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What constitutes strong psychological science? What are 
the criteria of compelling future research that those 
involved in the current discourse about nonreproducible 
findings, questionable researcher practices, and inappro-
priate statistical analyses are seeking? What are the ideals 
or best exemplars of scientific inquiry that deserve to be 
embraced and imitated?

One need not conduct a representative survey to 
anticipate the scientific community’s consensual answers: 
Strong research must rely on sufficiently large samples 
that allow for powerful statistical tests of precisely pre-
dicted relationships, minimizing false positives and fail-
ures to replicate. In other words, good research findings 
should be replicable, reflective of a true effect, and based 
on state-of-the art statistical analyses. Any participant in 
the current discourse who disagrees with these widely 
shared positions hardly would be taken seriously.

Philosophers and historians of science might disagree 
with this consensus, arguing that (a) nonreplication (of 
an old assumption) is the source of all scientific progress, 
(b) empirical evidence never reflects the plain truth, and 
(c) the most highly developed sciences make do without 
statistics. However, psychologists tend to discard these 

conjectures as outside perspectives from nonexperts who 
are not knowledgeable about the reality of psychological 
science. So, without much contemplation, many psychol-
ogists continue to believe that strong science must be 
built on a strict selection of true and robust findings 
(Schmidt, 2010; Simmons, Nelson, & Simonsohn, 2011; 
Verhagen & Wagenmakers, 2014) obtained with new sta-
tistics (Cumming, 2014) applied to data samples that 
must not be underpowered.

In this article, I try to show that philosophers and theo-
reticians (Earp & Trafimow, 2015) who call for deeper 
reflection beyond statistical hypothesis testing may not be 
fully mistaken or too remote from scientific reality. The 
point here is not to argue that replication, reliability, and 
statistical analyses are worthless but that these technical 
issues are subordinate to more fundamental issues of 
research design and logic of science. Although in this arti-
cle I am critical and quite in the spirit of the quest for 
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stringency and scrutiny, I arrive at several liberal and  
broadminded recommendations about how to improve 
psychological science and how to conserve its current 
assets. These recommendations clearly deviate from the 
popular notion that strictly controlled research practices 
and new statistics afford the major keys to better science 
(Cumming, 2014; Simmons et al., 2011).

The article is organized as follows. Starting with a dis-
cussion of Ioannidis’s (2005) memorable statement that 
“Most Published Research Findings Are False,” I first out-
line a Bayesian analysis of the fundamental dilemma of 
research that is supposed to be original and surprising but 
at the same time predictable and replicable. How can sci-
ence be both surprising and predictable, novel and theo-
retically clear, ground breaking and replicative of prior 
evidence? In Bayesian notation, two factors determine the 
posterior odds that a hypothesis is correct in the light of 
empirical evidence: first, the prior odds that the hypothesis 
follows from sound theorizing and prior evidence and, 
second, the likelihood ratio that indicates the diagnosticity 
with which the evidence supports the focal hypothesis 
rather than alternative hypotheses.

Then, with reference to two prominent research 
approaches—sexy hypothesis testing and model testing—I 
discuss why Ioannidis’s pessimistic conclusions about the 
modest rate of correct hypotheses are to some degree justi-
fied. Because both approaches strive for originality and sur-
prise value, rather than certainty and safety, they focus on 
unexpected, a priori unlikely, and conjunctive hypotheses 
tested in simplified designs. As a consequence, both the 
prior odds and the diagnosticity tend to be low, and so the 
posterior odds must be inevitably low as well. However, I 
also outline an alternative research approach, theory-driven 
cumulative science, which holds the promise of ideally 
maximizing both the prior odds and the diagnosticity of 
empirical science. In a plea for pluralistic science, I finally 
argue that good research need not obsessively optimize 
posterior odds. Rather, strong and responsible science must 
sometimes also dare to tackle risky and uncommon ideas 
that are by definition rarely true but, if they are true, entail 
the potential for ground-breaking innovations.

Explaining the Success Rate of 
Research Hypotheses

Ioannidis’s (2005) memorable and provocative allusion to 
false positives in the published research literature high-
lighted the need to understand the reasons that the 
empirical results obtained in psychological science must 
be interpreted with caution. I will show that Ioannidis’s 
pessimistic summary statement is both admittedly true 
and apparently wrong, depending on the quality of the 
hypothesis and the empirical evidence.

The predictive value of psychological 
hypotheses

Figure 1 depicts a telling example adopted from Diekmann 
(2011). Let the probability (P) that a hypothesis H1, drawn 
at random from a universe of 10,000 hypotheses, is true to 
be as low as .04; the complementary probability that H1 is 
wrong is 1 – .04 = .96. That is, 400 hypotheses are correct 
and 9,600 are wrong. Assuming a statistical power of (1 − 
β) = .80 and an error probability (α) of .05, this amounts to 
expecting 320 significant results for true hypotheses (320 = 
.80 × 400) along with 480 false positives (480 = .05 × 9,600) 
for wrong hypotheses. Thus, assuming a theory as weak as 
P = .04, the “truth proportion” (TP) of all obtained signifi-
cant effects is indeed less than one half: TP =  
320/(320 + 480) = .40 (see upper part in Fig. 1);1 more than 
half of the observed effects originate in a false H1.

However, it is also evident from the middle and lower 
part that TP rises quickly when the a priori likelihood of 
H1 being true increases to slightly more solid but still 
modest values of P = .20 (TP = .80) or P = .40 (TP = .91). 
Thus, if the a priori likelihood of correctly predicting an 
empirical outcome is only .20 or .40 (rather than .04), then 
TP increases to .80 or even .91, reflecting mostly “correct 
findings.” Thus, improving the a priori value of theoretical 
hypotheses affords an effective means of overcoming 
Ioannidis’s problem.

A Bayesian analysis of the tradeoff 
between predictable and informative 
research

Note that this way of deriving TP from P and (1 − β)/α 
suggests a straightforward application of Bayesian prob-
ability calculus, which is commonly presented in an odds 
format: The posterior odds (Ωposterior) that a research 
hypothesis H1, rather than the null hypothesis H0, is true, 
given the data obtained in a study are the product of the 
prior odds (Ωprior) that H1 versus H0 is true on a priori 
grounds times the likelihood ratio (LR)—that is, the likeli-
hood of obtaining the data, given H1 divided by the likeli-
hood of the data given H0. Thus,

Ωposterior = LR × Ωprior, or

p(H1 true|data) p(data | H1 true) p(H1 true)

= ×

p(H0 true|data) p(data | H0 true) p(H0 true) .

In Bayesian notation, the a priori probability p(H1 true) 
and the a posteriori probability p(H1 true|data) replace 
the respective terms P and TP used in Figure 1. The likeli-
hood ratio LR reflects the diagnosticity of a test, that is, the 
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ability of empirical data to discriminate between H1 and 
H0. Note that in reality LR is not solely a function of statis-
tical power (1 − β) and type α error in a statistical test (as 
in Fig. 1); LR also depends on nonstatistical factors, as will 
soon be apparent. Note also that a Bayesian perspective 
highlights the fact that the a priori odds in support of the 
focal hypothesis, Ωprior = p(H1 true)/p(H0 true), rely to a 
large extent on nonempirical arguments, such as strong 
theorizing and logical derivation.

Obviously, then, the truth proportion TP of research 
hypotheses depends on both Ωprior and LR (estimated as 
(1 − β)/α). The critical debate of poor TP rates focuses on 
low statistical power and high error probability, which 
jointly reduce the statistical likelihood ratio (1 − β)/α. 
Critics assume that small samples and unwarranted 
research practices reduce statistical power (1 − β) to less 
than .80 and violations of statistical assumptions lead to 
effective α levels higher than .05. From a Bayesian analy-
sis, though, it is obvious that theoretical rigor leading to 
higher Ωprior can easily compensate for reasonable LR 
decreases in (1 − β)/α. Doubling P (e.g., from .04 to .08) 
more than doubles Ωprior (from .041 = .04/.96 to .087 = 
.08/.92) and thus compensates for a decrease in (1 − β)/α 
by more than one half. Reasonable improvements in the-
oretical rigor (i.e., in Ωprior) can thus be more effective 
than efforts to control (1 − β)/α. Increasing statistical 
rigor is by no means the only way to enhance TP.

Most important, a Bayesian perspective reveals a fun-
damental trade-off, which directly leads to the question 
of what constitutes strong psychological research. If 
strong research means maximizing TP, then researchers 
must refrain from testing risky hypotheses with low Ωprior. 
As a high Ωprior is a necessary (conjunctive) condition for 
maximal Ωposterior, TP can only be maximized when a pri-
ori theories already support the hypotheses to be tested. 
Risky hypothesis tests must be avoided, and research 
must be confined to safe situations, in which expected 
findings are consistent with high Ωprior. Innovative and 
ground-breaking research inspired by risky hypotheses 
inevitably reduce TP; “new discoveries will continue to 
stem from hypothesis generating research with low or 
very low pre-study odds” (Ioannidis, 2005, p. 701).

Facing this apparent trade-off between cautious (bor-
ing) science warranting high TP and courageous (innova-
tive) science leading to low TP, one is tempted to adopt 
the pessimistic conclusion that psychologists have to 
make a forced choice between either solidity or risk, 
either conservatism or progress. Scientists would be con-
demned either to be very cautious and avoid testing 
exciting hypotheses or, if they dare to test risky hypoth-
eses, to help decrease TP. To keep TP high, they would 
have to refrain from studying such exciting issues as the 
impact of disgust stimuli on immune reactions (Schaller 
& Park, 2011), the genesis of false confessions (Kassin, 

Assuming P = .04:
TP = (.80 ⋅.04) / [(.80 ⋅.04) + (.05 ⋅.96)] = .40

320H1 is true 80

Effect
observed

Effect not
observed

H1 is false 480 9120

1600H1 is true 400

H1 is false 400 7600

3200H1 is true 800

H1 is false 300 5700

In general:
TP = (1-β)P / [(1-β)P + α(1-P )]

Assuming P = .20:
TP = (.80 ⋅.20) / [(.80 ⋅.20) + (.05 ⋅.80)] = .80

Assuming P = .40:
TP = (.80 ⋅.40) / [(.80 ⋅.40) + (.05 ⋅.60)] = .91

Fig. 1.  Numerical illustration of the expected truth proportion (TP) of empirical studies as a 
function of the a priori probability (P) that H1 is true, assuming error probability (α) of .05 and 
statistical power (1 − β) of .80.
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2008) and spectacular false memories (Shaw & Porter, 
2015), or the reduction of prejudice via auditory stimula-
tion during sleep (Feld & Born, 2015).

A Bayesian Look at Two Prominent 
Research Approaches

Before turning to possible solutions of the dilemma, 
though, let us first elaborate on reasons why both LR and 
Ωprior are often conspicuously low. Let us particularly 
examine why, first, the diagnosticity of a hypothesis test 
(LR) is not solely determined by α and (1 − β) and why, 
second, purely theoretical and logical factors have a 
strong impact on Ωprior. Both points will become evident 
from a critical discussion of two prominent research 
approaches, which often fail to inform strong scientific 
inferences due to low LR and Ωprior.

Sexy-hypothesis testing

The first of these two research approaches may be called 
sexy-hypothesis testing. It is reflected in many articles 
published in prominent journals and in common text-
books. Typical of such research is the focus on elemen-
tary hypotheses about the impact of a single causal factor 
on a single dependent measure: Guilt serves to increase 
risky decisions (Kouchaki, Oveis, & Gino, 2014); unrec-
ognized stimuli trigger implicit learning (Hannula & 
Ranganath, 2009); sadder people are wiser (Alloy & 
Abramson, 1979). The predicted unicausal relation is 
typically not specified quantitatively but confined to a 
binary outcome; some measure of performance is pre-
dicted to increase or decrease (e.g., responses become 
faster or slower, satisfaction gets higher or lower, people 
show approach or avoidance responses). Given only two 
outcomes, the information gained in a study amounts to 
no more than to one bit; the result is not more informa-
tive than the outcome of tossing a coin. The third possi-
bility that the true relation is exactly zero is negligible 
because “everything is somewhat correlated with every-
thing” (Meehl, 1990, p. 108), suggesting that H0 is never 
literally true. However, even if we allow for H0, one can 
hardly see why the rate of correct elementary hypotheses 
should be as low as P = .04 that is needed to explain 
Ioannidis’s (2005) pessimistic estimate. By chance alone, 
the likelihood of binary hypotheses to be true ought to 
be in the range of .40 < p < .50. Any modest theory that 
is better than chance or P = .50 in coin tossing should 
further enhance the accuracy of scientific predictions to 
even higher levels.

So why should one assume P = .04? How can P derived 
from empirical replication rates fall markedly below 
chance? One sensible answer is that the sexy hypotheses 
being tested in this approach do not constitute a random 

sample of all possible hypotheses. Such studies focus on 
unlikely, surprising outcomes rather than on ordinary and 
commonly expected outcomes. What makes hypotheses 
“sexy” is their focus on the counterintuitive outcome of a 
binary question (“sadder but wiser,” not “sadder and mis-
taken”; Alloy & Abramson, 1979). They entail extraordi-
nary and astounding predictions. In Bayesian terms, this 
preference for surprising and extraordinary hypotheses—
which may lead to exciting insights when supported but 
many negative empirical results otherwise—serves to 
keep Ωprior at a low level.

At the same time, the limited information value of ele-
mentary (binary) hypotheses also restricts their diagnos-
ticity (LR). In a multicausal world, in which virtually all 
effects can be influenced by several causal factors, a 
mere upward or downward shift in a dependent measure 
can hardly provide unequivocal evidence for only one 
hypothesis focusing on a single causal factor. If a balloon 
rises up into the sky rather than falling down, this does 
not invalidate the law of gravity; the balloon’s behavior 
depends on other factors (e.g., specific weight, tempera-
ture of gas). One should neither discard the gravitation 
hypothesis when the balloon rises nor should one inter-
pret downward movement as gravitation proof. The 
seeming support or nonsupport might reflect the influ-
ence of other causes or enabling conditions acting in the 
same or in opposite direction (Goldvarg & Johnson-Laird, 
2001).

The same multicausality problem holds in psychologi-
cal science. Even in a randomized design, hardly any 
experimental treatment represents a pure manipulation 
of the focal independent variable. For instance, in a test 
of the hypothesis that a cheater-detection motive 
enhances memory for faces, a subset of faces is presented 
together with a scenario related to cheating (Nairne,  
Pandeirada, & Thompson, 2008). However, such a manip-
ulation also may influence a number of other causal fac-
tors unrelated to cheating, such as negative affect, 
affective involvement, depth of processing, or self-refer-
ence (Bell & Buchner, 2012; Klein, 2012). Given multiple 
correlated causes (Fiedler, Kutzner, & Krueger, 2012; 
Wason, 1960), a successful test of an elementary (binary) 
hypothesis rarely provides strong diagnostic evidence 
only for the focal hypothesis. It is rather compatible with 
two or more hypotheses at the same time. Likewise, a 
failure to obtain the predicted outcome rarely provides 
unequivocal evidence against the focal hypothesis. As a 
rule, empirical hypotheses of the yin-or-yang type, which 
merely predict one out of two binary outcomes or maybe 
a single cell in a 2 × 2 design, rarely yields a strong LR. 
The diagnosticity of such evidence must remain low.

For the reasons depicted here, the search for extraor-
dinary findings in the sexy-hypothesis testing approach 
serves to keep both P and Ωprior at a systematically low 
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level. An obvious conclusion, then, is that strong and 
confident scientific inferences (i.e., high posterior odds 
Ωposterior) are unlikely to be obtained in the sexy-hypoth-
esis testing approach.

Model-testing approach

In an attempt to overcome the simplicity and the crude 
qualitative level of sexy-hypothesis testing, the goal of 
another research approach is to attain quantitative preci-
sion and commitment to clearly specified models that can 
be tested strictly. The models can be quite complex and 
sophisticated, anchored in subsymbolic layers of mental 
representations, motor functions, or neurological sub-
strates. So the hypotheses of the model-testing approach 
specify quite refined algorithms or complex functional 
relationships, in contrast to most sexy hypotheses. The 
postulated causal mechanisms are refined and complex, 
calling for high precision and behavioral predictions 
under clearly spelled-out conditions.

However, despite this apparent contrast, an examina-
tion of model-testing research reveals similar restrictions. 
Again, both Ωprior and LR often remain low, restricting the 
posterior odds of scientific inferences that can be reached 
in model-testing studies. On one hand, the assumptions 
of algorithmic process models are often too strong, com-
plex, and nonparsimonious to render Ωprior high on a-pri-
ori grounds. Complexity is inversely related to parsimony 
(see also Higgins, 1992). On the other hand, if a focal 
model predicts the behavioral evidence obtained in a 
study pretty well, this does not rule out that other models 

(often making fundamentally different assumptions) can 
also account for the same evidence. As a consequence, 
the diagnosticity (LR) of model-testing studies is also 
restricted; most empirical results can be predicted from 
fundamentally different models.

Algorithmic process models.  To illustrate this point, 
let us consider a prominently published model of deci-
sion making under risk2 that is widely respected for its 
precision and testability, the priority heuristic (Brandstät-
ter, Gigerenzer, & Hertwig, 2006). It is summarized in 
Figure 2. The priority heuristic assumes that when mak-
ing choices between two lotteries or decision options A 
and B, individuals in a first stage consider only the worst 
outcomes, ominA and ominB, and select one option only if 
its worst outcome is superior by at least 10% of the over-
all best outcome omax. Only if no decision can be reached 
by this primary criterion will the focus then be on the 
probabilities of both options’ worst outcome, p(ominA) 
and p(ominB). A decision will be made in favor of the 
option with the lower probability of a worst outcome but 
only if p(ominA) and p(ominB) differ by at least 10%. Other-
wise, a third stage will be sensitive only to omax; individu-
als will select the alternative with the higher best outcome 
or, if omaxA and omaxB are indifferent, the choice will be 
determined by chance (guessing).

Apparently, the cognitive algorithm specified in the 
priority heuristic is based on a number of distinct assump-
tions that have to be jointly met for the model to be sup-
ported. The cognitive process is supposed to be sensitive 
to only one attribute at a time, being completely insensitive 

Choose A

Is ominB – ominA > 10% of omax?

Choose B

Yes No 

Is p (ominB) – p (ominA) > 10%?

Yes 

Is one lottery superior in omaxA?

No 

Choose superior lottery Guess one lottery

Yes No 

Fig. 2.  Illustration of the priority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006; Fiedler, 
2010).
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to p(omin) and omax during the omin stage, fully indepen-
dent of omax and omin when focusing on p(omin), and so 
forth. Moreover, the three stages always follow the same 
order, being invoked separately and never working 
together. A precise quantitative stopping rule (10% of 
some benchmark) is assumed for the first two stages; the 
same algorithm is assumed to apply for all choices 
between options with a similar expected value.3 No other 
influences are expected to be at work. The a priori odds 
of the conjunction of all these specific assumptions must 
be low. The very precision of the priority heuristic serves 
to reduce Ωprior.

To be sure, algorithmic models vary in the strength of 
the assumptions they propose. However, as a rule, refined 
and sophisticated models inevitably carry the burden of 
multiple conjunctive assumptions, which reduce the 
models’ prior odds. Modelers might contend that they do 
not expect their models to be isomorphic but to be only 
paramorphic representations (Hoffman, 1960) that 
behave “as if” they were emulating the process to be 
explained. However, this disclaimer does not increase 
Ωprior; it is but another way to admit that the model’s 
assumptions are not jointly true. In any case, the a priori 
odds of model-based hypotheses decrease with increas-
ing constraints imposed on the model.

Moreover, model testing may not only rely on low 
Ωprior but also on low diagnosticity (LR). The evidence 
predicted by one specific model is often also compatible 
with several other models that often make entirely differ-
ent assumptions. Thus, evidence for binary choice ten-
dencies (i.e., which lottery, A or B, is chosen by a majority 
of participants) hardly provides unequivocal evidence for 
the priority heuristic and against other models that may 
assume fundamentally different processes: noncompen-
satory and compensatory models (Gigerenzer & Goldstein, 
1996), exemplar-based or feature-abstraction algorithms 
( Juslin & Persson, 2002), symbolic or subsymbolic mech-
anisms (Fiedler, 1996), sample-based decision algorithms 
(Gonzalez & Dutt, 2011; Stewart, Chater, & Brown, 2006), 
or cumulative decision weights (as in prospect theory, 
Tversky & Kahneman, 1992).

To be sure, a model’s diagnostic value can be greatly 
enhanced if it predicts a highly informative pattern of 
results that distinctively diverges from predictions of 
other models (Campbell, 1966; Meehl, 1990). For exam-
ple, a connected set of lottery choices (A vs. B; C vs. D; 
E vs. F; A vs. C, and so on) might be deliberately designed 
to set the priority heuristic apart from other models 
(Katsikopoulos & Gigerenzer, 2008).4 However, even in 
the auspicious case of a study lending distinct support to 
one model, it is often impossible to explain causally the 
success of the superior model when it differs in multiple 
ways from alternative models.

As explained by Roberts and Pashler (2000), there is 
no logical basis to infer from a model’s (absolute or rela-
tive) fit that it actually reflects the underlying process. 
Recent research on illusory correlations highlights this 
insight (Kutzner & Fiedler, 2015). The illusion that the 
same high proportion of positive behaviors observed in a 
large and in a small group leads to more positive impres-
sions of the majority has been explained by fundamen-
tally different models: feedforward (Fiedler, 1996) and 
recursive models (Van Rooy, Van Overwalle, Vanhoomissen,  
Labiouse, & French, 2003), exemplar-based models 
(Dougherty, Gettys, & Ogden, 1999) or prototype forma-
tion (Fiedler, 2000), attention shift (Sherman et al., 2009), 
differential regression (Fiedler & Krueger, 2012), pseudo-
contingencies (Fiedler, Freytag, & Meiser, 2009), or striv-
ing for meaningful distinction (McGarty, Haslam, Turner, 
& Oakes, 1993). These models are different and in struc-
ture and noncomparable in so many aspects (process 
assumptions, scaling assumptions, number of free param-
eters, scope, and so on) that no empirical evidence in 
favor of one particular model implies that all aspects of 
the model must have been jointly effective.

Last but not least, model testing always focuses on a 
few selected models drawn from a universe of alternative 
models, many of which remain untested. It will never be 
possible to study the full Cartesian product of all combi-
nations of possible model assumptions. The priority heu-
ristic alone—disregarding all other models—allows for 
hundreds of ways in which choice algorithms can utilize 
ominA, ominB, p(ominA), p(ominB), omaxA, and omaxB or seem-
ingly irrelevant variables like p(omaxA) or p(omaxB), which 
can be combined in different orders, strictly sequentially 
or in compensatory ways with different weightings, mod-
erated by countless interaction terms. As it is impossible 
to investigate all models or instantiations of the same 
class of models, a plethora of ignored models must 
delimit the prior odds of selected models and the diag-
nosticity of selective empirical evidence.

Functional-level models.  Functional-level models entail  
similar problems as the mechanistic process models dis-
cussed so far. A prominent example can be found in tests 
of mediation models that have become a gold standard 
for research to be published in leading journals. Other-
wise non compelling correlations between an indepen-
dent variable X and a dependent variable Y are augmented 
by testing a mediation model (X → Z → Y) suggesting 
that some third variable Z mediates the impact of X on Y. 
Thus, Kouchaki et al. (2014) assumed that an enhanced 
sense of control (Z) mediates the impact of guilt (X) on 
increased risk taking (Y). The argument relies on a statis-
tical test showing that the correlation between X and Y 
decreases when the proposed mediator, Z, is controlled 
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statistically. Inferring from a significant mediation-model 
test that Z is indeed the causal mediator has become 
common practice, even though multiple alternative medi-
ators Z′, Z″, Z″′, and so on and many other causal models 
involving three variables X, Y, and Z (see Fig. 3) remain 
untested.

This sort of causal inference is unwarranted. A signifi-
cant test favoring one mediation model does not provide 
cogent evidence for the only tested mediator Z. More-
over, statistical mediation tests cannot discriminate 
between the mediation model X → Y → Z and the other 
causal models in Figure 3 (Danner, Hagemann, & Fiedler, 
2015; Fiedler, Schott, & Meiser, 2011). Mediation tests 
may be significant when Z is in fact not a mediator but a 
secondary measure of the dependent variable (as in the 
common-cause model X → Y, Z). For instance, a statisti-
cal test may support the assumption that sense of control 
(Z) mediates the impact of guilt (X) on risk seeking (Y) 
even when sense of control is but another index of risk 
taking. Or the correlation between a virus (X) and a dis-
ease (Y) may be significantly reduced when fever (Z) is 
included in a regression model, mimicking mediation, 
even though fever is not a mediator but merely a symp-
tom of the disease. Thus, given multiple mediators and 
multiple causal models, the diagnostic value of media-
tion-model tests must remain modest.

Toward a More Optimistic Appraisal of 
Psychological Science

Thus, our discussion of two prominent research 
approaches—sexy-hypothesis testing and model test-
ing—indeed shows why Ioannidis’s (2005) pessimistic 
conclusion is not off the point. On one hand, the prior 
odds Ωprior remain low because sexy hypotheses are 
selected to be unlikely and unexpected and refined mod-
els entail multiple conjunctive assumptions. On the other 
hand, a low likelihood ratio (LR) reflects the limited diag-
nosticity of sexy hypotheses and model tests. If, however, 
both Ωprior and LR are low, then the posterior odds Ωposterior 
of research hypotheses in the light of empirical findings 
must also remain low.

Fortunately, however, solid research can also lead to 
valid findings. Why should the a priori likelihood of valid 
research hypotheses be only P = .04? Why should 
researchers be so strongly biased to embrace wrong 
hypotheses? Indeed, psychological science has generated 
many valid hypotheses leading to firmly established 
results: Self-generated information has a memory advan-
tage, not a disadvantage (Bjork, 1994). Distributed learn-
ing is superior, not inferior, to massed learning (Hintzman, 
1974). Partial reinforcement increases (rather than 
decreasing) resistance to extinction (Sheffield, 1949). 
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Creativity is facilitated by positive mood, not negative 
mood (Rowe, Hirsh, Anderson, & Smith, 2007). To be 
sure, not every study leads to the discovery of a stable 
law. However, to view the fruits of creative science, one 
has to separate the wheat from the chaff and to focus on 
the best findings rather than counting the noisy findings 
arising as byproducts of the discovery process. Such a 
reframed perspective alone results in a much more opti-
mistic appraisal.

A more optimistic point could also be made for model-
testing. Impressive convergent evidence exists for the 
validity and the usefulness of even very sophisticated 
models. For example, a family of sampling models can 
explain a multitude of judgment and decision biases in 
terms of restricted samples of information that happen to 
be provided by the information environment (Denrell, 
2005; Fiedler, 2000; Stewart et al., 2006). Signal detection 
or related models are extremely useful to optimize legal 
or medical decisions (Swets, Dawes, & Monahan, 2000). 
Or, connectionist models describe cognitive and ecologi-
cal structures that account for judgment and decision 
biases (Roe, Busemeyer, & Townsend, 2001).

Both Ωprior and LR can be jointly 
enhanced in theory-driven cumulative 
science

Apart from such impressive examples of strong hypothe-
sis testing and model testing research, the remainder of 
this article is devoted to outlining a largely neglected 
research approach that aims at jointly maximizing Ωprior 
and LR. This alternative approach—call it theory-driven 
cumulative science—consists of the systematic derivation 
of diagnostic hypotheses from incontestable laws and 
logical constraints. To keep Ωprior as high as possible, the-
ory-driven cumulative science relies on undisputable logi-
cal rules or only well-established empirical laws. To 
maximize LR, the predicted patterns are so refined and 
informative that neither chance nor alternative theories 
can provide a reasonable account (Campbell, 1966;  
Shadish, Cook, & Campbell, 2002). Thus, the aim is to 
predict distinct patterns of functional relations (rather 
than merely binary trends) to maximize LR and to rely on 
strong theoretical ground to raise Ωprior to the highest pos-
sible level. Note that Ωprior in this approach is to a large 
extent based on logical and theoretical arguments rather 
than empirical data. Let us illustrate the idea of theory-
driven cumulative science with two concrete examples, 
one representing theorizing based on analytical argu-
ments and one relying on well-established empirical laws.

Strong theorizing based on analytical arguments.  
Regression to the mean constitutes a universal and incon-
testable law of the probabilistic world (Campbell & Kenny, 
1999; Rulon, 1941). If the correlation rxy of two variables X 

and Y is less than perfect (|rxy| < 1), the expected Ŷ values  
that can be predicted from given values of X must be 
regressive (Furby, 1973; Galton, 1886). Assuming scales of 
equal variance and ruling out other influences on Y, the 
expected individual Ŷi scores must be less extreme (i.e., 
deviating less from the mean) than the corresponding indi-
vidual predictor scores Xi scores. High (above-average) Xi 
values predict relatively lower Ŷi values, and low (below-
average) Xi values predict relatively higher Ŷi values. More 
precisely, the deviations of Ŷi from the mean, ŷi = Ŷi – 
Mean(Y), can be expected to be rxy times the X devia-
tions, xi = Xi – Mean(X). Thus, if rxy = .5, Ŷi scores can be 
expected to be only half as extreme as the corresponding 
predictor values Xi.

To be sure, this rule describes the regressive shrinkage 
of expected Ŷ scores that can be explained by predictor 
X. It does not determine obtained measures of Y that may 
be influenced by other factors (besides X) that may coun-
teract the regression of Ŷ on X. However, in any case, 
regression conceived as a theoretical construct (Fiedler & 
Krueger, 2012; Fiedler & Unkelbach, 2014) allows for 
strict theorizing. As rxy decreases, Ŷ can be expected to 
exhibit regressive shrinkage relative to X, but if obtained 
measures of Y do not show regression, one is on safe 
logical ground inferring the existence of an extraneous 
causal factor.

In psychophysics, for example, frequency judgments 
cannot be expected to match objective stimulus frequen-
cies unless judgments are perfectly accurate (rxy = 1). 
Because this condition is never met in reality, imperfect 
judgments (rxy < 1) can be expected to exhibit regressive 
shrinkage (on comparable scales of equal variance). 
Large frequencies should be underestimated, whereas 
small frequencies should be overestimated; the larger 
(smaller) the objective frequencies, the stronger the 
underestimation (overestimation). In other words, regres-
sive shrinkage is a (multiplicative) function of rxy and the 
extremity of the stimulus quantities. Assuming a modest 
correlation of rxy = .5, expected judgments shrink to half 
the objective values. If rxy = .75, judgments shrink to 
three quarters of the objective quantities.

Regression is “as inevitable as death and taxes” (Camp-
bell & Kenny, 1999, p. ix). Just as expected retest scores 
are less extreme than original test scores, or replication 
effect sizes cannot be expected to match original effect 
sizes, subjective judgments can be expected to regress on 
objective quantities. The incontestable law of regressive 
shrinkage can be used for strict theorizing. For example, 
Fiedler, Unkelbach, and Freytag (2009) tested the follow-
ing refined set of predictions derived from the regression 
law. High frequencies should be underestimated and low 
frequencies should be overestimated, as already noted, 
and the degree of regressive under- and overestimation 
should increase with extremity. Moreover, because noise 
or cognitive load should reduce the judgment performance 
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rxy, the manipulation of cognitive load should amplify the 
regressive pattern. It also was predicted that unpacking 
overall frequencies of stimulus categories (butterfly types) 
into smaller frequencies of subcategories (different color 
mutants of the same butterfly types) would cause extra 
regression. Splitting a small frequency into two extremely 
small subfrequencies should produce enhanced overesti-
mation effects on both estimates, the sum of which must 
therefore exceed the estimate of the nonsplit category. 
Similarly, splitting a highly frequent category into two 
medium-size subcategories should undo regressive under-
estimation; summed subcategory ratings should no longer 
underestimate actual frequencies. Note in passing that the 
regression approach offers a natural explanation for 
unpacking or category split effects (Fiedler & Armbruster, 
1994; Tversky & Koehler, 1994): Summed estimates of split 
categories should exceed estimates of nonsplit categories. 
It can be shown that splitting of small, medium, and high 
frequencies produces a constant overestimation effect (cf. 
Fiedler & Krueger, 2012).

Thus, logically sound theorizing using an incontest-
able law predicts the refined pattern in Figure 4, which 
plots expected subjective frequency judgments on the 
vertical axis as a function of objective stimulus frequen-
cies on the horizontal axis. Several experiments, indeed, 
support this differentiated set of predictions (Fiedler, 
Unkelbach, & Freytag, 2009): High (low) frequencies are 
underestimated (overestimated); regression increases 
with extremity; cognitive load (induced by secondary 
task) amplifies the regression effect (see flatter slope of 
black than gray curves); and splitting (unpacking) cate-
gory frequencies into smaller subcategory frequencies 
causes a constant increase in the summed estimates (see 
constant elevation of circles over squares).

Supportive evidence for such a complex pattern could 
not be simply due to chance. Obtaining the full pattern, 
derived from an incontestable law, can hardly reflect an 

α error. Significance testing becomes obsolete when 
strong theorizing predicts such informative, diagnostic 
patterns that cannot be explained by chance or by appar-
ent alternative hypotheses. The epistemological status of 
the theory is not built on empirical data but on certitude; 
regression is always at work when the correlation 
between two variables (subjective and objective frequen-
cies) is less than perfect (Campbell & Kenny, 1999).

Regression as a theoretical construct can not only gen-
erate novel hypotheses that would be overlooked other-
wise. It also offers a parsimonious theoretical account of 
many established empirical phenomena. Unequal regres-
sion can explain biases in conditional reasoning (Fiedler, 
2008), overconfidence (Erev, Wallsten, & Budescu, 1994; 
Moore & Healy, 2008; Oskamp, 1965), unrealistic opti-
mism (Krueger & Mueller, 2002), or illusory correlations 
(Denrell & Le Mens, 2011; Fiedler, 1991; Kutzner & 
Fiedler, 2015). Thus, the regression construct provides a 
nice illustration of strictly theory-driven cumulative sci-
ence. Innovative and highly diagnostic hypotheses can 
be derived logically. It matters little what an author 
believes or declares. What matters in theory-driven sci-
ence is whether a pattern follows from the theory, which 
speaks for itself, independent of individual authors’ 
motives and beliefs.

The predicted pattern in Figure 4 follows logically from 
the universal, nonfalsifiable law of regression. This is not 
to say that empirical research is obsolete because fre-
quency judgments are predetermined anyway. In a multi-
causal world, it is always possible that other causal factors 
counteract and override the regression effect. For instance, 
a participant in a psychophysical experiment might delib-
erately correct for regressive shrinkage and thus produce 
nonregressive, polarized frequency judgments. Note, how-
ever, that such an empirical outcome—which is rarely found 
in frequency estimation studies—would not logically falsify 
the predictions derived from the regression construct. It 
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Fig. 4.  Example of a refined hypothesis predicting a systematic pattern of expected fre-
quency estimates Ŷ (across seven levels) as a function of corresponding objective stimulus 
frequencies X and two moderating conditions (split and cognitive load).
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could rather be interpreted as cogent evidence that another 
causal influence has overridden the regression effect. 
Thus, in theory-driven research, the failure to obtain a 
predicted pattern is getting a completely new meaning. 
Rather than falsifying a solid theory, it can be exploited as 
a benchmark for the discovery of formerly unrecognized 
causal influences. In any case, the regression example 
highlights the fact that Ωprior can be high for purely ana-
lytical reasons, independently of prior data, reflecting the 
a priori core of a theory (Lakatos, 1970).

Theorizing based on inductive empirical infer-
ences.  One might object that undoubted rules like regres-
sion are too scarce to inform many studies, but such a 
disclaimer strikes me as unwarranted. A whole variety of 
analytical principles is waiting to be exploited for theory-
driven science: the principle of aggregation (i.e., cancella-
tion of error variance), the law of the large number, the 
principle of relativity (i.e., context dependency), the 
increase in resolution level with decreasing psychological 
distance, or the impact of information density on judg-
ment and learning to list but a few examples.

Still, in addition to science resting on a priori rules, 
there is also the possibility of basing theory-driven research 
on firmly established empirical laws. Negatively acceler-
ated (concave) psychophysical functions (Stevens, 1957); 
the positive–negative asymmetry in associative learning 
(Unkelbach, Fiedler, Bayer, Stegmüller, & Danner, 2008); 
rules of conditioning (De Houwer, 2007); or the notion of 
white, pink, and brown noise in biological systems (Gilden, 
2001) reflect empirical laws that can be used as bench-
marks for cumulative science.

Decision-affect theory (Mellers, Schwartz, & Ritov, 
1999) affords an illustrative case of such theorizing 
informed by solid empirical evidence. Numerous experi-
ments highlight the relativity of judgments and decisions 
(Parducci, 1968; Stewart, Chater, Stott, & Reimers, 2003). 
The attractiveness of a decision option not only depends 
on the utility and probability of the chosen outcome but 
also on the utility and probability of alternative options. 
A positive (negative) outcome from one option may be 
disappointing (satisfying) if another option had resulted 
in an even better (worse) outcome. Relativity effects are 
particularly strong if the obtained outcome is unlikely or 
unusual, relative to the forgone outcome.

In formal notation, decision-affect theory specifies the 
reward value of an obtained option (Robtained) as a 
weighted additive function of the utility of the obtained 
outcome (uobtained) plus the disappointment (d) reflecting 
the difference uobtained − uforgone of the obtained and for-
gone utility weighted by one minus the subjective prob-
ability of the obtained outcome (sobtained)):

	 Robtained ~ uobtained + d(uobtained − uforgone) × (1 − sobtained)

Let “~” denote “is linearly related to.” Thus, reward 
Robtained depends not only on the utility of the obtained 
outcome uobtained but also on a disappointment function d 
that is sensitive to relative utility (uobtained − uforgone). If d is 
negative because the forgone outcome exceeds the 
obtained outcome, disappointment will make Robtained 
smaller than uobtained, especially if the obtained outcome 
is rare; that is, if (1 − sobtained) is large. Figure 5 exhibits a 
possible pattern of predicted reward values Robtained, 
assuming uobtained values of −12, −9, −6, −3, 0, 3, 6, 9, and 
12, and uforgone values of −8, 0, and 8, for sobtained = .2 and 
.8. Disappointment d is assumed to be a power function 
of utility differences (d = u0.5 and d = −|u|0.5 for positive 
and negative u values, respectively). Note that the spe-
cific exponent of 0.5 does not belong to the theory’s core 
assumptions but is only an auxiliary assumption used for 
scaling purposes (according to the distinction used by 
Lakatos, 1970; Meehl, 1990; and others).

Again, the theory predicts an entire set of curves that 
have been tested and supported in a series of experi-
ments (McGraw, Mellers, & Ritov, 2004; Mellers, Schwartz, 
Ho, & Ritov, 1997). Unlike the analytical type of strong 
theorizing, decision affect theory contains falsifiable 
assumptions. One could falsify that disappointment (or 
regret) is a power function of utility differences that can 
be amplified by a weighting factor and by the improba-
bility of the obtained outcomes. Such assumptions may 
be rooted in empirical findings that are not necessarily 
true. Still, even when the theory is not correct on a priori 
grounds, once the pattern of Figure 5 has been obtained 
regularly, this could hardly reflect a false-positive error by 
chance. It would be difficult to find alternative accounts 
for such a diagnostic pattern.

Theory-driven and phenomenon-
driven research

The deductive approaches depicted in the last section 
represent one extreme on a continuum from theory-
driven to phenomenon-driven research. Whether highly 
diagnostic and distinct hypotheses are derived from a 
priori rules or from approved empirical laws, the situa-
tion is quite different from the lottery-like hypothesis-
testing game we have used to explain the dilemma of 
research that must be either innovative or solid but not 
both. Patterns like the ones in Figures 4 and 5 cannot be 
expected by chance, at an error rate of .05, nor can such 
a hypothesis be drawn by chance from an urn containing 
10,000 hypotheses, of which 400 happen to be correct. 
The criterion of statistical reliability (α error) has to be 
replaced by a superordinate criterion of construct valid-
ity, conceived as an isomorphic match between predicted 
and obtained patterns (Westen & Rosenthal, 2003). Ωprior 
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can be high and LR can be diagnostic when hypotheses 
rely on solid theorizing rather than only on noisy empiri-
cal data.

However, it is important to note that it is neither justi-
fied nor desirable to restrict behavioral science to strictly 
theory-driven research of the latter type. One should not 
underestimate the value of phenomenon-driven research 
on the opposite pole of the dimension, regardless of its 
modest levels of Ωprior and LR. It is neither unscientific nor 
useless when social scientists, who live outside an ivory 
tower, dare to tackle risky research topics for which no 
strictly theory-driven account is available (yet). On the 
contrary, such phenomenon-driven research, which is 
often of the sexy-hypothesis testing type, can be as cre-
ative, proficient, and fascinating, deserving the same 
respect as theory-driven research. Once an originally 
unlikely, risky hypothesis has received unexpected sup-
port, it brings about real scientific progress (cf. Van Lange, 
2013).5

Let us illustrate this point with a few up-to-date exam-
ples. Given the key function of the immune system for 
well-being and health, the finding that psychological 
interventions like humor (Lefcourt, Davidson-Katz, & 
Kueneman, 1990) or self-disclosure (Pennebaker, 1989) 
lead to measurable improvement in immune-system indi-
ces must be embraced as exciting and challenging. Recent 
evidence shows that disgusting stimuli serve as catalysts 
that can amplify psychologically triggered immune reac-
tions (Schaller & Park, 2011). How could psychologists 
refrain from tackling such exciting research topics just 

because the precise causal mechanism and hence the 
boundary conditions for replication are unknown? Given 
the potential benefits of insights on the immune system, 
should the quality of such bold, risk-abiding research 
depend on the rate of correct hypotheses tests or suc-
cessful replications?

The answer to both questions is certainly no. It is not 
reflective of inferior research but actually an obligation 
and a necessary part of responsible science when psy-
chologists dare to study such important issues. Other 
examples of bold phenomenon-driven research—with-
out a well-established theory—can be easily found in the 
literature. The phenomenon of stereotype threat refers to 
academic-performance reduction of members of a ste-
reotyped group that are merely reminded of the stereo-
type (Steele, 1997). False confessions due to memory 
illusions and interrogation techniques have been shown 
to be more prevalent than expected (Shaw & Porter, 
2015). Unconscious stimulation during sleep can system-
atically affect attitudes (Feld & Born, 2015). Multiple-
choice formats may not provide appropriate measures of 
academic performance (Roediger & Marsh, 2005). Self-
control may affect health, professional success, well-
being, and achievement (Tangney, Baumeister, & Boone, 
2004).

The psychological value of such enlightening findings 
does not necessarily depend on their generality or exter-
nal validity (Campbell, 1957). Thus, even when the ability 
of disgust to trigger immune reactions can be established 
as a robust finding, this need not mean that the same 
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Fig. 5.  Reward value, according to decision affect theory (Mellers, Schwartz, & Ritov, 
1999), as a function of the utility of the obtained outcome (uobtained) and the utility of 
the forgone outcome (uforgone), assuming two different subjective probabilities of the 
obtained outcome (sobtained). Because of an arbitrary scaling factor, Robtained is not stated 
numerically.
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disgust effect generalizes across all individuals, settings, 
and cultures. Assuming the perfect validity of a single 
causal hypothesis (i.e., that disgust strengthens immune 
reactions), it is nevertheless possible that other causal 
influences on the immune system can overshadow the 
disgust effect. Yet, at a functional level of analysis, disgust 
effects can be enlightening and intriguing, fostering fur-
ther research and interventions—well before the underly-
ing causal mechanism is fully understood.

Concluding Remarks

Science is a pluralistic endeavor that should not be forced 
into the corset of one specific format. If science is to 
flourish and to achieve progress, there must be room for 
competing theories, methods, and different conceptions 
of what science is about. Symbiotic collaboration must be 
possible between theory-driven and phenomenon-driven 
research. There is no reason to disqualify or downgrade 
properly conducted research of any particular type.

However, for science to grow and to unfold its poten-
tial in the future, it is essential to recognize the chances 
and limitations of distinct types of research and to deal 
with many challenges in theorizing and logic of science—
beyond superficial issues of data analysis. No statistical 
analysis can be better than the design of a study, and no 
research design can be better than the rationale of the 
underlying theory. The logic and the purpose of scientific 
inquiry often are neglected in the current discourse on 
quality of science (cf. Higgins, 2004; Kruglanski, 2001), 
which is almost totally centered on statistics and compli-
ance rules.

To summarize the arguments presented in this article, 
I started with a discussion of Ioannidis’s (2005) meta-
scientific count of “wrong findings.” A critical analysis 
revealed that minimal hypotheses suggesting an increase 
or decrease in Y as a function of a single causal condition 
X can hardly inform strong scientific inferences. In Bayes-
ian terms, such studies suffer from low Ωprior (when sexy 
hypotheses are unlikely on a priori grounds) as well as 
from low LR (because alternative causes also account for 
increases or decreases in Y). As a consequence, the 
results of singular studies, relying on arbitrarily selected 
operationalizations of Y = f(X), neither justify the infer-
ence that the hypothesis is true (because a predicted out-
come might reflect another, correlated cause) nor the 
inference that the hypothesis is false (because a negative 
outcome may reflect the overshadowing impact of an 
uncontrolled cause).

Increasing the number of participants to achieve 
higher statistical power or running a Bayesian rather than 
a Fisherian t test cannot solve this fundamental problem. 
To improve the validity of scientific inferences, investiga-
tors must take the first and foremost step of improving 

research designs, treating not only participants but also 
stimuli, tasks, and measures as random variables. How-
ever, although approximating a representative design 
(Brunswik, 1955; Dhami, Hertwig, & Hoffrage, 2004; 
Wells & Windschitl, 1999; Westfall, Kenny, & Judd, 2014) 
serves to foster the external validity or generality of sci-
entific findings, it cannot solve theoretical problems of 
discriminant validity. Even the most sophisticated statis-
tics and designs cannot rule out the possibility that other 
hypotheses provide more adequate accounts than the 
focal hypothesis.

This is not to say that strong scientific inference is 
impossible; it is just something ambitious and difficult to 
achieve, occurring in only a few extraordinary moments 
when a deeper understanding of an entire causal struc-
ture is obtained after a long series of careful and clever 
studies in a well-understood paradigm. One should not 
expect the outcome of each and every singular study to 
provide unequivocal evidence for the validity of a 
hypothesis and to discover ultimate solutions of major 
theoretical problems. In addition, one should not under-
estimate the exploratory insights gained from many ordi-
nary studies that do not involve final theory tests. 
Phenomenon-driven research can be enlightening and 
practically important, especially when studies are content 
valid (e.g., measuring real people’s immune system) and 
when they help researchers to develop clever research 
designs or new methods. Nevertheless, the distinction 
between such laudable exploratory research in applied 
and natural domains and strong theoretical inferences in 
cumulative science must not be blurred. Fully different 
criteria are needed to evaluate the quality of both kinds 
of research.

With respect to a second research approach, model-
testing, I have shown that more complex and sophisti-
cated hypotheses that are wired into formal models need 
not overcome the limitations in Ωprior and LR. Regardless 
of the respect and admiration that I have for model build-
ers’ formal skills, model tests involve very strong conjunc-
tive assumptions that reduce Ωprior, and LR is often 
restricted when different models (often with qualitatively 
different structures and architectures) can account for the 
same empirical findings. As a consequence, model testing 
per se need not warrant unequivocal scientific inferences, 
even though it may inspire precise theoretical and causal 
reasoning. It seems fair to conclude that modeling mainly 
contributes to the logic of discovery (Reichenbach, 
1938/1952) and only rarely leads to confirmatory diagnos-
tic inferences. Really compelling models that have greatly 
improved behavioral science (such as Swets et al., 2000) 
are precious and rare.

The main section of this article was devoted to delin-
eating an alternative research approach, which suggests a 
straightforward but somewhat neglected way to improve 



58	 Fiedler

scientific inferences, in terms of both Ωprior and LR. This 
alternative involves the derivation of distinct and refined 
patterns of predictions, supposed to be as diagnostic and 
informative as possible, from firmly established principles. 
Such research suggests how both LR (making predicted 
patterns too refined to be expected from chance or alter-
native hypotheses) and Ωprior (deriving hypotheses from 
incontestable or firmly established assumptions) could be 
maximized. This approach emphasizes strong theorizing, 
logic of science, and a priori reasoning. Although several 
examples testify to the viability of this alternative approach 
and although its domain may be larger than apparent at 
first sight, one might contest that this sort of science is 
hard to realize. This may be true. However, should this 
prevent scientists from trying to pursue both ideals at the 
same time, improving the a priori odds of hypotheses as 
well as designing diagnostic hypothesis tests? Are both 
ideals not worthwhile of being pursued anyway?

For the potential of pluralistic science to be explored, 
there has to be a competitive collaboration between 
methodologies and meta-theories. My aim here was not 
to denigrate sexy-hypothesis testing or model testing 
while idealizing the assets of cumulative theory-driven 
science as the only viable alternative. In fact, the bound-
aries of these research modes are blurred anyway; most 
real studies represent blends of more than one of these 
approaches. The high a priori odds of a good theory 
often take advantage of the empirical knowledge accu-
mulated in previous research, including phenomenon-
driven studies. Examples of fascinating and admirable 
research that deserves to be imitated can be found in all 
three (overlapping) camps.

Yet, while sexy-hypotheses and model testing flourish 
in current psychological science, it is amazing to see to 
what extent the a priori value of theories and the diag-
nosticity of research designs continue to be neglected. 
When it comes to evaluating quality of science, awarding 
the work of individual researchers, funding of research 
projects, making publication decisions for major journals, 
or selecting topics to be included in training curricula, 
the scientific community is giving almost all the weight to 
visibility indices and citation frequencies of surprising 
results, formal skills and precision cues associated with 
model fitting, and proficiencies in using statistical tools. 
Reviewers and editors of even the best publication out-
lets praise contributions that focus on mainstream posi-
tions (dual-process theories, rational choice, and so on), 
fast and sexy findings (automatic cognition and embodi-
ment), fashionable methods (new statistics and media-
tion tests), and compliance with research practices (large 
sample sizes and transparent data repositories).

However, the “system” that governs publication, fund-
ing, and awards is hardly sensitive to slow and rigorous 
research or clever designs and even less sensitive to 

strong and logically sound theorizing. It does not suffi-
ciently appreciate the Salmon principle as formulated by 
Meehl (1990, p. 115): “The main way a theory gets money 
in the bank is by predicting facts that, absent the theory, 
would be antecedently improbable.” Paul Meehl is also 
explicit in stating that the diagnosticity or “intolerance” of 
a hypothesis “is not best judged by traditional signifi-
cance testing” (p. 139) but only by comparing competing 
theories’ logical constraints (i.e., their “Spielraum”).

The future growth of psychological science calls for a 
change in the value hierarchy from statistics to research 
design and theorizing. For research to flourish and to 
enable strong scientific inferences, in addition to surpris-
ing and inspiring discoveries and reputable methods and 
models, it is essential to take the diagnosticity of empiri-
cal hypothesis tests and the a priori likelihood of under-
lying theories into account.
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Notes

1. Ioannidis (2005) originally referred to positive predictive 
value (PPV), an index slightly different from TP.
2. In decision making under risk, the outcome probabilities are 
known, unlike decision making under uncertainty.
3. Thus, another strong assumption is that the required expected 
value is known or estimated to select a heuristic.
4. Such a diagnostic pattern should be observed within individual 
participants and not only at group level in majority choice rates.
5. Note that the confirmation of unlikely hypotheses is asym-
metrically more diagnostic than its disconfirmation (Trope & 
Thompson, 1997).
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