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Abstract
Scientists can reason about natural systems, including the mind and brain, in many ways, with each form of reasoning being
associated with its own set of limitations. The limitations on human reasoning imply that the process of reasoning about
theories and communicating those theories will be error prone; we must therefore be concerned about the reproducibility of
theories whose very nature is shaped by constraints on human reasoning. The problem of reproducibility can be alleviated by
computational modeling, which maximizes correspondence between the actual behavior of a posited system and its behavior
inferred through reasoning and increases the fidelity of communication of our theories to others.
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Science depends on reproducibility. However much we may

debate about theories, scientists tacitly assume that we are all

reasoning on the same terms and from a shared understanding

about data. Data that are not reproducible or that can only be

reproduced under certain conditions should rightly be given

little weight in reasoning about natural systems. Without this

shared understanding, progress in science would be impossible,

as different scientists could reach different conclusions simply

because the same data are analyzed and interpreted

inconsistently.

Given this emphasis on the reproducibility of experimental

methods and data analysis, it is striking that little—if any—

consideration is given to the fidelity and reproducibility of

another core aspect of science above and beyond concerns

about methodology and data analysis: scientific reasoning.

Like it or not, science communication resembles a game of

‘‘telephone’’ wherein theories are formulated, recorded on

paper, read by the next scientist who needs to understand them,

and so on. Each step in this chain involves reasoning and is thus

subject to known cognitive limitations. Numerous experiments

have established those limitations, and scientific reasoning is

indubitably not exempt from them.

Limitations on Thinking

A worryingly long list of limitations on human thinking was

presented by Hintzman (1991), who argued that aspects of

cognition such as the confirmation bias (see, e.g., Evans,

1989) and the limited capacity of working memory (e.g., Engle

& Kane, 2004) have profoundly negative implications for

scientific reasoning. Equally worryingly, it is easy to extend

Hintzman’s list. For example, when given the sequence

‘‘2-4-6,’’ people tend to develop overly specific and baroque

theories of the generating rule, such as ‘‘numbers increasing

in units of 2’’ (see, e.g., Evans, 1989); few discover the

experimenter’s rule of ‘‘any increasing series.’’ This finding

arguably has parallels in science: For example, putatively

specific deficits in grammar may instead reflect more

general cognitive deficits (e.g., Christiansen & Ellefson, 2002).

Similarly, scientists often draw analogies between a source

domain (in which the interrelations between elements

are known) and a target domain (where the relationships are

unknown). Unfortunately, analogies can be misapplied.

Gentner and Gentner (1983) identified two common analogies

to understand electricity: water flowing through pipes, and

crowds of people running through passageways. Gentner and

Gentner found that errors made on electrical circuit problems

depended on which analogy an individual adopted. This

problem of analogical reasoning has implications for science,

where relying on analogies could potentially produce misun-

derstanding of a psychological system. As a case in point, con-

sider the popular spreading-activation theory, which postulates
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that concepts are represented by an interconnected network of

nodes. Nodes are activated upon stimulus presentation, and

activation spreads through the connections to neighboring

nodes. To understand and communicate the notion of spreading

activation, several analogies might be used—for example, elec-

tricity passing through wires (e.g., Radvansky, 2006) or water

passing through pipes. Those analogies help determine our

understanding of the model’s behavior. The water analogy

necessarily implies a relatively slow spread of activation,

contrary to the data, which imply activation of distal concepts is

almost instant (Ratcliff & McKoon, 1981). Conversely, the

electricity analogy can handle the instantaneity but places the

explanatory burden on the links between nodes—akin to circuits

being closed—rather than on their activation. Although analogies

are often drawn within a scientific domain (e.g., ‘‘this data pattern

resembles one I’ve seen recently’’; e.g., Dunbar & Fugelsang,

2005), many psychological mechanisms have no known source

domain in psychology, and theorists will therefore be required

to draw analogies to systems outside psychology in which

they—and other psychologists—may not be experts.

A second problem, related to these vagaries of reasoning, is

that the shared understanding of a system by multiple

individuals depends on the extent to which all involved reason

identically. A group of scientists can have a shared (though

perhaps flawed) understanding of a system if all scientists

adopt the same analogy. If analogies are heterogeneous, mutual

misunderstandings are inevitable: Two scientists may reach

mutually incompatible hypotheses about spreading activation

if they adopt different analogies (water vs. electricity). Further-

more, scientists may use any number of modes of thinking or

representations to conceptualize a theory and to derive

predictions (Markman & Gentner, 2001): Scientific reasoning

may be accomplished by constructing mental models (Gentner

& Gentner, 1983), by using visual representations such as

sketches and graphs (Oestermeier & Hesse, 2000), and by

mental simulation (Trickett & Trafton, 2007). Not only are

these different modes imperfect, but there is also no guarantee

that any two scientists will use the same mode of reasoning and

thus share an understanding of a system.

In light of these concerns and others (see left column of

Table 1), do we really have a deep understanding of the theories

we reason about? Do we really know what our theories predict?

Do our colleagues understand our theories the same way we do?

Computational Models as an Aid to
Reasoning

Those reasoning problems can be alleviated by implementing

one’s theoretical principles as a computational model (or

equations in a mathematical model). A principal advantage of

computational modeling is that we are forced to specify all

parts of our theory. In the case of spreading activation, we must

answer such questions as Can activation flow backward to

immediately preceding nodes? Is the amount of activation

unlimited? Is there any leakage of activation from nodes?

These further specifications, which verbal theories omit alto-

gether, render our theory more readily communicable and more

falsifiable. A summary of such advantages of computational

modeling is provided in the right-hand column of Table 1.

Computational models thus check whether our intuitions

about the behavior of a theorized system match what actually

arises from its realization. To illustrate, consider the ‘‘random

Table 1. Problems Affecting Reasoning and Shared Understanding Among Scientists and Ways in Which Computational Modeling Can Address
Them

Reasoning problem Solution from computational modeling

Reasoning

Confirmatory bias: tendency to seek out evidence that confirms
(rather than disconfirms) a hypothesis

Emphasis on comparing multiple models; model selection allows us to
find evidence for and against models

Analogical reasoning: reliance on different analogues; contents of
source domain leak in to inference about target domain

Formal system means theory will behave the same way regardless of
differences in analogies adopted by individual scientists

Reasoning about complicated, distributed or massively parallel
structures: restricted by working memory limitations and bias to
interpret such networks unidirectionally (e.g., White, 2008)

Models not limited by working memory limitations; many models are
highly distributed or complicated in nature (e.g., connectionist
models)

Incompleteness of reasoning: there can be more in the data than might
be inferred from standard analyses of performance (e.g., proportion
correct)

Fitting a model can reveal hidden structure or processes (emergent
phenomena) that are not directly inferable from standard analyses of
performance

Shared Understanding

Precise communication Computer code (commented to make links with textual description)
can be shared between researchers in a similar fashion to data and
analysis files

‘‘That’s not what I meant’’ problem: Shared understanding of theories,
and falsifiability of theories, difficult to achieve when specification of
theory is fuzzy

With clear, computationally formulated definition, theories make
unambiguous predictions (at least within target domain) and are
more falsifiable.

Note: For examples of other constraints on reasoning and the solutions offered by modeling, see Hintzman (1991) and Lewandowsky (1993).
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walk’’ model of binary decisions, in which people are assumed

to sample evidence from their environment in discrete steps

and then sum this sampled evidence to make a decision

between two alternatives (for example, deciding whether a

tomato is ripe enough to eat based on its color). At each step,

a sample can nudge the summed evidence toward one decision

or another, with the size and direction of the nudge being ran-

dom, giving the random-walk model its name. We can simulate

a random walk ourselves by standing in the middle of a hall-

way, repeatedly tossing a coin, and taking a step up the hallway

if the coin comes up heads or down the hallway if the coin

comes up tails. Samples of evidence continue to be taken until

a threshold—for example, either of two lines drawn across the

carpet—is crossed. At this point, depending on which of two

thresholds the evidence trail crosses, one decision (e.g., ‘‘The

tomato is green’’) or the other (‘‘The tomato is red’’) is reached.

The left panel of Figure 1 shows some illustrative random

walks for the case in which the information is equally favorable

to the two alternatives (for example, where the crossing light is

covered up, corresponding to the flip of an unbiased coin in our

hallway analogy). Each path shows how the summed evidence

changes as additional samples are taken, with the paths termi-

nating when one of the two response thresholds (the dashed

lines in the figure) is reached. The paths are different because

of the randomness in the random walks: In the blue path in the

left panel of Figure 1, a number of negative samples happen to

have been drawn at the start, immediately pushing the random

walk toward the bottom boundary.

One feature of the random-walk model that makes it ideal

for modeling decision behavior is that it predicts both the

probability and the time taken to make a decision, this time

being equivalent to the number of steps that were taken

before one of the two thresholds was reached. In cases in

which there is equal evidence for the two alternatives (as is

the case for the random walks in the left panel of Fig. 1), the

probabilities of the two decisions are equal, and they are pre-

dicted to have identical response-time characteristics. Now

imagine how the model will behave when the evidence favors

one decision over the other (as would be the case when our

tomato is a rich red and ready to eat). This introduces some

‘‘drift’’ toward the favored threshold by ‘‘biasing’’ the

sampled information—in our hallway analogy, this would

correspond, for example, to the coin being strongly biased

to come up heads. This bias is illustrated with some example

random walks in the right panel of Figure 1. As in the left

panel, the evidence sampled on each step is random, but is

more likely to be a positive number, meaning the random

walk is more likely to take a step upward rather than down-

ward. What do you expect will happen to the probability of

making one choice over another? What about the time taken

to make each choice? Under these circumstances, the drift will

increase the probability of the evidence crossing the upper

boundary (as you can see in the right panel, where four out of the

five random walks hit the top threshold). One might also predict

that the response time would be slower for the less likely

response. The latter prediction is actually incorrect; in fact, the

mean response times for the two alternatives are the same, as

can be seen by comparing the upper and lower histograms in

Figure 2. The bars represent ranges of response times; the top

panel represents cases in which the random walk hits the top

threshold (corresponding to the favored response) and the bottom

panel represents cases in which it hits the bottom threshold

(less favored response). The two histograms are virtually

identical (Stone, 1960).
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Fig. 1. The random-walk model of decision making. At each time step, evidence is sampled from an information source, and the evidence is
accumulated over time. When the information exceeds one of the two decision boundaries (upper or lower), the respective decision is made.
The left panel shows the summed evidence for three different trials. The three paths all rely on the same source of information and differ only in
the random sampling of the information over time. The red and green paths have reached the upper boundary and would indicate one decision
(e.g., ‘‘The tomato is green’’), while the blue path has reached the bottom boundary corresponding to the other decision (e.g., ‘‘The tomato is
red’’). The right panel shows five sample paths for a case in which there is a tendency to drift towars the upper boundary because the information
favors that decision on average.

Computational Models and Psychological Reasoning 331



This seems a little strange—after all, doesn’t the upward drift

mean that it will take longer for a random walk to reach the bot-

tom boundary, like a person struggling against a river current?

Or maybe you (like us) pictured ‘‘rays’’ emanating from the

starting point representing some reasonable range of average

trends, and imagined this rotating upward in the case where

some drift is introduced to produce slow ‘‘bottom’’ responses

(see Fig. 3). The swimmer analogy misses the important detail

that the only systematic pressure is the drift (unlike

the swimmer, who by definition is applying his or her own

‘‘counter-drift’’ against the current). This means that paths that

hit the bottom boundary do so only by the chance happenstance

of having collected a series of samples that work against the

drift. This also explains why the ‘‘ray’’ analogy in Figure 3

fails—having a slower rate of approach to the bottom boundary

slows those responses down in the analogy, but in reality, any

additional time gives those paths more time to be bumped

toward the top boundary. We can also reject this analogy by a

logical consideration, as follows. In the ray model, if we take less

time to reach a certain level of evidence (for example, if the

summed evidence adds up to –2, or two units of evidence below

the starting point), we will take less further time to hit the bottom

boundary compared to the case in which we have taken longer to

reach the same intermediate point. This can be seen by

considering the right-pointing horizontal arrow drawn through

the two bottom paths (that happens to mark a summed evidence

value of –2) and noting that the lines diverge. However, the

random-walk model is by definition agnostic regarding the time

that has already passed; if we have reached a summed evidence

of –2, we have a constant probability of taking a downward

(vs. an upward) step. The behavior of the basic random-walk

model is not at all obvious from its description and shows up the

limitations on our reasoning about such processes.1

By revealing the ‘‘real’’ behavior of a system, modeling can

generate insights that conventional reasoning processes may

fail to uncover. For example, in the random-walk model, we

can differentiate the drift rate (the quality of information) from

the separation between the boundaries (the amount of evidence

needed to make a decision, called boundary separation).

Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann (2007) did

exactly that by fitting a variant of the random-walk model to

data from several choice-reaction-time tasks, and found that

scores on intelligence tests were more strongly related to drift

rate (i.e., the strength of the bias during sampling of the

information in the random walk) than to boundary separation

(i.e., how far the two thresholds are from the origin of the
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Fig. 2. Histograms of decision times for decisions crossing the upper boundary in the right panel of Figure 1 (top panel) and lower boundary
(bottom panel) from 100,000 simulation runs of the random-walk model. Although the upper-boundary decision is more likely to be made
(around 89% of the time, indicated by N), the two latency histograms have an identical appearance, with the same mean, standard deviation,
and skew (the slight differences are due to the randomness in the simulations).
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random walk), suggesting that information extraction is a

fundamental aspect of intelligence. Moreover, we frequently

observe behavior emerging from a model in which no such

behavior is specified by the programmer at the outset. Elman

(1990) found that when he exposed a particular type of model,

called a recurrent network, to the sequential statistics in a large

corpus of natural language, the model spontaneously formed

identifiable representations of nouns, verbs, and adjectives,

even though these grammatical types were not specified in the

input or in the model itself.

Finally, computational modeling helps ensure reproduci-

bility in scientific thinking. By implementing a model as a

computer program or a set of equations, another researcher

can take our model and exactly reproduce our predictions.

For example, you may still doubt whether the random-

walk model really produces the same latency distributions

for the different decisions in the presence of drift. With a

little experience in a computer language such as R or

MATLAB, you would be able to simulate the model as

described and confirm that prediction for yourself. As an

additional step, publishing the model code on the Web facil-

itates testing and exploration by others. Use of the same for-

malized description ensures that we ultimately derive the

same predictions from a theory and assists in forming a

shared conceptual understanding.

To illustrate the last point, consider the concept of inhibition

that is often invoked to explain differences between individuals

in their ability to perform a task (see MacLeod, Dodd, Sheard,

Wilson, & Bibi, 2003, for a review). For example, the phenom-

enon of negative priming—whereby a response to a stimulus is

slowed when that stimulus recently appeared as distracting

information—is taken as evidence for an inhibitory component

of selective attention (Tipper, 1985). However, MacLeod and

colleagues suggested that ‘‘inhibition’’ is a vague term that

often amounts to little more than the renaming of an observed

difference between two mean latencies, giving fertile ground

for confusion or lack of shared understanding between

researchers. This problem is overcome within a computational

model, such as the choice model of Brown and Heathcote

(2005), in which representations of response alternatives

compete for selection. The model provides several mechanisms

by which inhibition can occur, including (a) reduced external

input to one or more alternatives; (b) increased ‘‘leakage’’ from

alternatives; (c) a reduction in the resting baseline of an

alternative; and (d) a tendency for more active units to reduce

the activation of other units, called ‘‘lateral inhibition.’’ By

specifying the operation of the model (see, e.g., Equation 1

of Brown & Heathcote, 2005), the source of inhibition is made

explicit, leaving other researchers (and ourselves) with a better

grasp of the meaning of ‘‘inhibition.’’

Current Directions

Contemporary theorizing increasingly involves quantitative

comparison of competing models to weigh the evidence for

and against various theories in light of a particular data set.

Whenever a model provides a better quantitative explana-

tion of the data than other models, it receives further sup-

port. These comparisons can additionally be corrected for

the complexity of a model. One widely accepted dictate in

science is ‘‘Occam’s Razor’’: We should prefer the simplest

theory that adequately explains the data. Determining the

proper level of complication of a theory is sometimes diffi-

cult, and techniques for the quantification of complexity
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Fig. 3. A schematic depiction of an intuitively reasonable but incorrect mental simulation of the effects of drift in the random-walk model. The left
panel depicts some representative rays emanating from the starting point in the situation in which drift¼ 0. When drift toward the positive (top)
boundary is introduced, the rays might incorrectly be assumed to rotate in that direction, producing a speeding of top responses and a slowing of
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continue to be developed (Pitt & Myung, 2002). Another

advance is the incorporation of psychological models into

common statistical frameworks. For example, individual-

differences research often employs structural equation

modeling, in which relationships between observed vari-

ables are captured via ‘‘latent’’ variables that represent psy-

chologically meaningful constructs (e.g., working memory

capacity). Recent research has used psychologically mean-

ingful model parameters (e.g., the strength of the drift of

a random walk) as variables that can be used in structural

equation models (Schmiedek et al., 2007). Furthermore,

computational modeling can inform research from cognitive

neuroscience, where model parameters can be linked to

brain activity (as recorded by electroencephalography or

functional magnetic resonance imaging) and can be used

to make inferences about changes in cognitive mechanisms,

inferences that could not otherwise be made (e.g., Ho,

Brown, & Serences, 2009).

In closing, we should note that modeling is not a panacea for

all scientific ills. In some situations, the extent to which an

algorithm or equation is mandated by (and itself mandates) a

psychological interpretation may be questionable. For example,

much work has been dedicated to comparing different

mathematical functions in their ability to account for the extent

of forgetting over time (e.g., Rubin & Wenzel, 1996); however,

arguably there is a limit on how much these functions can

tell us in the absence of a model of the underlying mechanisms.

Bearing in mind this caveat, computational modeling

should have a place in any psychologist’s toolkit—alongside

experimental design and statistics—as a way of developing,

understanding, and communicating theories.

Recommended Reading

Carruthers, P., Stich, S., & Siegal, M. (2002). The cognitive basis of

science. Cambridge, England: Cambridge University Press. An

edited volume that provides a good overview of cognitive

approach to scientific reasoning and the social and epistemic

context in which scientific reasoning takes place.

Hintzman, D.L. (1991). (See References). A classic chapter arguing

for the widespread formal use of computational models in

psychology.

Lewandowsky, S., & Farrell, S. (in press). Computational modeling in

cognition: Principles and practice. Thousand Oaks, CA: Sage.

A new textbook that explains the logic behind computational

modeling and works through the steps of developing and testing

models in cognitive psychology.

Notes

1. In fact, other types of evidence-summing models do predict

different latencies for the two response classes, but they do this by

effectively making the random-walk model more like the ray analogy.
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Wittmann, W.W. (2007). Individual differences in components of reac-

tion time distributions and their relations to working memory and intel-

ligence. Journal of Experimental Psychology: General, 136, 414–429.

Stone, M. (1960). Models for choice-reaction time. Psychometrika,

25, 251–260.

Tipper, S.P. (1985). The negative priming effect: Inhibitory priming

by ignored objects. Quarterly Journal of Experimental Psychol-

ogy, 37, 571–590.

Trickett, S.B., & Trafton, J.G. (2007). ‘‘What if . . . ’’: The use of con-

ceptual simulations in scientific reasoning. Cognitive Science, 31,

843–875.

White, P.A. (2008). Beliefs about interactions between factors in the

natural environment: A causal network study. Applied Cognitive

Psychology, 22, 559–572.

Computational Models and Psychological Reasoning 335



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


