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Researchers are often interested in the existential ques-
tion of whether something exists: Should an effect be 
in a model? Is there an interaction? Are there side effects 
of the drug? One has to assume something exists in 
order to estimate it (and in not estimating other things, 
one presumes that they do not exist). So it would be 
nice to have a measure of evidence for something exist-
ing versus not existing. Significance testing is a tool that 
is commonly used for this purpose; however, nonsig-
nificance is not itself evidence that something does not 
exist. On the other hand, a Bayes factor can provide a 
measure of evidence for a model of something existing 
versus a model of it not existing (Etz & Vandekerckhove, 
2018; Morey, Romeijn, & Rouder, 2016). Thus, evidence 
for existence versus nonexistence is put on a symmetric 
footing. This article gives practical guidance on using 
Bayes factors (readers who have no background in their 
use might find it helpful to first read Dienes, 2014, or 
Dienes & McLatchie, 2018, for an introduction congru-
ent with the approach taken here). After introducing 
the problem of using Bayes factors when there is lim-
ited relevant prior information to inform a model of the 
target effect, I provide a number of heuristics for this 
situation.

A model, as the term is used here, is a representation 
of the predictions of a theory. The model indicates the 
plausibility of different population values of the parameter 

postulated to exist; that is, the model of H1 is a probability 
distribution of these parameter values. The contrast model 
can simply state that the parameter does not exist; this is 
the model of H0. These two models can then be used to 
calculate a Bayes factor, and hence the evidence for one 
model versus the other, which in this case is the evidence 
that something exists versus does not. The effect sizes that 
the theory predicts must be specified in order to construct 
a model of H1. This is what many researchers might find 
difficult. There can be evidence that something does not 
exist only given a claim of how big it could be, if it did 
exist. But how does one know what effect size one’s 
theory predicts?

Data collected to test a theory give information about 
the size of an effect, should it exist. Thus, one might 
be tempted to use the data that are used for testing the 
theory to also specify the effect size predicted. But this 
is double counting, and forbidden by the mathematical 
derivation of a Bayes factor (comment by D. V. Lindley 
in “Discussion of the Paper by Aitkin,” 1991, pp. 130–
131). To put this another way, in order for theory and 
data to be able to clash, the model of H1 should not be 
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constructed from the same information that it is tested 
against. If the same data are used to generate the pre-
dictions of a theory and to test them, the theory cannot 
be severely tested (cf. Popper, 1963). How, then, can 
one determine the range of effect sizes consistent with 
a theory? The bulk of this article describes several heu-
ristics that can be used to constrain predicted effect 
sizes even in the absence of relevant past studies. First, 
though, to provide some background, I give an example 
in which a predicted range of effect sizes is based on 
relevant past research, describe the types of models I 
used for calculating Bayes factors in the examples pre-
sented, and illustrate the general approach using a case 
in which there is no relevant past research.

Example of Relevant Past Research 
Helping to Define the Effect Expected

Cavanagh et al. (2013) found that a 2-week mindfulness-
of-breathing intervention increased mindfulness by 0.2 
Likert rating points on the Five Facet Mindfulness Ques-
tionnaire. Suppose that a researcher decides that it 
would be useful to try as a conceptual replication a 
2-week mindfulness-of-walking intervention, given the 
theory that mindfulness of breathing and of walking 
engage the same process, namely, mindfulness. In her 
sample, she finds that the walking intervention is asso-
ciated with a mean difference (from the control group) 
of 0.1 Likert units on the mindfulness questionnaire. If 
she uses this mean difference obtained from the sample 
as the basis for constructing her model of H1, she has 
double-counted it: first for forming the model’s predic-
tions and then again for testing them. Choosing the 
predicted mean effect in the model of H1 to be the same 
as the data’s mean results in a pseudo-Bayes factor and 
puts the theory at least risk of being shown to be 
wrong.

Instead, the researcher could use the theory that 
mindfulness interventions focusing on breathing and 
focusing on walking promote mindfulness in the same 
way (they are both examples of mindfulness training). 
She could then use the past study on mindfulness of 
breathing to predict the effect size for the mindfulness-
of-walking study. Note that the theory that two things 
belong to the same class does the work in making that 
prediction. Hence, the theory can take credit (or blame) 
in light of the evidence for this H1 versus H0; in other 
words, the theory can be tested. In general, an impor-
tant question is when a theory can take credit for the 
results of a test of a particular model of H1. A common 
case is precisely the one illustrated here: A theory can 
take credit (or blame) when the theory claims that two 
things belong to the same class, and that claim is used 
to construct H1. But often one does not know what 

prior studies are relevant, or thinks none are. How does 
one construct a model of H1 then? This is the problem 
I address in this article. Before presenting several heu-
ristics for dealing with this problem, I first describe the 
sort of models of H1 I use in discussing those heuristics 
and then consider an example of the approach.

Models

To simplify discussion, I primarily use a model of H1 
that is very commonly used for constructing Bayes fac-
tors. This model consists of a distribution centered on 
zero, and the problem is to determine the approximate 
size of effect predicted, that is, the distribution’s scale 
factor; half of the distribution (below 0) may be 
removed to represent a theory making a directional 
prediction (given that the predicted direction has been 
defined as positive). The mode of the distribution is set 
at zero in order to represent in a simple way that 
smaller effect sizes are more probable than larger ones; 
this approach can be useful given a literature that habit-
ually overestimates effect sizes.

In this article, I use mostly a half-normal distribution, 
and the problem is to determine its standard deviation 
(see, e.g., Dickey, 1973; Dienes & McLatchie, 2018). The 
standard deviation is set to the rough scale of the effect 
expected. Thus, the problem of specifying the model 
of H1 reduces to specifying the effect size expected. I 
notate a Bayes factor based on a half-normal distribu-
tion with a mode of 0 and a standard deviation of r as 
BFHN(0,r). I have made available online a calculator 
(Dienes, 2008, 2018) that can be used with this model 
of H1; to obtain the Bayes factor, one needs only to add 
the observed effect size and its standard error. Another 
commonly used distribution is the Cauchy (or half-
Cauchy) distribution (used in JASP: Rouder, Speckman, 
Sun, Morey, & Iverson, 2009; van Doorn et al., 2019); 
again, to obtain a Bayes factor given this distribution, 
one needs to set its scale factor, that is, to determine 
the rough scale of the effect expected. I notate a Bayes 
factor based on a Cauchy distribution with a mode of 
0 and a scale factor of d as BFC(0,d). For convenience, I 
use the term scale factor to refer to both the scale factor 
of a Cauchy distribution and the standard deviation of 
a normal distribution.. For the same scale factor, the 
normal and the Cauchy distributions give very similar 
Bayes factors, though the Cauchy slightly favors H0 
more than the normal distribution does (Dienes, 2017a; 
see Box 1 for further discussion on using the Cauchy 
vs. the normal distribution). None of these models may 
be appropriate in any given case (e.g., see Dienes, 
2014; Gronau, Ly, & Wagenmakers, 2019); however, 
they are good enough approximations sufficiently often 
that they serve as good vehicles for discussing the 
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heuristics this article focuses on (see Dienes & 
McLatchie, 2018, and Rouder et al., 2009, for justifica-
tions of these models).

For the sake of discussion, in this article I treat a 
Bayes factor greater than 3 as good enough evidence 
for H1 over H0, a Bayes factor less than 1/3 as good 
enough evidence for H0 over H1, and a Bayes factor 
between those values as being nonevidential (cf. 
Jeffreys, 1939). However, there are no real cutoffs; these 
are just rough guidelines adopted because in practice 
decisions often have to be made. Further, we as a com-
munity may (and I think should) decide that cutoffs of 
3 and 1/3 are not good enough for many scientific 
problems: Schönbrodt, Wagenmakers, Zehetleitner, and 
Perugini (2017) recommended a cutoff of at least 5 (or 
1/5); the cutoff for Cortex’s (2019) Registered Reports 
is 6 (or 1/6); and Benjamin et al. (2018) recommended 
20 (or 1/20) for one-off studies. The results of the 
Bayesian approach and significance testing can be 
aligned as best as possible (even though there is no 
monotonic transformation between Bayes factors and 
p values) by using a cutoff of 3 for Bayes factors if .05 
is the cutoff for significance, by using a cutoff of 6 for 
Bayes factors if .02 is the cutoff for significance, and 
by using a cutoff of 20 for Bayes factors if .005 is the 
cutoff for significance.

Example of Defining the Predicted 
Effect When There Is No Relevant  
Past Research

Now consider an example in which there is no relevant 
past research on which to base the model of H1. Theory 
A claims that autistic subjects will perform worse on a 
novel task than control subjects will. Theory B claims 
that the two groups will perform the same. Chance 

performance on the task (i.e., baseline) is 0%, and the 
maximum score is 50%. The autistic group (n = 30) 
scores 8% above baseline (SE = 6%), and the control 
group (n = 30) scores 10% above baseline (SE = 5%). 
The difference between the groups (2%) is nonsignifi-
cant, t(58) = 0.25, p = .80, Cohen’s d = 0.05. One reac-
tion to this result might be that the nonsignificance 
means Theory B is supported. But a nonsignificant 
result does not distinguish between evidence for H0 
over H1 and the lack of much evidence either way. To 
know if there is evidence for H0 over H1, we need to 
know the size of the effect we could be trying to pick 
up. In other words, how should we model H1?

One temptation might be to use a default model of 
H1, for example, the model JASP gives by default for a 
t test (i.e., a Cauchy distribution with a scale factor of 
0.7 Cohen’s d units). The resultant JZS Bayes factor, 
BFC(0,0.7 Cohen’s d units), is 0.27. On the face of it, we have 
evidence for Theory B, because the Bayes factor is less 
than 1/3. But there is no such thing as a default theory, 
so there cannot be a default model of H1 (Etz, Haaf, 
Rouder, & Vandekerckhove, 2018; Lee & Vanpaemel, 
2018; Rouder, Morey, Verhagen, Province, & Wagenmakers, 
2016; see Box 2 for further discussion in the broader 
context of using raw vs. standardized effect sizes). In 
fact, the data themselves indicate that it is too rash to 
conclude that there is good evidence for Theory B over 
Theory A. The control group scored 10%, so given 
Theory A, which says the autistic group will perform 
somewhere between the control group’s level and 0, 
the difference between the autistic and the control 
groups cannot be more than about 10%. Modeling H1 
as a half-normal distribution with a standard deviation 
of 5% (i.e., maximum/2) results in BFHN(0,5%) = 0.94: 
Thus, there is no evidence one way or the other. This 
is clearly a reasonable conclusion because the standard 

Box 1. Normal Versus Cauchy Distributions for Bayes Factors

Sometimes models of H1 employ a Cauchy distribution (e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009); sometimes 
they employ a normal distribution (Dienes & McLatchie, 2018). The function of the model of H1 is to represent the predictions 
of a theory simply and adequately. What about the normal and Cauchy distributions is important in distinguishing them for 
constructing models of H1? Consider models in which the mode of these distributions is set to be zero. About 5% of the area 
of a normal (or half-normal) distribution is more than 2 standard deviations beyond the mode, so 2 standard deviations is 
a rough maximum for a normal distribution. About 5% of the area of a Cauchy (or half-Cauchy) distribution is more than 7 
scale factors beyond the mode, so about 7 scale factors is a rough maximum for a Cauchy distribution. Turning this around, 
if a researcher has a reason for setting the rough plausible maximum effect that could be obtained (max), then the standard 
deviation in a half-normal distribution should be set as max/2 (Dienes, 2014). However, if the researcher is using a Cauchy 
distribution, the scale factor should be set to max/7. Whether one chooses to use a normal or Cauchy distribution for modeling 
H1 depends on the scientific case for the relation between the expected value and the maximum value. In the absence of 
any information about this relation, the half-normal distribution should be used, because it spreads out the uncertainty to 
represent that lack of information. If there is some information indicating that the effect size would be small relative to the 
maximum (roughly 1/10th to 1/5th the maximum), the half-Cauchy distribution should be used. (See note 2 for an example 
comparing the half-Cauchy and the half-normal distributions.) I use the half-normal distribution primarily, because this does 
not assume additional information restricting the expected size of the effect.
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error of the difference between the groups is 7.8%, 
about as big as the maximum possible difference. There 
cannot be evidence for or against a difference in the 
population if the standard error of the sample differ-
ence is as large as the maximum plausible difference. 
One can think of this as a floor effect on the difference 
score: If the maximum plausible difference indicates 
that the sample difference cannot be greater than the 
standard error of the sample difference, there is a floor 
effect.

Notice that the control group’s mean was used to 
inform the maximum plausible difference between the 
autistic and control groups. How does this relate to the 
principle, stated earlier, that the mean difference in the 
data cannot be used to predict the same mean differ-
ence? In this case, the information used to determine 
the maximum plausible difference was not exactly the 
information that was tested (though they were corre-
lated). The information used constrained inference in 
a plausible way: A floor effect appropriately rendered 
the data nonevidential (see Fig. 1a). Further, if there 
had been no floor effect, using the control group to 
define a maximum difference would have given full 
scope for either theory to clash with the data (i.e., to 
be shown to be wrong): If the standard error of the 
difference between the groups had been small, similar 
performance of the autistic and control groups would 
have been evidence refuting Theory A (see Fig. 1b), 
and near-chance performance of the autistic group 
would have been evidence refuting Theory B (see Fig. 
1c). Thus, we have cheated information out of the data 
in a useful way that does not impair theory testing. That 

is, this procedure can provide what Popper (1963) 
called a severe test of relevant theories. A severe test 
is one in which a theory is made to “stick its neck out”; 
if the theory is wrong, it can easily be found to be 
wrong.

The Heuristics

In the following sections, I generalize these consider-
ations and present a set of heuristics for obtaining a 
ballpark estimate for a reasonable predicted effect size. 
For each Bayes factor, I present a robustness region, 
notated as “RR [min, max],” where min is the minimum 
scale factor that leads to the same qualitative conclusion 
(i.e., good evidence for H1 over H0 if BF > 3; good 
evidence for H0 over H1 if BF < 1/3; and not much 
evidence at all otherwise), and max is the maximum 
scale factor that leads to the same conclusion1 (see Box 
3). (If the conclusion is that there is not much evidence 
at all, min will always be 0, and if the conclusion is that 
there is good evidence for H0 over H1, max will always 
be infinity. If a scale has a maximum, the maximum 
difference possible for the study is the scale’s maxi-
mum; if, for example, the scale is from 0 to 7 and the 
maximum for a Bayes factor to be consistent with a 
given evidential standard exceeds 7, one could notate 
the maximum difference in the robustness region as  
“> 7.”) None of the heuristics are guaranteed to produce 
sensible answers in context; scientific judgment is 
always needed for all aspects of model building. None-
theless, a heuristic can do its job merely if it puts one 
in the right ballpark; if the robustness region is about 

Box 2. Raw Versus Standardized Effect Sizes

It may be tempting to believe that it is easier to set an expected effect size for a theory using standardized rather than raw 
effect sizes. Standardized effect sizes, such as Cohen’s d, remove the units of measurement (seconds, Likert units, etc.), and  
so render the units irrelevant. It may seem that this means there is less to think about and that the problem is therefore easier. 
However, standardized effect sizes are signal-to-noise ratios, and theories and practical claims are usually about signals, and 
not the noise through which they are measured. A slimming regimen is effective if it produces the loss of a certain number 
of kilograms, on average, regardless of the random error in the scales. In fact, focusing on standardized effect sizes can lead 
to misleading conclusions. If one is motivated to conclude that an effect does not exist, one could measure it with only a few 
trials, so that the population standardized effect size over subjects will be small (for an example, see Minutes 24 through 30 
in Dienes, 2017b).

The advantage of using raw effect sizes is illustrated also by the autism example in the text. The default Bayes factor was 
not reasonable in this example because a Cohen’s d of 0.7 would correspond to a raw difference of 19%. So the default model 
of H1 would predict an effect of around 19%, though possibly as large as 133% (19% × 7; see Box 1). This would clearly be 
unreasonable for this study, a fact made clear by realizing what raw effect sizes are implied by the model.

When effect sizes are considered in raw units, they are often easier to evaluate (Baguley, 2009). The greater ease of 
working with raw rather than standardized units (though perhaps counterintuitive) is a point that this article builds on. For 
example, the ratio-of-scales heuristic and ratio-of-means heuristic illustrate how thinking in terms of raw regression slopes 
can be easier than thinking in terms of Pearson correlation coefficients. More generally, if we care about the units in which 
we measure things (which as scientists we should), a corollary is that we should learn to think in those units and not throw 
them away the first chance we get. Because testing existential claims requires scientific judgment about the sizes of the effects 
that might be obtained, such testing is at least as much a matter of science as of statistics.
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the width of the ballpark (in particular, if the range of 
scientifically plausible scale factors is contained within 
the robustness region), then the conclusion is safe. A 
heuristic will often also help a researcher see what 
range of scale factors is scientifically plausible, as I 
show later. In the current example, the robustness 
region for a half-normal distribution model of H1 is 
RR1/3<BF<3 [0, 28%]. That spans the whole ballpark (a 
standard deviation of 28% corresponds to a plausible 
maximum difference of 56%), so the conclusion that 
there is no evidence one way or the other is safe. Recall 
that the scale factor is the key aspect of the model, 

indicating roughly how big the population difference 
between autistic and nonautistic individuals is; a given 
scale factor indicates that a plausible population differ-
ence lies between 0 and about twice that scale factor 
(for a normal or half-normal distribution).

Now I discuss each of the heuristics in turn: the 
room-to-move heuristic, the ratio-of-scales heuristic, the 
ratio-of-means heuristic, the basic-effect heuristic, and 
finally, the total-effect heuristic for mediation.

The room-to-move heuristic

The hypothetical example of autistic and control groups’ 
performance on a novel task illustrates the heuristic of 
using one condition to define the rough maximum dif-
ference that could be obtained between conditions: The 
one condition shows how much room there is for the 
other condition to move in order to satisfy the con-
straints of the theory. For a real example, consider the 
theory that people pursue relationships to obtain a mix 
of eroticism and nurturance. In a polyamorous relation-
ship, one can have different partners for different 
needs; thus, the partners in a polyamorous relationship 
might satisfy the particular needs they are assigned to 
better than would the partner in a monogamous rela-
tionship, in which one partner has to satisfy all needs. 
Balzarini, Dharma, Muise, and Kohut (2019) investi-
gated the relative quality of polyamorous and monoga-
mous relationships. On a scale from 1 to 7, people in 
monogamous relationships rated their partner’s nurtur-
ance as 5.85. In the subset of polyamorous people who 
were without a self-defined primary partner, when rela-
tionship length was controlled for, the mean nurturance 
rating for the partner they mainly lived with was 5.80. 
The standard error of the difference between the two 
groups was 0.11, and the difference between the groups 
was not significant according to a t test, t(≈2500) = 0.42 
(see Table 5 of Balzarini et al.).

But, again, nonsignificance does not mean there is 
evidence for no difference. To define the evidence, the 
scale of the effect predicted by H1 needs to be deter-
mined. How should H1 be modeled? Given the monoga-
mous group’s ratings, how different could the 
polyamorous group’s ratings be? The monogamous 
group rated their partner’s nurturance as 5.85, on aver-
age, and the top of the scale was 7, so the maximum 
possible positive difference was about 1.15 units (see 
Fig. 2); in other words, 1.15 units was the room to move 
for the polyamorous group. So, to model H1 using the 
room-to-move heuristic, we can use a half-normal dis-
tribution with a standard deviation of 0.58 rating units (i.e., 
maximum/2). The resulting Bayes factor indicates that the 
data provide evidence for H0 over H1, BFHN(0,0.58) = 0.13, 
RRBF<1/3 [0.22, > 6].

a
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c

Autistic Group

SE of the
Difference

SE of the
Difference

SE of the
Difference

Maximum
Difference

Maximum
Difference

Control Group

Maximum
Difference
Between

the Control
and Autistic

Groups

Control Group

Autistic Group Control Group

Fig. 1. Using the control group’s mean to define the maximum 
plausible difference between the autistic group and control group. 
If this procedure shows that there is an effective floor effect (a), in 
the sense that the observed standard error of the difference between 
the groups is as large as any difference that could be expected, the 
results are nonevidential, as no sample difference can be far enough 
away from the floor defined by the standard error of the difference. 
However, if the standard error of the difference is small enough, the 
actual difference between groups can strongly count against either 
a theory that predicted a difference (b) or a theory that predicted no 
difference (c): Theory can still clash with the data.
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We can assess the robustness of this conclusion by 
taking into account information from the other poly-
amorous couples in the study, that is, those with defined 
primary and secondary partners. These polyamorous 
couples’ ratings of the nurturance of the partner they 
mostly lived with were 0.57 units higher, on average 
(SE = 0.10), than the monogamous couples’ ratings of 
their partners. Thus, 0.57 is a more informed estimate 
of the sort of difference that could be expected. This 

value is very similar to the value derived by applying 
the room-to-move heuristic to the ratings of the monog-
amous couples (a similarity that cannot in general be 
guaranteed) and is well within the robustness region.

Why not take the polyamorous group’s mean as 
given and see how much room there was for the 
monogamous group’s ratings to be lower than that? In 
that case, the room to move would have been about 
4.85 (from 5.85 to the bottom of the scale, 1), and that 

Box 3. Robustness Checking

For all statistical analyses, including those using Bayes factors, it is worth considering how robust conclusions are to reasonable 
changes in assumptions. When Bayes factors are used to test a theory, the model of H1 represents the predictions of the 
theory. But there could be several equally good ways of modeling H1 to represent the same theory. Thus, a conclusion would 
be robust only if most of the models would lead to the same qualitative conclusion.

In previous work (Dienes, 2015, Appendix 12.1), I used different distributions (uniform vs. normal vs. half-normal) 
to show that the precise shape of the distribution can make little difference to conclusions in individual cases when the 
distributions represent roughly the same scientific assumptions. Given just one form of distribution, such as a half-normal, 
the conclusion is robust if the range of scale factors (standard deviations) leading to the same qualitative conclusion roughly 
spans or contains the range of scientifically plausible values. JASP produces a graph showing the Bayes factor for different 
scale factors. In interpreting this graph, the issue is not whether all the Bayes factors agree in the conclusion implied, but 
rather whether the range of scientifically plausible scale factors is roughly contained in a range of scale factors that lead to the 
same conclusion. This notion is formalized in the robustness region, which is a type of minimultiverse (Steegen, Tuerlinckx, 
Gelman, & Vanpaemel, 2016). There are no precise rules yet to say how robust is robust enough, and probably there should 
not be. But if the robustness region is always provided, readers can determine if it contains their preferred rough scale factor. 
If a conclusion is not robust enough, in principle more data can be collected until it is more robust. With Bayes factors, it is 
fine to continue collecting data until the evidence is good enough (Rouder, 2014, 2019). The robustness regions in this article 
were calculated by iteratively entering different scale factors in my Bayes factor calculator (Dienes, 2008, 2018) until the limits 
of good-enough evidence were reached (cf. McLatchie, 2018).

One way to ensure some robustness is to use a stopping rule for achieving a degree of evidence that clearly exceeds what 
is taken to be good enough. For example, one may run subjects until the Bayes factor is greater than 10 or less than 1/10, 
and then report the robustness region with respect to cutoffs of 5 and 1/5.

Monogamous
Group

Room to Move

7

6

5

4

3

2

1
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d 
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rtu
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Maximum Possible 
Rating

Fig. 2. Calculating the room to move. In the study by Balzarini, Dharma, Muise, and 
Kohut (2019), the monogamous group rated their partner’s nurturance as 5.85, on aver-
age, and 7 was the top of the scale. Therefore, when polyamorous people without a 
self-defined primary partner rated a partner’s nurturance, their ratings could not be 
more than 1.15 units higher than those of the monogamous group; in other words, the 
polyamorous group had 1.15 units of room to move. Thus, the data from one group can 
provide constraints on the difference between groups. This is the concept underlying 
the room-to-move heuristic.
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could in principle have made a difference in the con-
clusion drawn (though, in fact, it did not in this case). 
It is best to choose the direction that gives the smallest 
room to move, because that will show up any floor or 
ceiling effects. So in this case, it was justified to use the 
monogamous group’s data to set the room to move.

The room-to-move heuristic is based on a point esti-
mate from one group. For example, we have assumed 
that 5.85 is a reasonably precise estimate of the nurtur-
ance of the monogamous group’s partners. This 
approach has the advantage of simplicity, but it also 
disregards the uncertainty in the estimate. In this case, 
the standard error of the estimate is 0.03 nurturance 
units, so the estimate is precise enough. The function 
of the heuristic is to put us in the right ballpark; the 
question then is the width of the robustness region. 
The robustness region in this case includes all reason-
able rooms to move.

In order to analyze interactions, Gallistel (2009) sug-
gested taking a key simple effect as the maximum size 
the difference in simple effects could be, that is, as the 
maximum size of the interaction (see also Dienes, 
2014). This idea constitutes applying the room-to-move 
heuristic to an interaction effect. For example, Raz, 
Shapiro, Fan, and Posner (2002) tested highly hypnotiz-
able people on the Stroop task, either after giving them 
no suggestion or after giving them a suggestion that 
the words on the screen were written in a meaningless 
foreign script. The suggestion reduced the Stroop inter-
ference effect. As this was the first time the study was 
run, there was no prior information about how effective 
the suggestion should be. In the no-suggestion condi-
tion, Raz et al. found that response times for incongru-
ent and neutral words were 860 ms and 748 ms, 
respectively. In the suggestion condition, the corre-
sponding response times were 669 and 671 ms. In the 
no-suggestion condition, the interference effect was 112 
ms (860 ms – 748 ms). That is the simple effect of word 
type for the no-suggestion condition. In the suggestion 
condition, the interference effect was –2 ms (669 – 671). 
That is the simple effect of word type for the suggestion 
condition.

Given that the interference effect was 112 ms in the 
no-suggestion condition, the most suggestion could 
plausibly have reduced interference was about 112 ms. 
That is the only room in which the effect could move. 
Therefore, we can model the H1 for the interaction of 
word type and suggestion as a half-normal distribution 
(a directional distribution because suggestion should 
reduce, not increase, the interference effect) with a 
standard deviation of 56 ms (i.e., maximum/2 = 112/2). 
So we have predicted the size of the effect. In fact, the 
raw interaction effect was 114 ms (112 – –2 ms). Now 
we need to find the standard error of the effect: Raz 

et al.’s reported interaction test was F(1, 30) = 29.35, 
which corresponds to t(30) = √29.35 = 5.42. Therefore, 
the standard error for the interaction, calculated by 
dividing the raw effect size by the obtained t, was 21 
ms (114 ms/5.42). The Bayes factor obtained with the 
Dienes (2008, 2018) calculator, BFHN(0,56), is 2.86 × 105, 
RRBF>3 [4.3, 4 × 104]. Thus, the data provide evidence 
that the suggestion reduced Stroop interference, as the 
robustness region contains all remotely plausible scale 
factors. (In fact, a meta-analysis by Parris, Dienes, & 
Hodgson, 2013, indicated that the suggestion roughly 
halves the interference effect, so the model of H1 based 
on past data that my lab now preregisters is precisely 
also the model that would be given by the room-to-
move heuristic—e.g., Palfi, Parris, McLatchie, Kekecs, 
& Dienes, 2018). Note here the advantage of using raw 
units, milliseconds. If fewer trials of the Stroop test were 
run, the expected standardized effect size would 
change, but the fact that the effect of suggestion is 
approximately to halve the raw interference effect 
would remain invariant.

The ratio-of-scales heuristic

The ratio-of-scales heuristic may be useful when cor-
relating variables or regressing one variable on another. 
The task is to determine if a simple version of a theory 
can be tested by making a correspondence between 
two low points on the scales and two high points. 
Notice that the task is not to determine the spread of 
the data for each variable, but rather to determine what 
a simple theory would predict given the meaning of 
the scale points.

For an illustrative example, consider a study by Lush 
et al (2019), in which people estimated the time when 
a tone occurred. In fact, the tone sounded 250 ms after 
a button press. Application of Bayesian cue-combination 
theory to time estimation suggests that in this paradigm, 
the experienced time of the tone should be pulled 
toward that of the button press in proportion to the 
observer’s relative precision, which was measured on 
a scale from 0% to 100%. One way to test the theory 
would be to determine if the shift in the estimated time 
of the tone correlated with subjects’ relative precision: 
The theory predicts that the higher the precision, the 
greater the shift. What size correlation could we expect? 
.2? .6? .8? Who knows? If we think in terms of raw units, 
prediction becomes easier. The maximum possible shift 
in timing was all the way over to the button press, that 
is, a shift of 250 ms. In the simplest version of the 
theory, this is what would happen in the case of sub-
jects with relative precision of 100%, and there would 
be no shift among subjects with relative precision of 
0%. So the raw slope of shift against precision in this 
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case is the length of the scale for shift (250 – 0 ms) 
divided by the length of the scale for precision (100% – 
0%), that is, 2.5 ms per percent, the ratio of the scales 
(see Fig. 3). This is the maximum slope that would 
occur if the only mechanism was the one postulated 
and it operated with complete effectiveness. Thus, the 
ratio-of-scales heuristic gives the maximum slope that 
could be expected. Hence, we can model H1 for the 
raw regression slope with a half-normal distribution 
with a standard deviation of 1.25 ms per percent 
(2.5/2).2 In fact, Lush et al. obtained a raw regression 
slope of 0.59 ms per percent (SE = 0.26), t(68) = 2.23, 
p = .029, BFHN(0,1.25) = 4.74, RRBF>3 [0.16, 2.1]. The robust-
ness region ranges from very small to almost the maxi-
mum slope plausible, so the evidence for there being 
a slope is robust to the value of the scale factor in this 
case.

On the basis of construal theory, Monin, Levy, and 
Kane (2017) predicted that women who were high in 
marital satisfaction—but not men and women low in 
marital satisfaction and men high in marital satisfaction—
would experience more distress on days when they 
perceived their partner as experiencing more suffering. 
The dependent variable was how distressing it was to 
see the partner suffering, measured on a scale from 1 
(not at all stressful) to 4 (very stressful). The indepen-
dent variable was perceived physical suffering of the 
partner on a scale from 1 (did not suffer) to 10 (suffered 
terribly). If distress increased with perceived suffering 
in a simple way, and subjects used most of the scale 
points a fair amount of the time, they would report no 
suffering on days they reported no distress; that is, the 
line for the relationship between distress and suffering 
would start at (1,1). In addition, terrible suffering would 
go with the most distress, so the line would go through 

(10,4). A first approximation of the line’s slope would 
be calculated as (4 – 1)/(10 – 1), indicating an increase 
of 0.33 distress units per suffering unit. But any variable 
that affected distress independently of suffering would 
reduce the relationship.

Applying the ratio-of-scales heuristic, we can treat 
the ratio of the scales’ ranges as a rough maximum. 
That is, we can model the H1 for the relation of distress 
to suffering as a half-normal distribution with a stan-
dard deviation of 0.17 (half the maximum). Monin et al. 
(2017) believed that the relationship between marital 
distress and partner suffering would hold well for part-
ners with high marital satisfaction but not for those with 
low satisfaction.3 The observed slope for high-satisfaction 
males was 0.03 distress units per suffering unit (esti-
mated from the authors’ graph), SE = 0.02. The Bayes 
factor indicates that the data are nonevidential, 
BFHN(0,0.17) = 0.66, RR1/3<BF<3 [0, 0.35]. The maximum scale 
factor in the robustness region is high given that the 
plausible maximum is around 0.33, so the conclusion 
that the data are nonevidential is robust. Therefore, the 
authors’ conclusion that “men who were high in marital 
satisfaction experienced heightened daily distress irre-
spective of their perceptions of level of spousal suffer-
ing” (p. 383) is not supported if “irrespective” is read 
as meaning that in this group, daily distress had no 
relation to perceived suffering.

The ratio-of-means heuristic

Some scales, for example, reaction times or d′ (discrimi-
nation), have no obvious high point to relate to a high 
point of another variable. It may be difficult theoreti-
cally to fix an a priori plausible correspondence 
between two scales when one (or both) lacks such a 
high point. In these cases, the ratio-of-means heuristic 
can be helpful. For example, Salvador et  al. (2018) 
regressed a measure of thought suppression (difference 
between conditions in percentage correct) against abil-
ity to discriminate whether a no-think cue was present 
(d′); the latter measure was taken to be a measure of 
conscious perception. The raw slope was –5.7% per d′ 
unit,4 t(42) = 0.77, p = .45, “indicating that people’s 
ability to discriminate masked cues did not predict their 
[thought suppression]” (pp. 194–195), and that thought 
suppression was triggered unconsciously.

However, the nonsignificant result does not justify 
the conclusion of no relation between thought suppres-
sion and conscious perception. (There are arguments 
against first-order d′ being a valid measure of conscious 
perception—see Dienes & Seth, 2018; but the authors’ 
assumptions can be accepted for the sake of determin-
ing what tests would be relevant for those assump-
tions.) What strength of relation could be predicted if 
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Fig. 3. Illustration of the ratio-of-scales heuristic for regression (or 
correlation). The maximum slope predicted by the theory tested in 
Lush et al. (2019) is the ratio of the lengths of the two scales, that 
is, 250 ms divided by 100%, or 2.5 ms per percent.
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both measures depended on conscious perception of 
the cue? Given that d′ goes from 0 to infinity, what high 
level of d′ should correspond to a high degree of 
thought suppression? The ratio-of-scales heuristic is 
hard to apply in this case. But we may use a ratio-of-
means heuristic, which is akin to applying the room-
to-move heuristic to each variable. The theory that 
mean thought suppression and d′ both depend on a 
single knowledge base (e.g., conscious perception) 
predicts that they should go to zero together (see Fig. 
4). Thus, the slope for their relation should be the ratio 
of their means, 6%/0.35, or 17% per d′ unit. This is a 
maximum because it assumes that all systematic vari-
ance is due to conscious knowledge. Thus, we can 
model H1 as a half-normal distribution with a standard 
deviation of 8.5% per d′ unit (17%/2). With these 
assumptions, the Bayes factor, BFHN(0,8.5), is 0.43, 
RR1/3<BF<3 [0, 12], and the data are nonevidential. The 
robustness region reaches a moderately high value of 
the slope (given an estimated maximum of 17), so the 
conclusion that there is not enough evidence is some-
what robust to the scale factor.5

The basic-effect heuristic

One can often take the size of a basic effect as a rough 
scale for how much that effect could be manipulated. 
This approach can often by useful for analysis of vari-
ance. Martin and I (Martin & Dienes, 2019) used this 
principle to test whether different types of hypnotic 
induction were differentially effective in changing 
response to suggestion. If people were given 10 hyp-
notic suggestions, and coded as having passed or failed 
each suggestion (i.e., as having sufficiently experienced 
the suggested effect or not), would different inductions 
have different pass rates? The bigger the effect any 

induction has on response, the more inductions may 
differ among themselves in the magnitude of their 
effects, much as adult shoe sizes differ more among 
themselves than baby shoe sizes do. Therefore, the 
scale factor for the model of H1 for the difference 
between different inductions was set as the difference 
between no induction and the standard induction. A 
standard hypnotic induction increases the pass rate by 
1.46 suggestions out of 10, so that was set as the scale 
factor for the difference between different inductions. 
An indirect induction had been argued to be especially 
powerful, and we tested that claim. Past research 
showed a difference between standard and indirect 
inductions of 0.01 passes (SE = 0.25). The resultant 
Bayes factor, BFHN(0,1.46), was 0.20, RRBF<1/3 [0.9, > 10]. 
Thus, the data provide evidence that the effect of an 
indirect induction is not different from the effect of a 
standard induction, on average.

Ziori and I (Ziori & Dienes, 2015) investigated how 
gender and attractiveness of facial stimuli may affect 
implicit learning of sequences of those stimuli. The 
average level of implicit learning, that is, the average 
increase in accuracy above baseline after training (6%), 
was taken as a rough scale by which that effect could 
be modulated by the manipulations, and was used as 
the scaling factor for all effects in the three-way 2 ×  
2 × 2 analysis of variance (every effect with 1 degree 
of freedom, whether a main effect, interaction, or sim-
ple effect, can be expressed as a contrast in raw units). 
In another study (Caspar, Desantis, Dienes, Cleeremans, 
& Haggard, 2016), my colleagues and I used the height 
of an event-related potential component as the maxi-
mum that the component could be modulated (on the 
basis of past experience with how much such compo-
nents are typically modulated).

One could broaden this heuristic further to a 
reference-effect heuristic, whereby the size of one 
effect (perhaps multiplied by a constant) is used as a 
basis for the expected size of another effect (cf. Palfi 
et al., 2018). For example, in a functional MRI study, 
one could use a standard contrast to define the effect 
expected for a contrast of interest. In a subliminal-
perception experiment, one can test if the level of con-
scious perception is at chance only if one knows how 
much conscious perception would be expected. Thus, 
the level of conscious perception that leads to a given 
level of priming in a conscious condition could provide 
the expected level of conscious perception that would 
lead to the same level of priming when the stimuli are 
presented in a potentially subliminal manner (if priming 
were actually based on conscious perception; Dienes, 
2015). If a previous experiment used response times 
and the current study is using d′, there may be a stan-
dard effect that could be used to convert response times 
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Fig. 4. Illustration of the ratio-of-means heuristic. For these imagi-
nary data points, let the rectangle mark the mean level of thought 
suppression and mean level of d′. The theory that both variables 
depend on a single knowledge base predicts that they should go to 
zero together, so the expected slope is the ratio of the means. The 
y-axis variable is the difference in percentage correct between two 
conditions, so it has a true zero; d′ has a true zero when discrimina-
tion is at chance.
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to d′ (cf. Dienes, 2014, Supplementary Material, Appen-
dix 1, Section 2).

The total-effect heuristic for mediation

In a mediation analysis, one might want to know 
whether the effect of X on Y is mediated completely, 
partially, or not at all by M (see Fig. 5). In frequentist 
methods, evidence for some mediation is provided if 
the first and second indirect effects are both significant 
(the method of joint significance; e.g., Woody, 2011). 
Recently, Yzerbyt, Muller, Batailler, and Judd (2018) 
argued that this method should be preferred to the 
currently more common use of a single index of the 
indirect effect. Whichever approach is used, the main 
problem for frequentist methods arises in trying to 
determine if there is evidence for full mediation or no 
mediation, because each of those claims depends on 
evidence for an H0. This problem can be solved by 
rephrasing the method of joint significance in terms of 
Bayes factors (see Nuijten, Wetzels, Matzke, Dolan, & 
Wagenmakers, 2015, for a different approach). Conclu-
sions regarding the indirect effect can be based on the 
Bayes factors for the individual (first and second) indi-
rect effects: (a) If the Bayes factor for either individual 
indirect effect is less than 1/3, then there is evidence 
for no mediation; (b) if the Bayes factor for both indi-
vidual indirect effects is greater than 3, then there is at 
least partial mediation; and (c) if one Bayes factor is 
insensitive and the other is greater than 1/3, then there 
is no evidence either way. Because these indirect effects 
are tested using regressions, the ratio-of-scales or ratio-
of-means heuristic may provide a model of H1.

Now take the case of testing for full mediation. 
Assume that there is evidence for an indirect effect. Full 
mediation can then be tested using the Bayes factor for 
the direct effect: (a) If the Bayes factor is greater than 
3, then there is not full mediation; (b) if it is less than 

1/3, then there is full mediation; and (c) if it is between 
1/3 and 3, then there is no evidence either way about 
full mediation. To test the evidence for a direct effect, 
there is a simple heuristic that can be used. Mathemati-
cally, the total effect is the sum of the direct effect and 
the indirect effect. Thus, one possible theory is that the 
total effect is the maximum that could be expected for 
the direct effect.6 To test this theory, we can model H1 
for the direct effect using the uniform distribution [0, 
total effect]. This is the total-effect heuristic. (We use a 
uniform distribution in this case because there is typi-
cally no reason to expect that the direct effect will be 
closer to 0 than to the total effect or vice versa.)

Consider a study in which openness to experience 
(X) is used to predict relationship satisfaction (Y), with 
richness of fantasies as a mediator (M); all three variables 
are rated on Likert scales. The total effect is 0.10 Likert 
unit of Y per Likert unit of X (SE = 0.02), t(450) = 5.00, 
p < .001 (i.e., X predicts Y), and the direct effect (i.e., 
with M partialed out) is 0.04 (SE = 0.03), t(450) = 1.33, 
p = .18. A typical but incorrect temptation is to conclude 
that the significant total effect and nonsignificant direct 
effect mean there is complete mediation: Openness to 
experience increases relationship satisfaction only via 
increasing the richness of fantasies. Indeed, not only is 
the direct effect nonsignificant, but also the JZS default 
Bayes factor for the direct effect, BFC(0,.35) = 0.11, indi-
cates there is evidence for H0 and seems to confirm the 
claim of complete mediation. But the default scale fac-
tor, r = .35, is arbitrary. The maximum that the direct 
effect could be (given the theory that openness 
increases fantasy richness, which in turn increases rela-
tionship satisfaction) is the total effect, that is, 0.10 
Likert unit per Likert unit. If we use the total-effect 
heuristic, the Bayes factor for the direct effect, BFU[0,.10], 
is 1.62, RR1/3<BF<3 [0, 0.5].7 Thus, the data are nonevi-
dential, and robustly so over any plausible upper limit 
for the uniform distribution.

First Indirect Effect

X (Predictor)
Direct Effect

Y (Dependent Variable)

M (Mediator)

Second Indirect Effect

Fig. 5. A model of the effect of X on Y, potentially through a mediator, M. The equations 
defining the three variables are as follows: M = a1 + b1 × X; Y = a2 + b2 × X + b3 × M; and  
Y = a3 + b4 × X. The ai terms indicate that the regression slopes are in raw units. Given 
these equations, b1 = first indirect effect, b3 = second indirect effect, b1 × b3 = indirect effect; 
b4 = total effect, and b2 = direct effect.
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Discussion

A scientist tries to explain the world. The explanations 
can be tested via their predictions. For such a test, we 
need a model of the predictions—minimally, the sort 
of effect size, ideally in raw units, that is expected. Even 
when there is no prior work in the field, there are 
heuristics that enable setting minimal constraints on 
what can be expected. As long as these constraints put 
one in the right ballpark, and help define what the 
ballpark is, evidential conclusions follow if they are 
robust to the range of plausible values (i.e., about the 
width of a ballpark). Notice that the Bayes factors I 
have used in this article do not involve H1s with point 
predictions; they respect the vagueness of real psycho-
logical theory in representing a range of possible effect 

sizes. Considering robustness means making sure that 
conclusions are similar throughout the plausible range 
of the width of that plausible range.

There are no strict default effect sizes in theory test-
ing, and hence no objective or default Bayes factors 
(see Box 4 for the range of philosophies concerning 
Bayes factors, not just the one argued for in this article). 
A proposed default Bayes factor is not an invitation to 
stop thinking; it is an invitation to think about whether 
the suggested scale is relevant to the problem in con-
text. In many cases, suggested default values for effect 
sizes (e.g., Cohen’s d = 0.7) may fall in the same robust-
ness region as a Bayes factor informed by scientific 
context. But there is only one way to find out; one has 
to consider what scientific constraints there are and see 
what they imply.

Box 4. Different Philosophies for Modeling H1

The way one approaches modeling H1 in a Bayes factor depends on one's philosophy of science:

1.  Modeling H1 using subjective Bayes factors (inspired by de Finetti, 1970/1975): Some researchers view probabilities 
as subjective and personal. In this view, when representing a theory (e.g., the claim that a phenomenon exists) by 
a probability distribution for the different effect sizes predicted (the model of H1), one should consider the personal 
probabilities of a given individual (e.g., oneself, to make the outcome relevant to oneself). One can also carefully 
interview a range of experts to obtain models that span from those of experts skeptical of any but the smallest effects 
to those of experts who find quite large effects plausible. The hope is that the reader's predictions will roughly match 
up with one such model of H1. According to this approach, one of the rock-bottom processes of science is the rational 
persuasion of scientists until as a group they more or less agree about the support for a theory; even though each scientist 
has in effect his or her own personal model of the theory’s predictions, these models should eventually converge.

2.  Modeling H1 using objective Bayes factors (inspired by Jeffreys, 1939): The claim that the precise predictions of a 
theory are a personal and individually varying matter does not fit everyone's philosophy of science. To escape having 
in principle a different model of H1 for every person, the most reassuring alternative may be having one model of H1 
for almost all occasions—a default model. Consider the case of a two-group t test. The within-group standard deviation 
defines an effect size regardless of original units yet could plausibly be the scale of effect for many phenomena, to 
within a factor of 10. Having a default model of H1 avoids post hoc cherry picking of one’s model of H1. Further, the 
stronger the evidence, the more robust the conclusion over different scale factors. That is, one need not fuss too much 
about the exact scale factor, but can just settle for a default. The problem is that scientists will always try to extract as 
many conclusions from data as they can, so they will reach down to the lowest degrees of evidence that inference will 
bear. Thus, inevitably, we will deal with situations in which the evidence is not overwhelming. In that case, default 
Bayes factors can be misleading, as I have shown in this article.

3.  Modeling H1 using informed Bayes factors: Assume that science is about testing theories by considering the objective 
relations among theory, assumptions, and data (Popper, 1963). Each theory and set of assumptions is a conjecture 
(Popper, 1963); certain things follow from those conjectures, including the relative probability of different hypotheses, 
which we can assess using Bayes factors. The function of the model of H1 is to represent the predictions of a theory 
in such a way that the basis for those predictions is public and hence can be criticized. Thus, the specified predictions 
should be based on well-justified and otherwise simple assumptions. Such an approach to modeling H1 creates an 
informed Bayes factor. Having constructed a draft model of H1, one still needs to judge how plausible it is that the model 
adequately represents the theory’s predictions. On the one hand, in relying on a plausibility judgment, the informed 
Bayes factor is similar to a subjective Bayes factor. But according to this philosophy of science, that judgment should be 
treated not as an end in itself but as an indication of whether or not one can discover more constraints on predictions. 
For example, in using the room-to-move heuristic, one might judge that the heuristic gives too large a scale factor. That 
judgment is an indication that further thought might uncover objective reasons why the effect should be smaller—and 
the scientist’s job is to determine what those reasons are. On the other hand, the informed Bayes factor is similar to an 
objective Bayes factor in that the reasons for the scale factors that have been set are publicly available. But in using an 
informed Bayes factor, unlike an objective Bayes factor, one must ensure that the model of H1 represents one’s specific 
theory so that the measure of evidence given by the Bayes factor is relevant to that theory. Thus, one cannot simply use 
default models of H1 without further thought about the relevance of the scale factors to the precise theory being tested.
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I have focused on what to do if prior relevant infor-
mation is not available. This in no way precludes pre-
registering how the model of H1 will be constructed. 
One can preregister, for example, that “in the model of 
H1 for Condition A, the standard deviation of the half-
normal distribution will be half the effect in Condition 
B.” Preregistering stops researchers from cherry picking 
the models of H1 they become fond of in the light of 
data. Bayes factors can be “B-hacked” just as p values 
can be p-hacked (in both cases, e.g., through removing 
outliers or excluding variables from the model), so pre-
registering analytic protocols is just as valuable for 
Bayesians as for frequentists.

The heuristics presented have partly been justified 
with the notion of severe testing: Although the heuris-
tics sometimes use information from the very data used 
for testing a theory, they do so in a way that means 
strong evidence against that theory can still be pro-
duced. This claim seems to contradict Mayo (2018), who 
used the notion of severe testing as an argument against 
Bayesian statistics (contrast Vanpaemel, in press). Mayo 
used a concept of severe testing as a basis for under-
standing why selection effects degrade evidence and 
claimed that Bayesians struggle with explaining why 
they do. This is not so; in fact, Bayesians are especially 
well placed to explain when selection effects are bad 
and when they do not matter. Further, the Bayes factor 
also reveals why Popper’s (1963) requirement of sever-
ity is related to evidence.

Popper (1963) defined a severe test as one in which 
a predicted outcome is probable according to the theory 
tested and improbable if the theory is false. Correspond-
ingly, a Bayes factor indicates how much more probable 
the outcome is given the theory (or a model of it) versus 
H0 (for the examples we have considered). Thus, a test 
is severe if the Bayes factor departs considerably from 
1. A Bayes factor measures strength of evidence, defined 
as the amount by which one should change one’s 
strength of belief. Thus, evidence goes hand in hand 
with severe testing. Consider an obtained mean differ-
ence and its standard error. If researcher’s degrees of 
freedom are used to cherry-pick specific analytic deci-
sions, the probability of obtaining that outcome may be 
about the same given H0 as given H1; thus, a Bayes factor 
that took into account such selection effects as part of 
the data-generating model would indicate that there was 
little evidence (and that the test was not severe). Further, 
Bayes factors indicate that selection effects caused by 
selecting what the precise model of the data is (what 
covariates are in the model, etc.) in light of the mean 
difference and standard error they produce are different 
from selection effects caused by optional stopping (for 
discussion, see, e.g., Dienes, 2016, Rouder, 2014). The 
former degrade evidence, and the latter do not.

I have discussed modeling of H1 but have not com-
mented on the validity of the model of H0. Meehl (1967) 
argued that all point H0s are false (at least for correla-
tional studies, but one could generalize his claim; cf. 
Greenland, 2017). So why would one want to test a 
theory against a point H0? There is always a theoretically 
minimally interesting value, defining not a point null 
but a null interval (H0 specified, say, as a uniform dis-
tribution or a normal distribution with a small standard 
deviation). This null interval can be hard to pin down 
exactly, but whenever the standard error of a parameter 
is large compared with what its null interval could be, 
the point null will be a good enough approximation to 
the interval. (And when the predicted scale of the effect 
is, in addition, large compared with the standard error, 
the Bayes factor will be informative.) So the point null 
is useful because it obviates the need to specify the null 
interval—and when the null interval is specified, this 
should be done for objective reasons, which are often 
hard to come across. When a null interval can be 
approximately justified, it is easy to use in calculating 
Bayes factors (e.g., for further discussion, see Dienes, 
2014b, Supplementary Material, Appendix 1, Section 6).

Greenland (2017) urged considering statistical models 
as thought experiments to guide intuitions and inference. 
Every assumption in a model of a psychological phenom-
enon is an approximation, and the same phenomenon 
or theory can be modeled in other ways. We can treat 
our models as conjectural, as things to be tested from 
any angle, with complete openness to revise them in any 
direction, foreseen or not. We can test whether it is useful 
to have a parameter in the model by considering the scale 
of effects the parameter predicts or rules out. Without 
fixing that scale for some objective reason, there are no 
empirical grounds for removing a parameter. Because 
Bayes factors take scale into account, they will often be 
relevant to testing models. My goal in this article has been 
to provide some potentially helpful ways of thinking 
about what scale is relevant in a given context.
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Notes

1. I thank Balazs Aczel for suggesting this concept of a robust-
ness region.
2. In fact, a more realistic theory predicts a much smaller shift 
even in the case of maximum precision. One could deal with 
this simply by using a half-Cauchy distribution with a scale 
factor of 0.36 ms per percent (2.5/7). As it turns out for this 
example, both scale factors are in the same robustness region, 
so it makes no difference.
3. They obtained a significant slope regressing distress on suf-
fering among high-satisfaction females; from their graph, this 
slope can be estimated as 0.22 distress units per suffering unit. 
(The ratio-of-scales heuristic provides a scale—0.17 distress 
units per suffering unit—that is rather close to the obtained 
slope in this example.) The authors did not give an exact p 
value for this slope, so we cannot determine the exact value 
of the standard error, but there is no doubt that a Bayes fac-
tor would indicate that the data provide good evidence for an 
effect. For the sake of argument, take p < .001 as p = .001; this 
gives t(40) = 3.06 (df = 40 is a very rough guess based on the 
smallest degrees of freedom in the authors’ table, but the issue 
is what could be done in principle). Dividing the slope by t 
(0.22/3.06) results in a standard error of 0.07 distress units per 
suffering unit. The resulting Bayes factor, BFHN(0,0.17), is 51.86, 
RRBF>3 [0.027, 6.50]. Given the arguments for a plausible maxi-
mum of 0.33, and no grounds for thinking that the effect is 
below 0.05, the conclusion that there is evidence for H1 in this 
group is robust.
4. The authors reported mean suppression as 6%, mean d′ as 
0.35, and the intercept as 8%. Thus, the slope is (6% – 8%)/0.35, 
or –5.7% per d′ unit. Dividing the slope by t, 5.7/0.77, yields 
7.4% per d′ unit as the standard error of the slope.
5. A problem with this regression is the error in measurement 
of d′. Simone Malejka is working with me (and Miguel Vadillo 
and David Shanks) to come up with a simple Bayesian solution 
to this problem (cf. Matzke et al., 2017).
6. This is a theory and not a mathematical inevitability because 
the indirect effect may be negative (cf. Pearl, Glymour, & Jewell, 
2016).
7. BFU refers to a uniform distribution. For a uniform distribu-
tion, measure robustness by changing the upper limit of the 
distribution.
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