statistically significant 
and directionally consistent studies were submitted to 
the analysis. Any studies with significant but negative 
effects were discarded. Consequently, when no studies 
with significant positive effects were in a set, this 
method did not return an estimate (0.8% of all simula-
tions). Across all conditions, the method returned an 
estimate in 99.2% of all simulated data sets. Not surpris-
ingly, the method failed to produce an estimate almost 
exclusively when the set (k) consisted of 10 studies, 
the true effect (δ) was 0, and there was no publication 
bias.

In some cases, the p-curve method can return an 
estimate with a negative sign even though all included 
studies yielded effects with positive signs. It was our 
understanding that one should interpret only nonnega-
tive effect-size estimates from the p-curve method, 
because a negative estimate based on a series of p 
values just below .05 is likely to indicate that the null 
hypothesis is true and there has been intensive p- 
hacking, rather than that there is a true effect in the 
opposite direction. Negative effect-size estimates obtained 
with the p-curve method were set to zero in our study 
(see recommendations from van Aert et al., 2016).6

In testing for the presence of an effect, we relied on 
the test for evidential value (i.e., the test for right skew-
ness) for the full p-curve (Simonsohn, Simmons, & 
 Nelson, 2015). This test is conceptually—but not 
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statistically—equivalent to a test for µ > 0. Furthermore, 
p-curve estimation does not provide confidence inter-
vals, so we could not assess this aspect of estimation 
for this method.

p-uniform. As does the p-curve method, the p-uniform 
method considers only the statistically significant results. 
It is based on the idea that the distribution of p values is 
uniform conditional on the population effect size (van 
Assen et al., 2015). Hence, it focuses on the p-value dis-
tribution under the alternative hypothesis, and it yields a 
fixed-effects estimate of the true effect by finding the 
value d* that makes the conditional distribution of p val-
ues as uniform as possible.

The p-uniform method provides a hypothesis test, 
an estimate of the bias-corrected effect size, and a con-
fidence interval around that estimate. Computationally, 
the p-curve and p-uniform methods differ only in that 
they use different implementations of the estimation 
algorithm, so in general they are expected to have 
similar strengths and weaknesses (McShane et  al., 
2016). For the computation of the p-uniform estimate, 
we used the Irwin-Hall estimator as implemented in the 
puniform package (van Aert, 2017) and recommended 
by van Aert et al. (2016). We also followed van Aert 
et al.’s recommendation to set the estimate to zero if 
the average of all significant p values was larger than 
.025, because the average p value is lower than .025 
when there is a true positive effect.7

As is the case for the p-curve method, the p-uniform 
method does not return an estimate if there are no 
studies with significant positive effects (0.8% of all 
simulations). Across all conditions, the p-uniform 
method returned an estimate in 99.2% of all simulated 
data sets; in 10.4% of all simulations, the estimate was 
replaced by zero.

PET, PEESE, and PET-PEESE. The precision-effect test 
(PET; T. D. Stanley & Doucouliagos, 2014) is a metare-
gression approach to adjusting for small-study effects 
(see the supplemental material; see also the closely 
related Egger’s test for publication bias—Egger, Smith, 
Schneider, & Minder, 1997). Small-study effects are said 
to exist when the observed effect size gets larger as the 
standard error grows (i.e., as the sample size shrinks). 
One cause of this pattern is publication bias, although 
other benign causes also exist (T. D. Stanley & Doucou-
liagos, 2014; Sterne, Gavaghan, & Egger, 2000).

The PET method uses a weighted-least-squares 
regression in which effect size is regressed on its stan-
dard error: di = b0 + b1sei + ei, where b0 and b1 are the 
intercept and slope terms describing the linear relation-
ship between the ith effect-size estimate, di, and its 

associated standard error, sei. The regression model is 
weighted by the inverse of the variances (i.e., the 
squared standard errors) of the effect-size estimates. 
The intercept b0 represents the estimated effect size 
when the standard error is zero; it is an estimate of the 
true underlying effect that has been corrected for pub-
lication bas and other small-study effects. Of course, if 
small-study effects have many benign causes, there may 
be substantial overcorrection.

A closely related approach computes what is called 
the precision-effect estimate with standard error (PEESE; 
T. D. Stanley & Doucouliagos, 2014). In this method, a 
quadratic relationship between effect size and standard 
error is fitted to the data. The rationale is that if there 
is some true effect, low-precision studies are poorly 
powered and publishable only when the effect is badly 
overestimated. On the other hand, high-precision stud-
ies are well powered and routinely publishable without 
such overestimation. Thus, publication bias (and the 
observed small-study effect) is expected to be stronger 
when the standard error is larger. A quadratic relation-
ship can model such differences in bias across standard 
errors. The PEESE method uses a weighted-least-squares 
regression model, in which effect size is regressed on 
the square of the standard error: di = b0 + b1sei

2 + ei. As 
in the PET method, the weights are the inverse of the 
variances and the intercept is interpreted as an estimate 
of the true underlying effect that is uninfluenced by 
small-study effects.

Simulation studies suggest that the PET method out-
performs the PEESE method when the true underlying 
effect is zero, whereas the PEESE method outperforms 
the PET method when the true underlying effect is 
nonzero (T. D. Stanley & Doucouliagos, 2014). In an 
attempt to offset the opposite biases of these methods, 
T. D. Stanley and Doucouliagos (2014) proposed the 
conditional PET-PEESE estimator. In this approach the 
statistical significance of the PET estimate is used to 
decide whether the PET or the PEESE estimate is taken 
as the final estimate. When the PET estimate is statisti-
cally nonsignificant (i.e., the estimated true effect is not 
distinguishable from zero) in a one-tailed test with α = 
.05, the PET estimate is taken as the PET-PEESE esti-
mate. In contrast, when the PET estimate is statistically 
significant, the PEESE estimate is used as the PET-PEESE 
estimate. For brevity, we focus only on describing the 
performance of the conditional PET-PEESE estimator, 
but in our discussion of sensitivity analysis, we recom-
mend using all three methods: PET, PEESE, and 
PET-PEESE.

Although initial simulation results indicated that the 
PET-PEESE estimator’s performance was promis - 
ing (T. D. Stanley & Doucouliagos, 2014), two later 
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simulations revealed some weaknesses. In one, the 
standard RE meta-analysis estimator outperformed the 
PET and PEESE estimators in some ways; for example, 
it provided greater estimation efficiency (lower mean 
squared error) when heterogeneity was present (Reed, 
2015). The other simulation showed unacceptable per-
formance of the PET-PEESE estimator under conditions 
that seem common in psychology—a small number of 
studies, small samples across all studies, and high het-
erogeneity (T. D. Stanley, 2017).

Selection model. Selection-model approaches to miti-
gation of bias in meta-analysis have been in use for some 
time (Hedges, 1984; Hedges & Vevea, 1996; Iyengar & 
Greenhouse, 1988). We employed the three-parameter 
selection model (3PSM) as developed by Iyengar and 
Greenhouse (1988) and recently discussed by McShane 
et al. (2016). This model’s three parameters represent the 
average true underlying effect, δ; the heterogeneity of the 
random effect sizes, τ2; and the probability p1 that a non-
significant effect enters the literature. The last parameter, 
p1, is modeled by a step function with a single cut point 
at p = .025 (one-tailed), which corresponds to a two-
tailed p value of .05. This cut point divides the range of 
possible p values into two bins: significant and nonsig-
nificant. The three parameters are estimated using maxi-
mum likelihood.

We implemented 3PSM using the default function in 
the weightr package (Coburn & Vevea, 2017). If no p 
value is present in one of the bins, the probability p1 
cannot be estimated. In this case, the weightr package 
uses a plug-in value of .01, which makes it possible to 
estimate the model (Vevea & Woods, 2005). However, 
even with this plug-in value, some models could not 
be estimated because of nonconvergence. Across all 
conditions, the 3PSM method returned an estimate in 
91.5% of all simulated data sets. Estimation failed mostly 
when there were 100 studies in the set, the true effect 
(δ) was 0.2, and there was at least medium publication 
bias or a medium QRP environment (or both).

Several simulation studies of selection models have 
been conducted previously (e.g., Hedges & Vevea, 
1996; Terrin et al., 2003). However, to our knowledge, 
only one examined the specific method we imple-
mented: McShane et  al. (2016) compared the 3PSM 
method with the p-uniform and p-curve methods, both 
of which can be understood as single-parameter selec-
tion models (i.e., only δ is estimated, publication bias 
is set to 100%, and heterogeneity is set to 0). In that 
study, the 3PSM approach clearly provided the best 
estimation and hypothesis testing (a) when δ was no 
greater than 0.30 and τ exceeded 0 and (b) when 
incomplete bias allowed some nonsignificant studies to 
be published.

Results

We simulated 1,000 data sets under 432 unique condi-
tions (Table 1) and analyzed each with seven different 
meta-analytic methods. Here, we avoid an exhaustive 
presentation of the results and provide instead a more 
focused report. However, all of our findings, including 
information on convergence probabilities and exact 
values for mean error, RMSE, and coverage probabilities 
for all conditions, are available in Table 2 in the supple-
mental material (https://osf.io/rf3ys). We also have 
made several interactive figures available (http://www 
.shinyapps.org/apps/metaExplorer/) so researchers can 
explore combinations of conditions that they find to be 
particularly relevant to their own work.

In the following sections, we provide figures only 
for conditions in which δ = 0 (i.e., the null hypothesis 
is true) or δ = 0.5 (i.e., the alternative hypothesis that 
the effect size is 0.5 is true). The figures display the 
effects of increasing heterogeneity (from τ = 0 to τ = 
0.4) and of increasing numbers of studies (from k = 10 
to k = 100). Figure 3 shows both the false-positive rates 
(when δ = 0) and the statistical power (when δ = 0.50) 
of each method. In Figure 4, rather than providing exact 
values for mean error, RMSE, and coverage, we display 
the distributions of mean effect-size estimates with 95% 
quantile ranges. In our view, these values are more 
intuitive, and they allow a visual assessment of the 
observed mean errors (the means) and variability (the 
ranges).

In our summary of results, we first discuss the no-
publication-bias and strong-publication-bias conditions, 
focusing on cases where τ = 0 (“no heterogeneity”) and 
τ = 0.2 (“addition of heterogeneity”) and where k = 10 
and k = 60. The influence of QRPs is discussed sepa-
rately at the end of this section.

Some methods did not always return an estimate. In 
some cases, this was intended (i.e., when no studies 
with significant, directionally consistent effects were 
available for the p-curve and p-uniform estimators); in 
other cases, the method failed to produce an estimate, 
for example, because of nonconvergence. We report 
the summaries of all computations that did return an 
estimate, but readers should be aware that this implies 
a conditional interpretation: The reported mean errors, 
RMSEs, and error rates are conditional on a result being 
provided. If a method performed well when it returned 
an estimate, but did not return an estimate the majority 
of the time, this should be taken into consideration 
when comparing that method with others. Figures 3 
and 4 indicate when a method did not return an esti-
mate in more than 25%, 50%, or 75% of the 1,000 simu-
lation runs. RE meta-analysis and the PET-PEESE and 
WAAP-WLS methods always returned an estimate. Table 2 

https://osf.io/rf3ys
http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
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in the supplemental material reports the exact percent-
ages of returned estimates for each of the other four 
methods in each condition.

No publication bias, no QRPs

Type I error rate. When the null hypothesis was true 
and there was no heterogeneity, most methods had 
appropriate Type I error rates, although the error rates 
for the 3PSM and p-uniform methods were more conser-
vative (0–3%) than the nominal alpha rate. The p-curve 
and p-uniform methods sometimes failed to provide an 
estimate because of the scarcity of statistically significant 
results, especially at k = 10.

The addition of heterogeneity led to slightly higher 
Type I error rates (< 10%) for RE meta-analysis and the 
trim-and-fill method. Type I error rates rose moderately 
(10–30%) for the WAAP-WLS and PET-PEESE methods 
and increased considerably for the p-curve and 
p-uniform methods (8–56%). Adding heterogeneity did 
not increase Type I error rates for the 3PSM method, 
which remained excessively conservative.

Power. With a sample size (k) of 10 and no heterogene-
ity, RE meta-analysis offered the best power, followed 
closely by the trim-and-fill and 3PSM methods. Power 
was poorer for the p-curve, PET-PEESE, and WAAP-WLS 
estimators, and markedly poorer for the p-uniform esti-
mator. Despite this, all the methods achieved 100% power 
at k = 60.

The addition of heterogeneity at k = 10 slightly 
increased the power of the p-curve and p-uniform meth-
ods. The power for RE meta-analysis was unchanged, 
and the power of the trim-and-fill method was slightly 
reduced. The power of the 3PSM, WAAP-WLS, and PET-
PEESE methods fell by more, 5 to 15 percentage points. 
Despite this, all the methods had greater than 95% 
power at k = 60.

Mean error. The methods were generally unbiased, 
with some exceptions. With a sample size (k) of 10 and 
no heterogeneity, the trim-and-fill and PET-PEESE meth-
ods demonstrated slight downward bias (about –0.02); 
these downward biases were mitigated at k = 60. The 
p-curve and p-uniform methods both exhibited upward 
bias when the null hypothesis was true. For the p- 
uniform method, the mean estimate was 0.30 at k = 10 
and 0.20 at k = 60. For the p-curve method, the mean 
estimate was 0.89 at k = 10 and 0.55 at k = 60. However, 
both methods were unbiased when the null was false. 
The upward bias when the null was true was likely caused 
by these methods’ truncation at zero—there were no neg-
ative underestimates to cancel out positive overestimates.

Adding heterogeneity had little effect on the bias of 
RE meta-analysis and the WAAP-WLS and 3PSM meth-
ods. It added some upward bias to the p-curve and 
p-uniform estimators and a very slight downward bias 
to the trim-and-fill and PET-PEESE estimators.

RMSE. In the absence of heterogeneity, RE meta-analysis 
provided the most efficient results and the smallest RMSE. 
RMSE was slightly greater for the trim-and-fill and WAAP-
WLS methods, moderately greater for the 3PSM and PET-
PEESE methods, and noticeably greater for the p-uniform 
and p-curve methods. RMSE was particularly large for the 
p-curve and p-uniform methods when the null was true, 
a pattern that is consistent with their upward bias in that 
condition, as well as their use of only statistically signifi-
cant results, of which there are fewer when the null is 
true. The 3PSM method also had relatively high RMSE 
when the null was true and k was 10.

Adding heterogeneity increased the RMSE of RE 
meta-analysis only slightly. The increases were slightly 
larger for the trim-and-fill, WAAP-WLS, 3PSM, and PET-
PEESE methods. Heterogeneity tended to slightly 
increase the RMSE of the p-curve and p-uniform meth-
ods, presumably by causing bias. However, when the 
null was true or k was small (i.e., k = 10), heterogeneity 
improved the RMSE of the p-curve and p-uniform meth-
ods, presumably by increasing the number of significant 
results that were drawn upon.

Coverage of 95% confidence intervals. In the ab- 
 sence of heterogeneity, coverage rates for RE meta-analy-
sis and the PET-PEESE and trim-and-fill methods were 
ideal at 95%. The WAAP-WLS, p-uniform, and 3PSM esti-
mators also had approximately correct coverage rates 
(±2%). (Recall that the p-curve method does not give a 
confidence interval.)

Adding heterogeneity caused slightly poorer cover-
age for all the methods, particularly p-uniform. For RE 
meta-analysis and the 3PSM method, coverage rates 
recovered somewhat at k = 60. For the PET-PEESE, 
p-uniform, and WAAP-WLS methods, coverage rates 
grew worse as k increased from 10 to 60.

Strong publication bias, no QRPs

In the face of strong publication bias, sets of meta-
analyzed results often consisted of only significant 
results, especially at k = 10.

Type I error rate. In the absence of heterogeneity, RE 
meta-analysis suffered from false-positive rates of 98% 
and higher. The trim-and-fill method had slightly lower, 
but still unacceptable, Type I error rates in excess of 70%. 
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The WAAP-WLS method had poor Type I error rates at 
k = 10 (> 85%), but its Type I error rates decreased with 
increasing k (45% at k = 60), which was not the case for 
RE meta-analysis and the trim-and-fill method. The 3PSM 
method had lower Type I error rates (31%) at k = 10, but 
these error rates increased with increasing k (82% at k = 
60). The p-curve, p-uniform, and PET-PEESE estimators 
had approximately conservative Type I error rates rang-
ing from 3% to 10%.

The addition of heterogeneity slightly reduced the 
Type I error rate for RE meta-analysis, but error rates 
still approached 100% with increasing k. The trim-and-
fill method was generally not affected. For the WAAP-
WLS method, heterogeneity reduced Type I error at  
k = 10 but increased Type I error at k = 60; error rates 
were still quite high for all sample sizes (50+%). Het-
erogeneity substantially increased the Type I error rates 
of the p-curve and p-uniform methods, leading to error 
rates of 40+% at k = 10 and 98+% at k = 60. Heteroge-
neity also substantially increased the Type I error rate 
of the PET-PEESE estimator (by 33 percentage points 
or more). Heterogeneity increased the 3PSM method’s 
Type I error rates at k = 10 (+14 percentage points) but 
reduced the Type I error rate substantially at k = 60 
(–48 percentage points).

Power. In the absence of heterogeneity, RE meta-analy-
sis and the trim-and-fill estimator had approximately 
100% power at all levels of k. Power was slightly lower 
but still good (89+%), even at k = 10, for the other meth-
ods: PET-PEESE, p-uniform, WAAP-WLS, 3PSM, and 
p-curve (in order of ascending power). Note that “good 
power” in this case was accompanied by high Type I 
error; that is, the null was frequently rejected incorrectly 
because the methods overestimated the true underlying 
effect.

Adding heterogeneity had little influence on power. 
At k = 10, it reduced the power of the PET-PEESE esti-
mator by 13 percentage points, the power of the WAAP-
WLS estimator by 7 percentage points, and the power 
of the 3PSM estimator by 5 percentage points. It slightly 
increased the power of the p-curve (+1 percentage 
point) and p-uniform (+4 percentage points) methods. 
Power of all the methods approximated 100% at k = 60.

Mean error. When there was no heterogeneity and the 
null hypothesis was true, many methods were badly 
biased upward. RE meta-analysis estimated the null effect 
as about 0.33. The trim-and-fill method did not substan-
tially reduce this bias, estimating the effect as about 0.22. 
The WAAP-WLS estimates were quite biased at k = 10 
(0.27) and became less biased at k = 60 (0.13). At k = 10, 
the p-curve, p-uniform, and 3PSM methods overestimated 
the null effect, yielding estimates of approximately 0.15, 

but their overestimation was smaller than that of the 
other methods just mentioned, and the bias decreased at 
k = 60 (estimates ranging from 0.05 to 0.11). The p-curve 
and p-uniform methods showed the strongest benefits of 
increasing the sample size. The PET-PEESE method was 
unbiased.

When the null was false, RE meta-analysis still 
slightly overestimated the true effect (by ~0.05). The 
trim-and-fill and WAAP-WLS methods both reduced this 
small bias, yielding estimates that were only very 
slightly biased. The p-curve, p-uniform, and 3PSM meth-
ods were unbiased in estimating the true effect. The 
PET-PEESE method tended to slightly underestimate the 
true effect, although this tendency was ameliorated with 
increasing k (the effect was underestimated by 0.06 at 
k = 10 and by 0.02 at k = 60).

Adding heterogeneity to a true effect of zero tended 
to increase upward bias. RE meta-analysis and the trim-
and-fill, WAAP-WLS, and PET-PEESE methods all dem-
onstrated slight increases in upward bias under 
heterogeneity. The p-curve and p-uniform methods 
demonstrated substantial upward bias (~0.25) under 
heterogeneity. In contrast, adding heterogeneity did not 
increase the bias of the 3PSM estimator.

Adding heterogeneity to a true nonzero effect also 
tended to move estimates slightly upward. The upward 
bias of RE meta-analysis and the trim-and-fill and 
WAAP-WLS estimators was slightly increased; the down-
ward bias of the PET-PEESE method was slightly 
reduced; and the p-curve and p-uniform methods 
showed slight upward bias (~0.06). The 3PSM method 
remained unbiased.

RMSE. In the absence of heterogeneity, when the null 
was true, RMSE was considerably elevated for RE meta-
analysis. All six adjustment methods led to some improve-
ment in RMSE, with the exception of the p-curve method 
at k = 10. The improvements were modest for the WAAP-
WLS and trim-and-fill methods and successively greater 
for the p-uniform, p-curve, 3PSM, and PET-PEESE meth-
ods. These improvements with the latter four methods 
were particularly pronounced at k = 60.

When there was a true effect, the RMSE of RE meta-
analysis was acceptable (0.08 at k = 10, 0.05 at k = 60). 
Most of the other methods again provided some 
improvement. At k = 10, the p-uniform and p-curve 
methods did not improve the RMSE, and the PET-PEESE 
method increased the RMSE. The 3PSM, WAAP-WLS, 
and trim-and-fill estimators provided modest improve-
ments in the RMSE. At k = 60, all six adjustment meth-
ods yielded improvements in the RMSE; the trim-and-fill, 
WAAP-WLS, and 3PSM methods were slightly more effi-
cient than the p-uniform, p-curve, and PET-PEESE 
methods.
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Adding heterogeneity to a true effect of zero caused 
modest increases in RMSE for all the methods, and all 
the adjustment methods provided some benefit relative 
to RE meta-analysis. The greatest improvement was 
provided by the 3PSM method, followed in order by 
the PET-PEESE, p-uniform, p-curve, and trim-and-fill 
methods. The WAAP-WLS estimator improved as k 
increased, performing worse than the p-curve and 
p-uniform methods at k = 10 but better than those 
methods at k = 60.

Adding heterogeneity to a true nonzero effect caused 
moderate increases in RMSE for all the methods. Again, 
all the adjustment methods provided some benefit rela-
tive to RE meta-analysis, and these benefits were com-
parable across methods; the one exception was that the 
PET-PEESE estimator caused an increase in the RMSE 
at k = 10.

Coverage of 95% confidence intervals. Because of 
the considerable publication bias, when the null hypoth-
esis was true and there was no heterogeneity, 95% cover-
age was very poor (< 3%) without adjustment. All the 
adjustment methods led to some improvement in cover-
age. The benefits of the trim-and-fill method were slight 
(28% coverage at k = 10, 0% coverage at k = 60). The 
benefits of the WAAP-WLS method increased with k, but 
coverage did not improve beyond 55%. The benefits of 
the 3PSM method, on the other hand, decreased with k: 
Coverage was 68% at k = 10 but 18% at k = 60. The 
p-uniform and PET-PEESE estimators were the only ones 
to yield good coverage rates across all sample sizes 
(90–94%).

Given a true effect and no heterogeneity, the cover-
age of RE meta-analysis was much better. However, as 
k increased, coverage fell, presumably because of some 
combination of bias and insufficient width of the con-
fidence interval (e.g., at k = 10, coverage was 86%, but 
at k = 60, coverage was only 42%). All the adjustment 
methods achieved approximately correct coverage rates 
across all sample sizes (90–97%), with the exception 
that the PET-PEESE method demonstrated undercover-
age that grew worse with increasing k.

When the null hypothesis was true and heterogeneity 
was added, the coverage for RE meta-analysis was 
slightly better but still very poor. All the adjustment 
methods slightly improved coverage. The greatest ben-
efits were provided by the 3PSM method (52% coverage 
at k = 10, 65% coverage at k = 60) and the PET-PEESE 
method (60% coverage at k = 10, 36% coverage at k = 
60). However, these are still suboptimal coverage rates.

Given a true effect, the addition of heterogeneity 
substantially worsened the coverage for RE meta-anal-
ysis. All the adjustment methods somewhat improved 
coverage. At k = 10, the 3PSM, WAAP-WLS, and p- 

uniform methods brought the greatest improvements, 
reaching coverage of 78%, 81%, and 87%, respectively. 
At k = 60, the coverage of the p-uniform and WAAP-WLS 
methods fell noticeably (~68% coverage), whereas the 
coverage of the 3PSM method improved to 93%.

The influence of QRPs

Influence of QRPs on naive meta-analysis. QRPs 
generally led to an increase in bias in RE meta-analysis, 
provided that the null was true and there was some 
publication bias. This increase was greatest when there 
was medium publication bias and the null was true; 
under these circumstances, high use of QRPs doubled 
mean error from 0.15 to 0.32. When there was strong 
publication bias and the null was true, the effect of 
QRPs was smaller; high use of QRPs increased mean 
error from about 0.32 to 0.44. The damage was presum-
ably smaller because strong publication bias had already 
caused considerable mean error. When there was a true 
effect of 0.5, or when there was no publication bias, the 
influence of QRPs on the mean error and RMSE was 
minimal.

QRPs also generally led to an increase in Type I 
error. With a sample size (k) of 10 and medium publica-
tion bias, QRPs approximately doubled the Type I error 
rate from 51% to 95%. However, at k = 30 or more, 
when there was at least medium publication bias, Type 
I error rates were generally at ceiling (90+%), so QRPs 
did little to further influence Type I error. In the absence 
of publication bias, QRPs did lead to noticeable 
increases in Type I error given large-enough k (i.e., 60 
or 100). For example, when there was no true effect 
and no heterogeneity, high use of QRPs increased Type 
I error to 19%, even though the mean error remained 
a mere 0.03. QRPs similarly tended to harm the cover-
age of 95% confidence intervals.

In summary, for RE meta-analysis, QRPs exacerbated 
the effects of publication bias when there was no effect; 
however, the effects of QRPs on mean error were mod-
est when (a) there was no publication bias, (b) publica-
tion bias was strong, or (c) there was a true effect. Thus, 
QRPs, as we implemented them, seem to play a small 
role in meta-analytic bias on their own. In the company 
of moderate publication bias, however, QRPs can con-
siderably amplify problems.

Influence of QRPs on bias-corrected meta-analysis.  
The effect of QRPs in our simulation varied as a func- 
tion of both meta-analytic method and performance met-
ric. In this section, we focus chiefly on bias as the  
metric because the effects of QRPs on bias are the most 
straightforward and communicable. The effects of QRPs 
on RMSE, error rates, and coverage were generally a 
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function of whether QRPs caused an increase or decrease 
in bias: When QRPs reduced the absolute value of the 
mean error, the RMSE and coverage probability generally 
improved; when QRPs increased the absolute value of 
the mean error, the RMSE, coverage rates, and Type I and 
II error rates were accordingly poorer. In some cases, a 
curvilinear effect was observed; as QRPs increased, an 
initial positive bias was reduced and then became nega-
tive; thus, these metrics first improved and then deterio-
rated. The influence of QRPs was generally strongest 
when there was a null or small effect, presumably 
because studies with medium or large true effects 
required less p-hacking to be published.

The effects of the QRPs we modeled on performance 
of the trim-and-fill method were similar to their effects 
on performance of RE meta-analysis: Bias increased 
when the null was true and there was medium or strong 
publication bias. This bias also led to elevated Type I 
error rates (except when there was heterogeneity and 
no publication bias, in which case Type I error 
decreased slightly). The effects of the QRPs on perfor-
mance of the WAAP-WLS method were similar, but 
increases in bias were smaller than those with the trim-
and-fill method. A curious exception is that QRPs 
reduced Type I error when the WAAP-WLS method was 
used and there was medium publication bias and a 
large sample size (k = 60, k = 100), although even in 
these conditions the Type I error rates were still unac-
ceptable (≥ 40%). Perhaps, in these cases, the WAAP-
WLS method switched from the better-powered WLS 
test to the poorer-powered WAAP test.

In contrast, QRPs caused downward bias in the 
p-curve and p-uniform methods. In the context of 
homogeneity, in which these methods are typically 
unbiased, QRPs led to underestimation of the effect size 
and an increase in the Type II error rate. In the context 
of heterogeneity, in which these methods tend to over-
estimate the effect size, QRPs led to less overestimation 
of the effect size, a decrease in Type I error rates, and 
an increase in Type II error rates. We consider this pat-
tern to reflect two simple effects of opposite sign: Het-
erogeneity caused upward bias in the mean error, and 
QRPs caused downward bias, so the absolute value of 
the mean error was smaller when both were present 
than when only one or the other was present. QRPs 
also helped to reduce the upward bias in the average 
p-curve and p-uniform estimates when the null was 
true, perhaps by increasing the number of significant 
studies available.

The QRPs nudged PET-PEESE estimates downward. 
When these estimates were biased upward in our simu-
lation, as in the case of small or null effects in the 
context of publication bias and heterogeneity, QRPs 
reduced bias and improved Type I error rates slightly. 

When PET-PEESE estimates were unbiased or biased 
downward, as in the case of nonzero true effects, QRPs 
led to greater downward bias. This downward bias was 
sometimes quite strong when the null was true. The 
PET-PEESE method yielded statistically significant 
effects of opposite sign in many analyses; the Type I 
error rates tended to grow with increasing use of QRPs, 
increasing publication bias, and larger sample sizes, 
with rates ranging from 9% (medium use of QRPs, 
strong publication bias, k = 10) to 62% (high use of 
QRPs, medium publication bias, k = 100). Researchers 
have, at times, considered a significant and negative 
PET-PEESE estimate as evidence that the estimate is 
incorrect, choosing instead to interpret results from less 
extreme adjustments, such as the trim-and-fill method 
(see, e.g., Bediou et al., 2018). A statistically significant 
PET-PEESE estimate in the unexpected direction prob-
ably is incorrect, but researchers should be aware that 
when they obtain such an estimate, there is likely to 
be some combination of QRPs and publication bias and, 
perhaps, a null effect.

The QRPs we simulated generally led to a slight 
downward bias in 3PSM estimates. This bias was stron-
ger when heterogeneity was present. At worst, given 
high heterogeneity (τ = 0.4), the mean error caused by 
QRPs was as large as –0.32. QRPs therefore tended to 
reduce Type I error and increase Type II error for this 
method.

What was the worst that happened with each estima-
tor as a consequence of the QRPs we implemented? In 
the case of RE meta-analysis and the trim-and-fill and 
WAAP-WLS methods, QRPs exacerbated the effects of 
publication bias. In the medium-publication-bias condi-
tion, QRPs increased the bias in these estimators; mean 
error increased from 0.14 to 0.31 for RE meta-analysis, 
from 0.08 to 0.22 for the trim-and-fill method, and from 
0.11 to 0.15 for the WAAP-WLS method. These changes 
in bias caused corresponding increases in Type I error 
rates, increasing them by as much as 40 percentage 
points. When publication bias was strong, QRPs 
increased bias by as much as 0.12, but this increase was 
less dramatic than that caused by QRPs when there was 
medium publication bias. The PET-PEESE, p-curve, and 
p-uniform methods each demonstrated downward bias 
of up to –0.14 when QRPs were simulated. This bias 
caused a loss of power of up to 17 percentage points 
for the first two methods and 37 percentage points for 
the p-uniform method. High application of QRPs also 
caused the PET-PEESE method to frequently mistake 
null effects for significant negative effects (up to 62% 
of the cases with no heterogeneity, high use of QRPs, 
and medium publication bias). The 3PSM method under-
estimated the true effect of 0.5 by as much as 0.19, and 
power was reduced by up to 32 percentage points.
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The reactions of the estimators to QRPs may be 
broadly considered to fall into two clusters. In the case 
of RE meta-analysis and the trim-and-fill and WAAP-
WLS methods, QRPs caused overestimation, particularly 
of null effects. In the case of the PET-PEESE, p-curve, 
p-uniform, and 3PSM methods, QRPs caused underes-
timation of true effects and noticeable loss of power.

It is important to bear in mind that the results we 
have described are specific to the way we simulated 
QRPs. Our approach could likely be changed in a vari-
ety of ways that would provide very different results. 
We see this topic as an important area for future 
research.

Discussion

We inspected and compared the efficacy of meta-ana-
lytic adjustments for bias across hundreds of thousands 
of simulated literatures representing a range of true 
effect sizes, degrees of heterogeneity, degrees of pub-
lication bias, and degrees of QRP usage. We assessed 
the results according to both the ability to reject a null 
effect or detect a true effect and the ability to estimate 
the mean of the distribution of true underlying effects. 
We begin our discussion of the results with a coarse 
summary of the three overall patterns we observed, as 
well as some general recommendations.

First, RE meta-analysis and the trim-and-fill and WAAP-
WLS methods showed alarmingly high false-positive rates 
(Fig. 3) and overestimation (Fig. 4) in the face of publica-
tion bias in combination with a zero or small true effect 
size. Generally, the WAAP-WLS method outperformed 
both RE meta-analysis and the trim-and-fill method.

Second, the p-curve and p-uniform methods had rea-
sonable false-positive rates and little bias under homo-
geneity. With increasing heterogeneity, however, both 
showed increasing false-positive rates (Fig. 3) and over-
estimation (Fig. 4), particularly for a zero or small true 
effect size. This poor performance was actually miti-
gated by increasing use of QRPs, and was primarily 
independent of changes in publication bias and sample 
size. Again, we note that the original developers of the 
p-curve method have argued that its performance 
should not be evaluated using the average true underly-
ing effect, as is the usual approach in the meta-analytic 
literature, but rather should be evaluated using the 
average of the effects submitted to the analysis 
(Simonsohn, Nelson, and Simmons, 2014). The perfor-
mance of the p-curve method evaluated in this way is 
described in the supplemental material, but in general, 
it should be noted that this method performed well 
when estimating the average of the true underlying 
effects of the submitted studies. If no QRPs were pres-
ent, this estimator recovered that quantity with very low 

mean error, regardless of the level of publication bias 
and the value of δ. QRPs as we modeled them induced 
a downward bias in p-curve estimates, particularly 
when δ was small and there was little or no heteroge-
neity. These results are consistent with previous simula-
tion results (Simonsohn, Nelson, and Simmons, 2014).

Third, the PET-PEESE and 3PSM methods both 
showed mostly reasonable false-positive rates, but they 
suffered from reduced power when sample sizes were 
small, heterogeneity was high, there was little publica-
tion bias, or there was heavy use of QRPs (Fig. 3). These 
two methods also showed similar patterns of estimation 
error (Fig. 4): Both methods tended to underestimate 
effects when sample sizes were small, heterogeneity 
was high, or there was heavy use of QRPs. Although 
the two methods produced similar overall patterns of 
results, the 3PSM estimator almost always outperformed 
the PET-PEESE estimator.

Furthermore, it is worth noting that RE meta-analysis 
and the WAAP-WLS and PET-PEESE methods always 
returned at least some estimate, whereas the other 
methods sometimes failed to converge or could not be 
applied because of lack of significant studies. Informa-
tion on the percentages of valid estimates is available 
in Table 2 in the supplemental material and should be 
considered alongside the performance information we 
have reported here. For example, it may be that con-
sistent failures to converge in certain simulated condi-
tions indicate that the method will be less applicable 
to real-world data than other methods are.

On the basis of our results, we believe we can con-
fidently make five general recommendations:

1. If publication bias is highly unlikely (e.g., data 
are from a multilaboratory preregistered replica-
tion), rely on RE meta-analysis rather than any 
of the other methods we examined.

2. When there may be publication bias, do not rely 
on RE meta-analysis alone. Publication bias can 
quickly accumulate in even small sets of pub-
lished studies, leading to overestimated effects 
and high Type I error rates.

3. Recognize that the popular trim-and-fill adjust-
ment, although efficient, reduces bias and Type 
I error rates only slightly. To achieve stronger 
reductions in bias, consider the PET-PEESE, 
p-curve, p-uniform, and 3PSM adjustments. How-
ever, keep in mind that these adjustments are 
often inefficient and a given individual estimate 
may be poor, even if these adjustments are unbi-
ased in the long run.

4. Do not use the p-curve or p-uniform methods 
for estimating δ if heterogeneity is expected or 
if many studies yielded nonsignificant results.
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5. Given that adjustments for publication bias are 
only partially successful, we offer a final recom-
mendation that must be implemented not by 
meta-analysts, but by primary researchers and 
journal editors: Take steps to ensure the com-
pleteness and transparency of the original litera-
ture. An ounce of registered report is worth a 
pound of bias correction.

Limits on generalizability

Simulation studies necessarily require making assump-
tions that might limit the generalizability of their results 
to real data. Although we simulated a data-generation 
process that might plausibly underlie real-world research 
in psychology, several limits to our study should be kept 
in mind when considering our findings. First, we simu-
lated the data-generation process in the absence of 
QRPs as a two-group design, despite the fact that real 
research designs are rarely this simple. However, the 
vast majority of meta-analyses use effect-size measures, 
such as correlations and standardized mean differences, 
that ignore such design complexities (see, e.g., Table 
S1 in Fanelli et al., 2017). For example, to meta-analyze 
data from an experiment with a 2 × 2 factorial design, 
one would typically calculate a standardized mean dif-
ference by either discarding or collapsing across the 
factor that is not of primary interest. So for a 2 × 2 design 
with a per-group sample size of 20, the comparison 
entered into the meta-analysis would have either a total 
N of 40 (i.e., 2 × 20; when the second factor is dis-
carded) or a total N of 80 (i.e., 2 × 2 × 20; when data 
are collapsed across the second factor). Therefore, 
although most designs are more complex than the two-
group case we simulated, data in meta-analyses are 
often reduced to this simple form. As a result, our find-
ings generalize to meta-analyses in which more complex 
designs are handled by discarding nonfocal factors. In 
the case of collapsing across these factors, our simula-
tion likely underestimates sample size on average. How-
ever, it should be noted that the choice to collapse 
across factors is problematic given the required assump-
tion that the nonfocal factors do not interact with the 
comparison of interest (i.e., there is a true interaction 
effect of 0). Thus, our findings generalize to the least 
problematic case.

A second, related issue arises for real-world data gen-
erated by single-sample designs (e.g., correlational stud-
ies). If such studies tend to have larger or smaller sample 
sizes than those with factorial designs, our simulation 
might under- or overestimate sample size, respectively. 
Critically, the generalizability issue here is related only 
to sample sizes, not to the fact that different study 
designs tend to be summarized with different effect-size 

measures. At the level of the study, one can translate 
between most effect-size measures without changing 
statistical significance or the direction of the effect. 
Given that bias acts at the study level through these two 
features, the generalizability of our results holds regard-
less of whether data originally take the form of standard-
ized mean differences or correlations.

A third point to consider is whether our implementa-
tion of publication bias mirrors bias in real-world data. 
We implemented publication bias using specific func-
tions with specific parameter values. Of course, it would 
be entirely possible to use different functions or differ-
ent parameter values. What is unclear, however, is the 
degree to which different choices at this level would 
produce different results. For example, we intentionally 
modeled publication bias in a way that differed from 
the bias that the 3PSM, p-curve, and p-uniform methods 
are designed for, so it may be that these methods would 
show improved performance under different specifica-
tions of publication bias. Ultimately, this is an empirical 
question and should be the focus of future research. 
Additionally, our implementation of QRPs was extremely 
specific and might limit the generalizability of our 
results. Because the kinds of QRPs that can be applied 
depend entirely on the design of the specific study, 
there are an infinite number of possible ways to simu-
late QRPs (Hartgerink, van Aert, Nuijten, Wicherts, & 
Van Assen, 2016). Thus, our results for QRPs likely will 
not generalize to designs that are dramatically different 
from those we simulated.

Fourth, it is impossible to perfectly mirror how real 
data are generated. However, it is our hope that 
researchers can use our framework to close this gap 
and tackle some of the issues we have mentioned. It 
would be relatively easy, for example, to modify our 
code to use larger or smaller sample sizes and then 
assess whether this substantially changes how the meth-
ods perform.

Finally, bias correction in meta-analyses is an active 
field of research, and multiple new methods were pub-
lished after our simulations were completed. These 
include an extension of the p-uniform method, called 
p-uniform*, that estimates heterogeneity and includes 
nonsignificant results (R. C. M. van Aert & van Assen, 
2018) and a Bayesian fill-in method called BALM (Du, 
Liu, & Wang, 2017).

Method performance checks and 
sensitivity analysis for meta-analysis 
in psychology

Several authors have suggested that sensitivity analysis 
can be a valuable tool for evaluating the robustness of 
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conclusions from a meta-analysis (e.g., APA Publica-
tions and Communications Board Working Group on 
Journal Article Reporting Standards, 2008; McShane 
et al., 2016; van Aert, 2017; van Aert et al., 2016). If 
results do not substantially change across a range of 
different methods and assumptions, the conclusions can 
be considered to be robust. However, the set of meth-
ods employed in a sensitivity analysis should include 
only those that can be expected to perform reasonably 
well. Put differently, if a method is known to perform 
poorly under the conditions that apply to a meta- 
analysis at hand, it should not be included in a sensitiv-
ity analysis, or it should at least be treated with skepti-
cism and given less weight than other methods when 
the results are evaluated.

To encourage and facilitate sensitivity analysis in 
meta-analysis, we suggest a two-step procedure: The 
first step is to evaluate which bias-correcting methods 
can be expected a priori to perform reasonably well in 
research conditions that are plausible for the meta-
analysis at hand (method performance check). The sec-
ond step is to compute meta-analytic estimates using 
all the included methods and compare them in order 
to evaluate the variability (or robustness) of conclusions 
(sensitivity analysis). This evaluation should respect the 
results from the method performance check and weigh 
the methods accordingly.

For a sensible sensitivity analysis, we recommend 
that meta-analysts and consumers of meta-analyses 
focus on the following question: “Do my conclusions 
depend on a meta-analytic method that performs poorly 
in plausible conditions?” If the answer is “yes,” then 
those conclusions should clearly be revisited. To help 
analysts and consumers answer this question, we have 
provided an interactive app (http://www.shinyapps 
.org/apps/metaExplorer/) that, for a given method and 
a given definition of “performs poorly,” identifies all of 
the conditions in our simulation for which the answer 
to the question is “yes.” In the following, we provide 
an illustration of how one might perform this form of 
method performance check and discuss how this step 
guides the subsequent sensitivity analysis.

A real-world example: two data sets on ego depletion.  
We use data from studies on the topic of ego depletion for 
this example because it is relatively easy to understand 
and there are data from both meta-analyses of the litera-
ture and a large-scale preregistered replication.

Briefly, the limited-strength model of self-control 
holds that any act of self-control will result in subse-
quent acts of self-control being less likely to succeed—a 
state referred to as ego depletion (Muraven, Tice, & 
Baumeister, 1998). Typically, experiments aimed at test-
ing this hypothesis involve participants completing a 

sequence of two tasks—a manipulation task and an 
outcome task. Prior to the outcome task, participants in 
the depletion condition are given a version of the 
manipulation task that is designed to require more self-
control than the version given to participants in the 
control condition. Support for ego depletion is claimed 
when participants in the depletion condition perform 
worse on the subsequent outcome task than participants 
in the control condition do. Following convention, we 
represent this effect as a standardized mean difference 
(d); higher values indicate a greater depletion effect. In 
the following example, we analyze both a preexisting 
meta-analytic sample of 116 ego-depletion studies 
(Carter, Kofler, Forster, & McCullough, 2015) and a data 
set of 23 studies from a Registered Replication Report 
(Hagger et al., 2016). We apply each of our methods to 
these two data sets (see Tables 2 and 3).

Imagine that researchers agree to the logic that a 
depletion effect (δ) less than or equal to 0.15 should 
be considered practically equivalent to zero (Carter & 
McCullough, 2018). Unfortunately, in this case, different 
meta-analytic methods would lead to different conclu-
sions (see Table 2). On the basis of the results from the 
RE model and the WAAP-WLS, trim-and-fill, p-curve, 
p-uniform, and 3PSM methods, a group of researchers 
could conclude that the depletion effect is practically 
significant (i.e., δ > 0.15). In contrast, on the basis of the 
results from the PET, PEESE, and PET-PEESE methods, 
a separate group of researchers could conclude that the 
depletion effect is practically nonsignificant (i.e., δ ≤ 
0.15). Hence, a naive sensitivity analysis would be incon-
clusive, as the variability in results is so large that either 
conclusion can be drawn. To help overcome this incon-
clusiveness, we recommend that researchers ask, “Do 
my conclusions depend on a meta-analytic method that 
performs poorly in plausible conditions?” Such a method 
performance check gives guidance as to which results 
should be given more weight and credibility.

What are “plausible conditions”? For a method per-
formance check, one must define “plausible conditions.” 
As in an a priori power analysis, considerations should 
relate to the specific research environment at hand. Only 
if no specific prior knowledge is available can general 
knowledge about the field be used as an approximation. 
For example, some degree of bias seems possible: In the 
fields of psychology and psychiatry, more than 90% of all 
published hypothesis tests are significant (Fanelli, 2011), 
despite estimates that average power is around 35% 
( Bakker, van Dijk, & Wicherts, 2012), and whereas reported 
effects tend to be statistically significant, unreported effects 
tend not to be (Franco, Malhotra, & Simonovits, 2016). 
Moreover, there is both direct (Franco et al., 2016; LeBel 
et al., 2017) and self-report (John et al., 2012) evidence of 

http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
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the use of QRPs, and several studies have found evidence 
of small-study effects consistent with the presence of 
publication bias (Bakker et al., 2012; Fanelli et al., 2017; 
Kühberger, Fritz, & Scherndl, 2014).8

In addition to bias, a degree of heterogeneity seems 
very likely when diverse experimental paradigms are 
summarized in a meta-analysis (e.g., as opposed to a 
multilab registered report; T. D. Stanley, Carter, & 
 Doucouliagos, 2018; Tackett, McShane, Bockenholt, & 
Gelman, 2017; van Erp et al., 2017). Finally, it seems that 
the typical true effect in psychology research is rather 

small: The median published effect size (d) is around 
0.3 to 0.4 (Bosco, Aguinis, Singh, Field, & Pierce, 2015; 
Richard, Bond, & Stokes-Zoota, 2003), and as this esti-
mate is not corrected for publication bias, the typical 
true effect is likely smaller. This general observation, 
of course, does not preclude the possibility that some 
effects in psychology are indeed large. As Hagger, 
Wood, Stiff, and Chatzisarantis’s (2010) meta-analysis 
of ego-depletion research revealed an overall uncor-
rected d of 0.62, which most likely is inflated, we con-
sider plausible conditions for the sensitivity analysis of 

Table 2. Meta-Analytic Estimates and Method Performance Checks 
for Carter, Kofler, Forster, and McCullough’s (2015) Data

Method
Estimate (with 95% 
confidence interval)

Poor performancea

δ = 0 δ = 0.20 δ = 0.50

Random-effects 0.43 [0.34, 0.52] Yes No No
Trim-and-fill 0.24 [0.13, 0.34] Yes No No
WAAP-WLS 0.35 [0.26, 0.43] Yes No No
p-curve 0.55 [NA, NA] Yes No No
p-uniform 0.55 [0.33, 0.71] Yes No No
PET –0.27 [–0.52, 0.00] No No No
PEESE 0.00 [–0.14, 0.15] Yes No No
PET-PEESE –0.27 [–0.52, 0.00] Yes No No
3PSM 0.33 [0.19, 0.47] No Yes No

Note: WAAP-WLS = weighted average of adequately powered studies/weighted-
least-squares estimator; PET = precision-effect test; PEESE = precision-effect 
estimate with standard error; 3PSM = three-parameter selection model; NA = not 
applicable.
aThese columns report whether or not each model performed poorly in the 
plausible conditions of the simulation study when the true population effect (δ) 
had the indicated value.

Table 3. Meta-Analytic Estimates and Method Performance Checks for 
Hagger et al.’s (2016) Data (Registered Replication Report)

Method
Estimate (with 95% 
confidence interval)

Poor performancea

δ = 0 δ = 0.20 δ = 0.50

Random-effects 0.04 [–0.06, 0.14] No No No
Trim-and-fill 0.04 [–0.06, 0.14] No No No
WAAP-WLS 0.04 [–0.08, 0.15] No No No
p-curve 0.00 [NA, NA] Yes No No
p-uniform 0.00 [NA, NA] Yes No No
PET –0.03 [–0.80, 0.74] No No No
PEESE 0.00 [–0.41, 0.40] No No No
PET-PEESE –0.03 [–0.80, 0.74] No No No
3PSM 0.01 [–0.10, 0.12] No No No

Note: WAAP-WLS = weighted average of adequately powered studies/weighted-
least-squares estimator; PET = precision-effect test; PEESE = precision-effect estimate 
with standard error; 3PSM = three-parameter selection model; NA = not applicable.
aThese columns report whether or not each model performed poorly in the 
plausible conditions of the simulation study when the true population effect (δ) had 
the indicated value.
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the data in Carter et al. (2015) to be those in which the 
true effect size (δ) is less than or equal to 0.5.

In summary, given the conditions we simulated, we 
define the most plausible conditions for this sensitivity 
analysis as those with medium to strong publication 
bias and QRPs, heterogeneity (τ) of 0.2 or more, and 
true effect sizes (δ) less than or equal to 0.5. We evalu-
ate the performance of all the estimators we examined 
under these plausible conditions at k = 100, the simu-
lated value closest to the observed k of 116.

What is “poor performance” of a meta-analytic 
method? Given this definition of plausible conditions, 
the next step for a method performance check is to iden-
tify defensible choices for the definition of “poor perfor-
mance.” For simplicity, in this example we consider only 
one metric, mean error,9 and ask whether each method is 
likely to be biased enough that a true null effect is mis-
taken for a practically significant effect or, conversely, 
that a true effect is mistaken for a practically null effect. 
For each possible true effect, a given method’s perfor-
mance is considered poor if it leads to either of these 
mistakes. Thus, if δ = 0, an upward bias in mean error of 
0.15 or more is poor performance, as the method, on 
average, would indicate a practically significant effect 
even though there is a true null effect (because 0 + 0.15 = 
0.15). If δ = 0.2, a downward bias in mean error of 0.05 
or more is poor performance, as a practically significant 
true effect would be underestimated as practically non-
significant (i.e., 0.2 – 0.05 = 0.15). If δ = 0.5, a downward 
bias in mean error of 0.35 or more would lead to the 
same mistake (because 0.5 – 0.35 = 0.15).

Considering method performance in a sensitivity 
analysis. With these definitions for poor performance 
and plausible conditions in hand, our interactive app 
(http://www.shinyapps.org/apps/metaExplorer/) can be 
used to judge whether meta-analytic conclusions rely on 
methods that perform poorly in plausible conditions. The 
app indicates that the conclusion that the depletion effect 
is practically significant is indefensible, as the RE, trim-
and-fill, WAAP-WLS, 3PSM, p-curve, and p-uniform meth-
ods, which lead to this conclusion, all perform poorly in 
at least one of the defined plausible conditions (primarily 
when δ = 0; Table 2). In contrast, the conclusion that the 
depletion effect is practically nonsignificant—which is 
based on results from the PET, PEESE, and PET-PEESE 
methods—appears to be reasonable because the PET 
method does not perform poorly in any of the plausible 
conditions we examined. If one gives more weight to 
methods that a priori perform well, rather than poorly, 
under the hypothesized plausible conditions, one would 
lean toward the conclusion that the depletion effect is 
practically nonsignificant.

For the data from Hagger et al. (2016), a very differ-
ent set of conditions seem plausible. Because Hagger 
et al.’s data come from a Registered Replication Report, 
there is no reason to think that the results were influ-
enced by publication bias or QRPs to any substantial 
degree. Furthermore, one can expect significantly less 
heterogeneity in these data as compared with those 
from Carter et al. (2015) because data collection at each 
location was conducted using the identical study design 
and a preregistered, automated script. Furthermore, 
there is evidence that heterogeneity in these kinds of 
multilab registered reports is generally low (Klein et al., 
2018). Thus, from among the conditions we simulated, 
we imagine that researchers would view the most plau-
sible conditions as having no publication bias, no QRPs, 
no heterogeneity (τ = 0), and effect sizes (δ) less than 
or equal to 0.5. Using the same definition of poor per-
formance as for the meta-analysis of Carter et al., we 
evaluate each method’s performance in these condi-
tions at k = 30 (the simulated value closest to the 
observed k of 23 studies).

The results from our Web app are shown in Table 3. 
Unlike the results obtained with the Carter et al. (2015) 
data (Table 2), these results uniformly suggest that the 
depletion effect is practically nonsignificant. None of 
the methods—except p-curve and p-uniform—perform 
poorly in any of the plausible conditions we defined.

In summary, we performed two method performance 
checks in two different plausible research environ-
ments. In both cases, the estimates produced by those 
methods that a priori could be expected to perform 
reasonably well in plausible conditions suggested that 
the true ego-depletion effect is not practically or sig-
nificantly different from zero.

Further considerations for method performance 
checks and sensitivity analyses. We conclude our 
discussion of our proposed approach by mentioning 
some important considerations. First, the form of our 
method performance check depends on the specifics of 
our simulation design. Because our simulation covered 
only a limited set of possible data-generation processes, 
it is possible that our approach does not generalize to 
real-world situations that meta-analysts and consumers of 
meta-analysis will encounter. Indeed, because of the infi-
nite possible processes that might generate real-world 
data, generalizability will always be a concern.

Second, we suspect that some readers will worry that 
the method performance check we have described is 
subject to a kind of “assumption hacking” whereby 
researchers who are partial to a certain view can pick 
and choose the definitions of plausible conditions and 
poor performance that provide the result they want. 
This concern is technically correct, but the key strength 

http://www.shinyapps.org/apps/metaExplorer/
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of our approach is that it is explicit and transparent. 
Researchers will need to clearly state their assumptions 
to run this method performance check, and consumers 
of the results can assess whether such assumptions 
appear reasonable to them. If potentially hacked 
assumptions do not appear to be reasonable, our Web 
app can easily be used to run an alternative method 
performance check, thereby preventing the possibility 
of effective assumption hacking. Furthermore, we sug-
gest that analysts preregister a method performance 
check prior to data collection and define which meth-
ods will be given the greatest weight if different meth-
ods provide conflicting results. Finally, we encourage 
researchers to report results from all meta-analytic 
methods that reasonably can be considered, even if 
they did not pass some of the method performance 
checks, because other researchers might want to apply 
a different emphasis in their subjective evaluation.

Ways forward

On the basis of our results, we emphasize that meta-
analysis in psychology is difficult. Observable factors 
such as small samples—both in the primary literature 
and at the level of the meta-analysis—interact with 
heterogeneity and bias, both of which have unknow-
able severity and functional form (e.g., do the true 
effects follow a normal distribution?). Thus, it is hard 
to interpret the results of a meta-analysis in psychology, 
just as it is difficult to interpret the results of any single 
replication study (Braver, Thoemmes, &  Rosenthal, 
2014; Fabrigar & Wegener, 2016; D. J.  Stanley & Spence, 
2014).

Meta-analysts might hope that different bias-correct-
ing methods will all converge on a true value. However, 
our simulations show that different methods often do 
not converge. For example, in the case of a true null 
effect and strong publication bias, the PET and trim-
and-fill methods will virtually never give the same 
answer because the latter performs so poorly. For this 
reason, we caution against ideas of “triangulation” or 
basing conclusions on a “majority vote” of multiple 
methods. One should instead think carefully about 
which method (or methods) can be expected to per-
form well. We think a good approach is the combina-
tion of a method performance check with a subsequent 
sensitivity analysis, either as we have defined sensitivity 
analysis or as put forward by other researchers (e.g., 
Copas, 2013; Copas & Shi, 2000; Kim, Bangdiwala, 
Thaler, & Gartlehner, 2014; Vevea & Woods, 2005).

Furthermore, we conclude that the field should mod-
ify its expectations about meta-analysis (a similar argu-
ment has been made regarding replication results, e.g., 

by D. J. Stanley & Spence, 2014). Researchers in psy-
chology should not expect to produce conclusive, 
debate-ending results by conducting meta-analyses on 
existing literatures. Instead, we think that meta-analyses 
may serve best to draw attention to the existing 
strengths and weaknesses in a literature (e.g., Carter 
et al., 2015; Hilgard, Engelhardt, & Rouder, 2017; van 
Elk et al., 2015). Meta-analytic results can then inspire 
a careful reexamination of methodology and theory, 
perhaps followed by large-scale, preregistered replica-
tion efforts (e.g., Hagger et al., 2016). Such efforts can 
then be summarized with RE meta-analytic methods, 
which show the best performance in the absence of 
bias (Figs. 3 and 4).

Conclusion

In simulations using effect sizes, sample sizes, QRPs, 
and degrees of publication bias that plausibly repre-
sent real data in psychology, we compared the per-
formance of seven meta-analytic methods, including 
six intended to correct for publication bias. We found 
that each of the seven methods showed unacceptable 
performance in at least some conditions. This is not 
an entirely surprising result given previous simulation 
studies (e.g., Hedges & Vevea, 1996; McShane et al., 
2016; Moreno et  al., 2009; Rücker et  al., 2011; 
Simonsohn, Nelson, & Simmons, 2014; T. D. Stanley, 
2017; T. D. Stanley & Doucouliagos, 2014; van Aert 
et al., 2016). However, it highlights an important con-
clusion that we believe needs to be more widely 
acknowledged: Meta-analysts in psychology and con-
sumers of those meta-analyses should not expect to 
come to definitive conclusions. Instead, we believe 
that the most productive outcomes will be generated 
by method performance checks, sensitivity analyses, 
and a willingness to carefully design and conduct 
preregistered replications.
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Notes

1. It is worth noting that our original intent with this study was 
in fact to identify, if possible, a single best method across many 
conditions. Further consideration and helpful comments from 
our peers changed our minds about this goal.
2. In terms of the heterogeneity metric I2, the τ values of 0.2 
and 0.4, in combination with the specific primary sample sizes 
we simulated, are approximately equal to what Pigott (2012) 
proposed as “medium” (I2 = 50%) and “large” (I2 = 75%) hetero-
geneity. RE meta-analysis of our simulated data in the condition 
with no publication bias and no QRPs, with results aggregated 
over k and δ, yielded an average observed I2 of 46% (SD = 17%) 
for τ = 0.2 and 77% (SD = 10%) for τ = 0.4.
3. One should keep in mind that the estimates of vi reported by 
van Erp et al. (2017) may be over- or underestimates as a result 
of bias (Augusteijn et al., 2019).
4. If the probability of publication was 25%, for example, we 
drew one random sample from a Bernoulli distribution with 
p = .25. If the sample value was 1, the simulated result was 
published.
5. We also could have deleted only outliers in one direction, 
which would have made the p-hacking more efficient.
6. Technically, we constrained the numerical optimizer to val-
ues of 0 or greater. In 10.3% of all cases, the estimate was less 
than 0.0001.

7. Although in this special case no p-value and no confidence 
interval are provided, we treated these cases as indicating that 
the null should not be rejected. Hence, this special case was 
utilized in the computation of the false-positive error rate, but 
not the coverage probability.
8. It should be noted that, in contrast to the work just cited, two 
meta-meta-analyses suggest that the influence of bias in psychol-
ogy is relatively small (T. D. Stanley, Carter, & Doucouliagos, 2018; 
van Aert, 2018). Because of the specifics of each of these studies, 
it is difficult to reconcile their general conclusions. For our analy-
sis here, we decided to take the conservative route and err on the 
side of assuming the existence of bias, but we recommend that, 
when applying our approach, meta-analysts consider the degree 
to which bias exists and explicitly describe their reasoning.
9. Note that by using this metric, we focus on the point esti-
mate provided by each method, not the upper or lower bounds 
of the confidence interval. An evaluation of methods should 
also consider RMSE, error rates, and other performance metrics, 
which all are included in our online app. Furthermore, we want 
to note that these metrics take only statistical properties of the 
estimators into account. It has been argued that other dimen-
sions of quality, such as the presence or absence of proper ran-
domization, should go into the weighting of primary studies in 
a meta-analysis (Detsky, Naylor, O’Rourke, McGeer, & L’Abbé, 
1992). But this is a topic for another article.
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