
Current Directions in Psychological
Science
2016, Vol. 25(2) 85 –90
© The Author(s) 2016
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0963721415624012
cdps.sagepub.com

Moral decisions often require trading off personal bene-
fits against the welfare of others. How do we resolve 
conflicts between profit and harm? How do we judge 
others faced with similar dilemmas? And how are these 
processes implemented in the brain? These are some of 
the many questions moral psychologists and neuroscien-
tists have explored over the past decade. Here, I suggest 
we can accelerate progress in moral psychology and neu-
roscience by applying formal algorithmic frameworks 
typically used to study perceptual and value-based learn-
ing and decision making (Love, 2015; Marr, 1982). This 
approach involves specifying mathematical models that 
describe in a precise, quantitative way how features of a 
choice problem are transformed into a decision. Recent 
studies have used this approach to describe moral algo-
rithms—that is, how features of moral dilemmas (e.g., 
costs to the self, benefits to another) are transformed into 
moral judgments and decisions.

To illustrate this approach by analogy, imagine you 
want to bake a cake. The crucial first step is determining 
what ingredients are necessary for the cake—flour, sugar, 
eggs, milk, and so on. Next, you would need to know the 
amounts of each ingredient, and in what order to mix 
them. Similarly, past research in moral psychology has 
focused primarily on the critically important first step of 
identifying the key ingredients of moral judgments and 

decisions—norms, empathy, intentions, actions, out-
comes, and so on (Batson, Duncan, Ackerman, Buckley, 
& Birch, 1981; Cushman, Young, & Hauser, 2006; Greene, 
2014b; Malle, Guglielmo, & Monroe, 2014; Mikhail, 2007). 
Now that many of these ingredients have been identified, 
future work can begin to develop formal mathematical 
models that describe how they are combined, in what 
amounts and in what temporal order, to produce moral 
judgments and decisions.

Formal models can advance moral psychology in sev-
eral ways. First, they can reveal latent subcomponents of 
moral decisions that would not otherwise be apparent 
from behavioral observation alone, and thereby advance 
psychological theories of morality. Second, by assigning 
numerical values (called parameters) to different sub-
components of decisions, formal models can improve 
prediction of behavior, which has clear value for applied 
settings. Finally, formal models bridge moral psychology 
and moral neuroscience by addressing specific mecha-
nistic questions about neural activity and predicting how 
changes in the brain should affect behavior. In this way, 

624012 CDPXXX10.1177/0963721415624012CrockettModels of Moral Judgment and Decision Making
research-article2016

Corresponding Author:
Molly J. Crockett, Department of Experimental Psychology, University 
of Oxford, 9 South Parks Rd., Oxford OX1 3UD, United Kingdom 
E-mail: molly.crockett@psy.ox.ac.uk

How Formal Models Can Illuminate 
Mechanisms of Moral Judgment and  
Decision Making

Molly J. Crockett 
Department of Experimental Psychology, University of Oxford

Abstract
The cognitive and affective processes that give rise to moral judgments and decisions have long been the focus of 
intense study. Here, I review recent work that has used mathematical models to formally describe how features of 
moral dilemmas are transformed into decisions. Formal models have traditionally been used to study perceptual 
and value-based learning and decision making, but until recently they had not been applied to the study of moral 
psychology. Using examples from recent studies, I show how formal models can provide novel and counterintuitive 
insights into human morality by revealing latent subcomponents of moral decisions, improving prediction of moral 
behavior, and bridging moral psychology and moral neuroscience.

Keywords
morality, decision making, judgment, altruism, formal models

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0963721415624012&domain=pdf&date_stamp=2016-04-06


86 Crockett

moral neuroscience can tackle the long-standing ques-
tion of whether moral decisions are different from other 
kinds of decisions.

Formal Models Reveal Latent 
Subcomponents of Moral Decisions

How do people decide whether to harm others for per-
sonal gain? This question has long been the focus 
of  experimental research (FeldmanHall et  al., 2012; 
Masserman, Wechkin, & Terris, 1964), but a mechanistic 
understanding of moral decision making has been lim-
ited by the cognitive opaqueness of measured behaviors, 
such as choice proportions and response times. Formal 
models can identify latent subcomponents of moral deci-
sions and describe how they interact to produce moral 
behavior. We recently adopted this approach in an exper-
iment where participants made choices between different 
amounts of money and different numbers of painful elec-
tric shocks directed toward either themselves or an anon-
ymous person (Crockett, Kurth-Nelson, Siegel, Dayan, & 
Dolan, 2014). We built mathematical models to relate 
objective features of the choice options (here, amounts of 
money and shocks) to their underlying subjective values 
(Fig. 1a). This allowed us to formally quantify several 
latent components of choice, including the negative utili-
ties people ascribe to harming themselves and others 
(harm aversion). Strikingly, our model revealed that for 
most people, harming others is subjectively worse than 
harming oneself, and accordingly, most people were will-
ing to sacrifice more money to avoid harming others than 
themselves (Crockett et  al., 2014). Thus, by modeling 
latent components of choice, we were able to marshal 
empirical support for the proposal that moral behavior 
arises from a higher valuation of outcomes associated 
with better outcomes for others (Buckholtz, 2015).

Our model also exposed a novel cognitive process 
that relates to moral behavior. People vary in the extent 
to which they choose the more highly valued option—
that is, their decision process is “noisy” and they some-
times make mistakes. This noise is another latent 
component of choice quantified within the model. We 
explored the possibility that people make noisier choices 
when deciding for others relative to themselves and that 
this would relate to moral behavior. Indeed, the extent to 
which people made noisier choices for others than for 
themselves was positively correlated with moral behavior 
(Crockett et al., 2014).

Formal models can also make precise predictions 
about the relationship between decisions and response 
times, which bears on contemporary debates about the 
automatic versus controlled nature of moral cognition 
(e.g., Crockett, 2013; Cushman, 2013). One popular class 
of models describes decision making as a process 

whereby a noisy signal indicating the relative value dif-
ference between two options dynamically evolves over 
time, and a choice is made when enough evidence has 
accumulated for one of the options (Ratcliff & McKoon, 
2008). In recent studies, such models have afforded novel 
insights into how participants divide money between 
themselves and others (Hutcherson, Bushong, & Rangel, 
2015) and decide to contribute money in public-goods 
games (Krajbich, Bartling, Hare, & Fehr, 2015). The mod-
els capture a number of latent variables, including the 
relative weights placed on payoffs for self and others and 
how much evidence favoring one choice option is 
required before a decision is made (Fig. 1b).

These models have revealed a number of surprising 
insights about altruistic behavior and the relationship 
between prosocial choice and response times. First, gen-
erous choices are slower if the weight placed on payoffs 
to oneself is higher, but faster if the weight placed on 
payoffs to others is higher. Thus, prosocial decisions are 
not always faster than selfish ones; the relationship 
between prosocial decisions and response times can 
even be manipulated by changing the costs of prosocial 
decisions (Krajbich et al., 2015). Second, when less evi-
dence favoring one choice option is required before 
making a decision, generosity increases.1 Thus, differ-
ences in generosity observed across individuals or con-
texts may not necessarily reflect differences in preferences, 
but could instead reflect differences in the noisiness of 
decisions. This has important implications for interpret-
ing the effects of manipulations thought to influence 
decision noise, such as time pressure or cognitive load. 
The fact that amplified decision noise can increase gen-
erosity relates to a third insight: A substantial proportion 
of generous choices may be “mistakes” rather than reflect-
ing true preferences (Hutcherson et al., 2015).

Formal Models Improve Prediction of 
Moral Behavior

By assigning numerical values to latent subcomponents 
of decisions, formal models can predict choices in new 
cases different from those used to estimate the original 
model. To illustrate this point in the domain of emotion, 
psychological research has observed that “bad is stronger 
than good” (Baumeister, Bratslavsky, Finkenauer, & Vohs, 
2001). Formal models of loss aversion quantify this effect 
and tell us that bad is about twice as subjectively strong 
as good (Kahneman & Tversky, 1979), which has an 
obvious predictive advantage over merely knowing that 
bad is stronger than good. Consider the set of gambles 
displayed in Table 1 and try to predict whether the aver-
age person would take each gamble, armed with either 
the descriptive theory or the formal model. For the first 
gamble (a 50/50 chance of gaining vs. losing $100), both 
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the descriptive theory and the formal model predict the 
average person will not take the gamble. However, for 
the rest of the gambles, the formal model can predict 
behavior where the descriptive theory cannot. Moreover, 
the model makes quantitative predictions in terms of 
choice probabilities. Such predictions afford more strin-
gent tests of theories because they are easier to falsify as 
measurement becomes more precise (Meehl, 1967).

Formal models allow us to test the intriguing possibil-
ity that unifying principles characterize decision making 
across a variety of domains, from perceptual decisions 
such as navigating through a parking lot, to simple value-
based decisions such as selecting items from a restaurant 
menu, to moral decisions such as charitable giving. If this 
is the case, then formal models for decision making might 
generalize across contexts, enabling out-of-sample pre-
dictions—where the parameters extracted from one con-
text (e.g., food choice) can predict decisions in a totally 
different context (e.g., sharing money). This was explic-
itly tested in a recent study. Krajbich and colleagues esti-
mated the parameters of a decision model in a group of 
participants choosing among different foods. These 
parameters were then used to predict the choices of four 
different groups of participants making moral decisions 
about how to share money with an anonymous person 
or to punish others who treated them unfairly. Remark-
ably, the parameters estimated from food choices were 
able to predict moral decisions and response times with 

more than 90% accuracy (Krajbich, Hare, Bartling,  
Morishima, & Fehr, 2015). Thus, initial evidence suggests 
there may indeed be unifying principles of decision mak-
ing that can be captured by formal models and used to 
make out-of-sample predictions. This has clear legal and 
policy implications: If researchers can discover a set of 
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Fig. 1. Formal models of moral decision making. In a study by Crockett, Kurth-Nelson, Siegel, Dayan, and Dolan (2014), participants decided 
whether to gain money by delivering painful electric shocks to either themselves or others. Figure 1a depicts the probability of choosing the more 
harmful option (P(harm)) as a softmax function of its subjective value (V ) relative to a default option. Choice functions are depicted for several 
values of the inverse temperature parameter, β, which determines the noisiness of choices. The subjective value of the more harmful option is 
modeled as a function of the amount of money gained (Δm) and the number of shocks delivered (Δs). The money and shock terms are scaled by 
a harm-aversion parameter (κ) that quantifies the exchange rate between money and pain and takes on different values for pain to self and others 
(κself and κother, respectively). In a study by Hutcherson, Bushong, and Rangel (2015), participants decided how to split a pot of money between 
themselves and others. As illustrated by Figure 1b, choices are made through the noisy accumulation of a relative decision value (RDV), based on 
a weighted sum of the amounts of money for self and other available on each trial. A response occurs when this accumulated value signal crosses 
a threshold, with a response time (RT) equal to the total accumulated time plus a nondecision time (NDT) to account for sensory and motor-related 
processes unrelated to the comparison process itself. Figure 1b was provided by Cendri Hutcherson.

Table 1. Toy Example Illustrating the Relative Predictive 
Power of Descriptive Theories Versus Formal Models

Gamble
Descriptive theory 

prediction
Formal model 

prediction

50% gain $100,  
50% lose $100

Don’t gamble P(gamble) = 0%

50% gain $100,  
50% lose $75

? P(gamble) = 0%

50% gain $100,  
50% lose $50

? P(gamble) = 50%

50% gain $100,  
50% lose $25

? P(gamble) = 100%

Note: Participants are given the option to take a gamble with a 50% 
chance of gaining $100 and a 50% chance of losing some amount. 
The formal model computes the probability of taking the gamble as a 
softmax transformation* of the expected value of the gamble, which is 
equal to the probability-weighted average of the possible outcomes, 
with the negative outcome multiplied by a factor of two (i.e., “bad is 
twice as strong as good”).
*P(gamble) = 1 / (1 + e–βV); β = decision noise parameter (here set to 1); 
V = expected value of gamble.
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parameters that can describe decision making across a 
variety of contexts, these could be used to design incen-
tive schemes that promote moral behavior and discour-
age antisocial behavior.

Practitioners in this area do not claim to have discov-
ered universal parameters that can predict behavior in 
any situation. Rather, it is useful to think of this work as 
uncovering “baseline” parameters capturing the fact that, 
in aggregate, most people will exert a similar amount of 
effort to make decisions that satisfy their current goals 
(Krajbich et  al., 2015). Undoubtedly, situational factors 
such as time pressure or distraction will modulate these 
parameters, and future research can evaluate whether 
they do so in systematic ways. Nevertheless, formal mod-
els provide a common mathematical language that can 
be used to compare decision processes across contexts 
and make out-of-sample predictions.

Formal Models Bridge the Moral Mind 
and Brain

Research on the neural basis of morality has identified a 
network of brain regions that are consistently activated 
during moral judgments and decisions (e.g., FeldmanHall 
et  al., 2012; Greene, 2014a; Shenhav & Greene, 2010). 
Many of these same regions are involved in making deci-
sions about outcomes for oneself, raising the critical 
question of whether there is anything “special” about 
moral decisions relative to other types of decisions  
(Cushman, 2015; Greene, 2014a). Another criticism relates 
to the issue of reverse inference, a logical fallacy where 
psychological processes are inappropriately inferred 
from activity in a particular brain region—for instance, 
when feelings of disgust are inferred from observing 
activity in the insula (Poldrack, 2011). Accordingly, there 
remains a great deal of skepticism as to whether neuro-
science can tell us anything useful about morality, or 
indeed social cognition in general.

Formal models can advance moral neuroscience by 
precisely specifying the computations served by brain 
regions and neuromodulators during moral decision mak-
ing. This mechanistic specificity sidesteps the issue of 
reverse inference and tightens the observed links between 
changes in the brain and changes in behavior. For exam-
ple, the first study examining neuromodulation of moral 
judgments found that pharmacologically enhancing sero-
tonin function reduced the judged permissibility of killing 
one person to save many others (Crockett, Clark, Hauser, 
& Robbins, 2010). The authors speculated that this effect 
reflected a role for serotonin in harm aversion: computing 
the negative utility of harming others. A recent study used 
formal models to test this hypothesis directly and found 
strong evidence that serotonin increases harm aversion 
(Crockett et al., 2015). Notably, the effect of the serotonin 

drug on harm aversion as quantified by the model was 
much stronger than the drug’s previously reported effect 
on moral judgments. Because serotonin is thought to 
modulate value computations (Dayan & Huys, 2009), it is 
appropriate that the drug would more strongly influence 
the model’s estimates of harm aversion—which reflect 
those computations directly—than moral judgments, 
which are thought to be the output of multiple valuation 
systems (Crockett, 2013; Cushman, 2013).

Formal models have also clarified the role of the insula 
in detecting and responding to violations of social norms, 
such as unfair treatment. Initial work in this area pro-
duced inconsistent findings, with some studies showing 
a positive correlation between insula responses and 
unfairness (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 
2003; Tabibnia, Satpute, & Lieberman, 2008) and others 
showing a negative correlation (Dawes et al., 2012; Hsu, 
Anen, & Quartz, 2008; Wright, Symmonds, Fleming, & 
Dolan, 2011). Recent work inspired by computational 
models of learning has helped to resolve this inconsis-
tency by suggesting that being treated unfairly could  
generate a prediction error—that is, a discrepancy 
between expectations and outcomes (Chang & Sanfey, 
2013; Montague & Lohrenz, 2007). These models predict 
that neural responses to unfairness will be sensitive to 
people’s expectations about what is fair, which could 
vary depending on the particulars of an individual exper-
iment and thus potentially explain the discrepant find-
ings across studies. Recent work has tested this explicitly 
by manipulating the average level of fairness experienced 
during the experiment and formally modeling the devel-
opment of fairness expectations over time. In line with 
predictions, insula responses correlated with deviations 
from expected fairness norms (Chang & Sanfey, 2013; 
Xiang, Lohrenz, & Montague, 2013). This work can help 
us to better understand how people learn and use cul-
tural norms to interact appropriately with others.

Because formal models provide a unifying framework 
that connects diverse kinds of decision making (Krajbich 
et  al., 2015), they can be especially useful in address-
ing  the question of whether moral decisions are differ-
ent  from other kinds of decisions. Initial work on this 
topic  has highlighted commonalities between the neu-
ral  networks subserving moral and amoral decisions 
(Hutcherson et al., 2015; Shenhav & Greene, 2010). How-
ever, moral values seem to constrain our behavior in 
ways that other kinds of values do not (Cushman, 2015). 
Resolving this issue will require studies that simultane-
ously investigate the neural basis of moral and amoral 
decisions within a common algorithmic framework. Such 
studies can more directly address whether moral deci-
sions involve computations that are unique to moral cog-
nition, or the same set of computations that are applied 
in decision making more generally (Ruff & Fehr, 2014), 
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and reveal the extent to which moral judgments make use 
of normative (e.g., Bayesian) algorithms (Gerstenberg, 
Goodman, Lagnado, & Tenenbaum, 2015; Kleiman-Weiner, 
Gerstenberg, Levine, & Tenenbaum, 2015).

Conclusion

The Nobel laureate and physicist Richard Feynman 
famously wrote, “What I cannot create, I do not under-
stand” (cf. Agapakis, 2013). Formal models describing 
moral judgment and decision making represent a first step 
toward recreating, and therefore understanding, the cog-
nitive processes that guide moral behavior. Imagine trying 
to program a robot to have humanlike moral values. Such 
a task would be impossible without formal mathematical 
models that describe, in numeric terms, how inputs to 
moral choices are transformed into outputs. Simply pro-
viding the robot with a set of if-then rules tailored to spe-
cific situations would be intractable because the robot 
might find itself in an infinite number of situations.

No single model can provide a definitive and unifying 
mechanism for moral decision making. Nor can the 
parameters derived from a single study serve as the final 
word on the numerical weights that apply to various 
components of moral decisions. Nevertheless, the advan-
tage of formal models is that that they provide a common 
mathematical language that can be used to compare 
effect sizes across studies. As more and more studies 
apply these common frameworks, by aggregating their 
findings we can begin to formulate recipes that describe 
how to combine the ingredients of moral judgments and 
decisions. It may be the case that a relatively small num-
ber of models can capture most aspects of moral judg-
ment and decision making. Alternatively, the richness 
and complexity of human morality may be impossible to 
boil down into a manageable set of mathematical equa-
tions. But we won’t find out unless we try, and we will 
undoubtedly learn a lot in the process.
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Note

1. This effect depends on the relative weighting of payoffs to 
the self and others. When payoffs to others are weighted higher 
than payoffs to the self, selfishness increases when less evi-
dence is required before making a decision.
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