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The multiverse analysis, as termed by Steegen, Tuer-
linckx, Gelman, and Vanpaemel (2016), is premised on 
the idea that in every analysis there are multiple reason-
able options for the many decisions researchers must 
make about the data they have collected. These deci-
sions could include rules for which participants are 
excluded, how certain variables are operationalized 
(e.g., what denotes the onset of puberty for male ado-
lescents), how models are specified, and other judg-
ment calls. Therefore, there exists for each analysis a 
set of potential data sets and analyses that could have 
been used instead—in other words, a “multiverse” of 
data sets and analyses. In a classic multiverse analysis, 
a single data set is collected or simulated, and a mul-
tiverse of data sets is generated by performing every 
possible combination of data-cleaning decisions. After 
this step is completed, analyses are performed on every 
potential data set in the multiverse to assess the extent 
to which each data decision affects the significance of 
the results.

The purpose of this method is to address researcher 
degrees of freedom by making the consequence of each 
of these choices transparent and to detect which choices 

have true implications for study conclusions. The mul-
tiverse analysis does not provide any information about 
the correct option in each of these choices. Rather, it 
provides descriptive information demonstrating the sen-
sitivity of analyses to each data or analytic decision. 
The multiverse analysis can thus indicate the robustness 
of an existing study’s conclusions to these decisions 
and can also identify the decisions for which it is impor-
tant to determine methods a priori in future studies.

Multiverse analyses have been used across several 
fields of research and can address any number of 
potential data decisions. For example, Dejonckheere 
et  al. (2018) conducted three studies of certain indi-
vidual differences predicting symptoms of depression 
and used multiverse analyses to show that each of these 
studies found the same conclusions regardless of which 
scale items were used to operationalize the indepen-
dent variables. In another study, Credé and Phillips (2017) 
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used a multiverse analysis to test whether conclusions 
from a study on power poses were sensitive to rules 
for identifying outliers, the inclusion of control vari-
ables, and the way the dependent variable was speci-
fied. This led to the insight that conclusions about the 
effect of power poses on hormone levels were highly 
dependent on certain analytic decisions. In short, mul-
tiverse analyses are useful whenever the decisions for 
how best to clean and/or analyze data have an arbitrary 
component that could affect results.

A Multiverse of Methods

One limitation of the multiverse analysis, however, 
stems from the fact that only one raw data set is used 
to generate the multiverse. For this reason, a multiverse 
analysis can address only data cleaning and analytic 
decisions, yet researcher decisions that affect results 
can also happen at the data-collection stage. For exam-
ple, a researcher might choose among multiple vali-
dated measures of a disorder or whether to use rats or 
mice as subjects. In some cases, this decision can lead 
to a situation in which different researchers’ studies on 
the same question yield inconsistent results, and it is 
unclear which data-collection decision—if any—is 
responsible for the inconsistencies. The confusion may 
be exacerbated by additional variation across studies 
in other manipulated variables or in the type of statisti-
cal analysis used.

Such confusion can stall research progress by creat-
ing a lack of clarity on best practices for data collec-
tion. When there is precedent for multiple alternative 
methods, researchers may unwittingly choose less 
effective methods. Researchers may also attempt to 
build on the results of previous studies that used these 
methods, which may be methodological artifacts or 

entirely spurious. It would be helpful to have a tool 
for identifying which methodological changes actually 
generate different results given the same analysis. The 
classic multiverse analysis cannot answer this question. 
However, a straightforward adaptation to the multi-
verse approach may provide a solution.

Researchers can adapt the multiverse method to map 
out the impact of data-collection decisions, so that 
instead of multiple versions of a single data set, the 
multiverse of data sets is composed of real data sets 
from studies varying in data-collection methods of 
interest. The traditional multiverse of data sets is essen-
tially replaced with what might be termed a “multiverse 
of methods.” Subsequently applying the analysis of 
interest to each of these data sets would then reveal 
which of these decisions were consequential for study 
results.

For example, suppose that a field of research exists 
studying the effect of mindfulness training on team effi-
ciency and that past studies have varied in (a) the size 
of the teams studied and (b) the metric of team effi-
ciency. Imagine further that metrics of efficiency fall into 
three broad types. A researcher applying a multiverse-
of-methods approach might visually represent past 
studies’ conclusions arrayed on a grid, with three rows 
representing metrics of efficiency and studies arranged 
along those rows in order of increasing team size (see 
Fig. 1). This would allow the researcher to visualize 
how (if at all) study conclusions change with increasing 
team size for each of the three metrics. This multiverse 
analysis would indicate whether team size and effi-
ciency metrics affect results—with implications for 
whether studies varying in these factors can be com-
pared. It would also suggest hypotheses for what met-
rics should be used when teams of a particular size are 
studied.

Metric 1 p < .05

p < .05 p < .05 p < .05

p < .05 p < .05 p < .05

p < .05n.s. n.s. n.s. n.s.

Metric 2 n.s. n.s.

Metric 3 n.s. n.s. n.s.

Team Size: 3 5 8 12 12 14

Fig. 1. Output from a hypothetical multiverse of 17 studies. Unshaded cells represent studies 
that supported the alternative hypothesis. Shaded cells containing “n.s.” represent studies with 
null results. One square is left unlabeled because no study used Metric 2 with a team size 
of three. Results suggest that Metric 2 may be sensitive to effects in larger teams and Metric 
3 may be sensitive to effects in smaller teams, whereas Metric 1 may not be a consistently 
effective measure.
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Of course, in this simple example, similar informa-
tion might be gained by performing a moderated meta-
analysis. However, consider now a situation in which 
studies vary by five different methodological decisions, 
several of which are expected to interact with each 
other to influence results. Unless many very large data 
sets are available, a meta-analysis is unlikely to have 
enough power to quantitatively examine interactions 
of such complexity. This is particularly true if the data 
sets of interest have some hierarchical structure that 
must be accounted for with multilevel modeling on top 
of the multilevel modeling already inherent in meta-
analysis. Moreover, in some situations, one question of 
interest is the decision about what analysis to use, 
which is not something that can be varied in a meta-
analysis. There may even be a question of whether the 
outcome of different analysis options may depend on 
certain data-collection decisions of interest. In these 
situations, a multiverse analysis provides the flexibility 
to answer questions that a meta-analysis cannot.

The current article aims to provide a nuanced intro-
duction to this multiverse-of-methods approach. To 
demonstrate the usefulness, methodology, and limita-
tions of the approach for realistically complex areas of 
research, I present an extended example applying the 
approach to studies on shooting decisions. I begin by 
discussing methodological ambiguities in this line of 
research and how a multiverse-of-methods analysis 
could be applied. I then walk through an analysis 
applying the approach to real data from 19 shooting-
decision studies. The article concludes with further 
discussion of some of the limitations and applications 
of this method.

Shooting Bias

Psychologists (Correll, Park, Judd, & Wittenbrink, 2002) 
have developed the First-Person Shooter Task (FPST) 
to measure racial bias in the kind of decisions police 
officers make about whether to shoot a suspect. In this 
laboratory task, participants view images of Black and 
White men holding guns or harmless objects and must 
quickly decide whether to press a “shoot” button if the 
man is holding a gun or a “don’t shoot” button if he is 
not. As Mekawi and Bresin (2015) confirmed in their 
meta-analysis, this paradigm reliably produces a pattern 
of responding often referred to as “shooter bias” (i.e., 
the tendency to choose “shoot” faster and more often 
for Black targets than for White targets). The past two 
decades have seen the growth of a subfield of research-
ers exploring the sources and moderators of this bias. 
However, despite researchers’ shared use of the same 
basic experimental task, the field is not unified by a 
common understanding of best practice in applying this 

task, and shooter studies vary widely in a number of 
both analytic and methodological practices.

Variations in analytic practice

Four analytic decisions stand out as having potential 
implications for the results of shooter studies. First, 
there is no consensus across shooter studies as to which 
dependent variable should be used to measure bias at 
the behavioral level. A shooter task produces data for 
two dependent variables: errors (i.e., when did the par-
ticipant shoot unarmed targets and fail to shoot armed 
targets) and reaction time (how quickly did the partici-
pant respond). Some studies (e.g., Miller, Zielaskowski, 
& Plant, 2012) report analyzing only the error data. 
Others (e.g., Correll, Urland, & Ito, 2006) report analyz-
ing only reaction-time data for correct responses.1 It is 
not clear that one of the two response variables is the 
“best” variable for assessing shooter bias. However, if 
the choice of the response variable can affect the 
study’s outcome, then researchers should take care to 
avoid exploiting these researcher degrees of freedom.

Moreover, it is possible that reaction-time data and 
accuracy data may reflect bias under different circum-
stances. For example, studies vary considerably in the 
response window: the time limit for responding on a 
given trial. It may be that shooter bias appears in one 
or the other metric depending on the length of the 
response window. Short response windows may pro-
duce such uniformly quick responses that shooter bias 
appears only in errors, and long response windows may 
produce so few errors that shooter bias appears only 
in reaction time.

A second area in which shooter studies vary is the 
statistical methods used to analyze error data. One 
method is to calculate each participant’s overall error 
rate for each target type (armed Black, unarmed Black, 
armed White, unarmed White) and analyze these values 
within an analysis-of-variance (ANOVA) framework. A 
second method is to model trial-level error data, clus-
tered by participant, with a multilevel logistical regres-
sion.2 Modeling trial-level data with multilevel logistic 
regression is more appropriate statistically because 
summary values fail to take into account any differences 
across participants in the number of observations or 
the reliability of those observations within each condi-
tion (Nezlek, 2008). However, error-rate ANOVAs are 
used more often in shooter research.

The third issue again involves multilevel modeling 
and merits a more detailed explanation. It may be help-
ful to briefly review some terminology used in multi-
level modeling before describing this issue. Fixed effects 
refer to traditional regression effects: intercepts and 
slopes for which we wish to estimate a coefficient. In 
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multilevel modeling, any of these fixed effects can be 
allowed to randomly vary according to a grouping fac-
tor. For example, participant is a grouping factor if there 
are multiple observations for every participant. If there 
are multiple observations across each race-by-object 
combination for each participant, then it is possible to 
calculate an individual’s personal slopes for race and 
for object. If we allow slopes for race to vary randomly 
by participant (i.e., random slopes by participant), that 
means we are allowing each participant to have a dif-
ferent slope for race. The model therefore estimates the 
distribution of all of these participants’ race slopes and 
calculates the variance of all of those slope estimates. 
Race is the random slope, participant is the grouping 
factor, and the variance of those race slopes across all 
participants is a parameter in the model called a ran-
dom effect. Thus, we are using participant idiosyncrasy 
to explain some variance in the data. Likewise, if there 
are multiple observations for each target—which is true 
in a typical shooter study because each participant sees 
each target multiple times—then target is a grouping 
factor that can also explain some variance in the data.3

The third issue with standard practice in shooter-
study analyses is that they typically did not control for 
random effects of the target individual appearing in 
each trial. That is, the analyses did not statistically 
account for random variation across the stimuli them-
selves, which could explain differences in responses to 
White versus Black targets. Controlling for the variation 
introduced by target idiosyncrasies is important for 
ensuring that any observed effects can be generalized 
to other possible stimuli ( Judd, Westfall, & Kenny, 
2012)—or, in this case, to other individuals in the “real 
world” (i.e., suspects in police work). There is a risk 
that any effects found without accounting for this 
source of variance may be spurious, arising from some 
chance feature of the study’s stimulus set.

This issue is further complicated by the fact that there 
are multiple options for how to specify random effects 
for targets. One option is to allow only intercepts to vary 
by target, such that the model allows for the possibility 
that each target elicits a different baseline error rate or 
baseline response speed (depending on which response 
variable is being modeled). However, the researcher can 
also choose to allow slopes for the object variable (i.e., 
whether the target is holding a gun vs. a harmless object) 
to vary randomly by target. Allowing object slopes to 
vary by target allows for the possibility that the effect of 
the object on the dependent variable (error or reaction 
time) is different for each target, even after the effect of 
race is accounted for. The relationship between object 
and error indicates the overall tendency to shoot in terms 
of decisions (e.g., more errors for unarmed targets means 
a greater frequency of the “shoot” decision), whereas the 

relationship between object and reaction time indicates 
the overall tendency to shoot in terms of speed (e.g., 
faster reaction times for armed targets means that “shoot” 
decisions are made faster than “don’t shoot” decisions). 
Therefore, random object slopes at the target level allow 
for the possibility that participants’ shooting responses 
vary across targets.

The rationale for allowing slopes for object to vary 
randomly by target is that a difference in shooting 
behavior between the Black and White conditions may 
arise from chance characteristics of the targets in each 
race. For example, suppose that several of the White 
targets in a shooter stimulus set happen to be less 
muscular, or perhaps more “baby-faced,” than the aver-
age Black targets in the stimulus set. This could pro-
duce a spurious difference in how “threatening” the 
average member of each group appears, which could 
lead White targets to be shot less often (i.e., have dif-
ferent object slopes predicting error) than Black targets 
because of this aspect of appearance. However, parsing 
out the idiosyncratic effects of individual targets on the 
object slope will decrease the influence of such anoma-
lous targets on estimates of the object slope for each 
race. Nevertheless, the vast majority of shooter studies 
have not specified random effects aside from using a 
within-subjects structure (i.e., allowing intercepts to 
vary randomly by participant).

Random-effects specifications for shooter data can 
also include random slopes at the participant level, and 
the infrequency with which this is done is a fourth issue 
with current analytic practice in this field. Specifically, 
if slopes for object are allowed to vary randomly by 
participant, this controls for the individual-specific rela-
tionship between object and error or speed (depending 
on the response variable), which can be conceptualized 
as individuals’ baseline tendency toward a “shoot” deci-
sion. If slopes for target race are allowed to vary ran-
domly by participant, this controls for individuals’ 
baseline tendency toward error or speed when the tar-
get is Black versus White. Specifying analyses in this 
way makes it more likely that results will generalize to 
other participants outside the study’s sample (i.e., that 
conclusions will not be unduly affected by oddly behav-
ing participants). It should be acknowledged that in 
shooter studies, the interaction of object and race is the 
term of interest, and specifying random slopes for 
object and/or race will primarily affect the fixed main 
effects of those variables, with a small impact on their 
interaction. However, even if the impact on the interac-
tion is negligible, researchers often report all terms of 
a model (e.g., in a table), and ensuring that all terms 
are accurately specified is advisable in the interest of 
correctly reporting effects that other researchers may 
wish to interpret.
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Variation in methodological practice

Shooter studies also vary in some methodological details 
regarding data collection. I consider three here: response 
window length, number of stimuli, and sample size.

Shooter studies vary considerably in the length of the 
window during which participants may respond to a 
target, with some studies setting the response window 
as short as 590 ms (Ito et al., 2015) and others as long 
as 2,000 ms (Eiler, 2017). A few studies have even placed 
no limit at all on the response time (Park & Glaser, 2011; 
Park, Glaser, & Knowles, 2008; Park & Kim, 2015). It is 
unclear whether this might affect shooter bias, except 
for the possibility discussed above that the response 
window length will determine whether bias appears in 
reaction-time data or in accuracy data.

Another source of methodological variation is the 
number of stimuli used in the task. The number of dif-
ferent target individuals in a given shooter study can 
vary widely, from two (Eiler, 2017) to 50 (Sim, Correll, 
& Sadler, 2013). The number of targets has the potential 
to affect results because, as discussed in the previous 
section, when fewer targets are used there is a greater 
risk that chance variation among targets could generate 
spurious race effects. Moreover, even when researchers 
attempt to address this concern by controlling for target-
level random effects, small numbers of targets pose a 
problem because the number of targets constrains the 
statistical power of these analyses. Simulations by Judd 
et al. (2012) suggest that shooter studies may need at 
least 50 targets (25 per race) to ensure 80% to 90% sta-
tistical power. Unfortunately, to my knowledge only 
three publications (Correll et  al., 2002; Ma & Correll, 
2011; Sim et al., 2013) have used this number of targets, 
and none have exceeded it. Likewise, participant sample 
sizes in shooter studies range widely, from 38 (Pleskac, 
Cesario, & Johnson, 2018) to 406 (Ito et  al., 2015), 
demonstrating a lack of consensus as to the number of 
participants needed to detect a shooter-bias effect.

In sum, although shooter studies all purport to study 
the same phenomenon, there is no established norm of 
best practice determining how the FPST is implemented 
or how data from this task are analyzed. It would be 
useful to have some demonstration of how, if at all, 
study conclusions vary depending on these research 
decisions in real data sets. A multiverse-of-methods 
analysis may be helpful to this end.

Method

Overview of the multiverse

The goal of the current example was to explore both 
(a) the multiverse of analyses and (b) the multiverse of 
data-collection methods as described above. Specifically, 

my aim was to apply each possible analysis to as many 
preexisting data sets as possible. The variety of analyses 
would allow for an exploration of the analytic multi-
verse, whereas the methodological multiverse could be 
explored through data sets coming from studies that 
varied in the methodological details of interest.

Nineteen data sets were collected from various 
researchers. Data sets varied in participant sample size 
(range: N = 38–300), number of unique target individu-
als (4–50), and response window (630 ms to infinity, 
i.e., no enforced window). Each of these data sets was 
subjected to 25 different analyses. The first of these 
analyses was a linear regression predicting error rates 
(statistically equivalent to an error-rate ANOVA but per-
formed in a regression framework to allow for the com-
putation of regression coefficients). The other analyses 
included 12 different (single-level or multilevel) logistic 
regressions modeling error that varied in random-
effects structure and 12 different (single-level or mul-
tilevel) linear regressions modeling reaction time that 
likewise varied in random-effects structure. Data and R 
code for this project are publicly available at https://
osf.io/6kqxn/.

Literature search

Before gathering data sets, I referenced a meta-analysis 
by Mekawi and Bresin (2015) to compile a list of 
shooter studies for potential inclusion with publication 
dates up to 2012. I then conducted a literature search 
in PsycINFO using the quoted search terms “shooter 
bias,” “shooting bias,” “shooter task,” and “shooting 
task” and searching for studies published after 2012. 
Studies were considered appropriate for inclusion if 
they used an FPST as described above, included both 
Black and White targets, manipulated target race within 
subjects, and had at least two targets of each race, each 
of whom appeared with both guns and harmless 
objects. Thirty-six studies were identified as potentially 
eligible. Of these studies, it would be possible to apply 
the current set of analyses only to those that had 
recorded which target had appeared in each trial. 
Authors for each of these studies were contacted to ask 
whether they had recorded this information and, if so, 
whether they would be willing to share it. Authors’ 
responses to requests and follow-ups, combined with 
some data already available (i.e., data collected in my 
own lab), resulted in a total of 19 data sets from eight 
different first authors (listed in Table 1).

Multiverse analysis

A program was written in the R software environment 
(Version 3.5.1; R Core Team, 2018) to run each data set 

https://osf.io/6kqxn/
https://osf.io/6kqxn/


Multiverse of Methods 1163

through each of the 25 analyses and compile the results. 
The object (gun/harmless object) and target race were 
effects-coded, and reaction time was log-transformed. 
The analyses used in the multiverse are listed in Table 
2. The fixed effects for all analyses included the main 
effects for object and race as well as their interaction. 
The analyses used here are not exhaustive of the pos-
sible random-effects specifications;4 however, some 
possible models were not used because models with 
more complex random-effects structures are unlikely 

to converge given the typical statistical power of shooter 
studies.

Accepted practice in work with multiverse analyses 
(Steegen et  al., 2016) is to examine the quantitative 
multiverse output qualitatively. That is, the researcher 
charts how statistical significance varies across analyses 
or methods and observes the patterns that emerge. The 
current work follows this practice.

In addition to this, certain analyses were repeated in 
IBM SPSS (Version 25)5 to obtain p values for the 

Table 1. Data Sets Included in the Multiverse Analysis

Abbreviation Study Other manipulations
Sample 
size (N) Targets

Length of 
response 

window (ms)

Correll1 Unpublished data—J. Correll 56 50 850
Correll2 Unpublished data—J. Correll 92 20 850
Correll11 Correll, Wittenbrink, Park, Judd, 

& Goyle (2011)
Background scenes were 

“dangerous” or “neutral”
58 20 630

HarderP Unpublished Master’s thesis 
data—J. A. Harder (pilot study)

Targets varied in apparent social 
class

103 40 650

Harder1 Manuscript in preparation— 
J. A. Harder

Targets varied in apparent social 
class

200 40 650

Harder2 Manuscript in preparation— 
J. A. Harder

Targets varied in apparent social 
class

211 40 650

Harder3 Manuscript in preparation— 
J. A. Harder

Targets varied in apparent social 
class

101 40 650

Harder4 Manuscript in preparation— 
J. A. Harder

Targets varied in apparent social 
class

153 40 650

Kenw.1 Unpublished data—J. Kenworthy Targets included Latino men (those 
trials excluded in this analysis)

96 4 850

Kenw.2 Unpublished data—J. Kenworthy Targets included Latino men (those 
trials excluded in this analysis)

57 4 700

Ma1 Unpublished data—D. Ma 56 50 700
Park08 Park, Glaser, & Knowles (2008) 58 20 None
Park11 Park & Glaser (2011) Manipulated relative frequency 

of counterstereotypical vs. 
stereotypical targets

63 20 None

Park15 Park & Kim (2015) Manipulated whether participants 
were playing the video game as a 
White vs. Black police officer

152 20 None

Ples.17a Pleskac, Cesario, & Johnson 
(2018)–Study Three

Varied discriminability of stimuli 38 46 750

Ples.17b Pleskac, Cesario, & Johnson 
(2018)—Study Four

Background scenes were 
“dangerous” or “neutral”

108 20 630

Sim13a Sim, Correll, & Sadler (2013)—
Experiment 1

Participants read article about a 
White or Black person committing 
a violent crime

150 50 630

Sim13b Sim, Correll, & Sadler (2013)—
Experiment 2b

Manipulated relative frequency 
of counterstereotypical vs. 
stereotypical targets

122 50 630

Snow.17 Dissertation—A. Snowden Manipulated participant emotion 300 32 730

Note: Data sets of indeterminate origin are described as unpublished data. The multiverse analysis collapsed across levels of the variables listed 
under the “Other manipulations” column. The number of targets shown represent the number of unique Black and White targets included in 
study’s stimulus set.



1164 Harder

target-level random slopes for object. This was done for 
those multilevel regressions in which both intercepts 
and object slopes varied randomly by both target and 
participant (excepting those studies that experienced 
convergence problems with this analysis). Checking the 
significance of these terms was a post hoc addition to 
the original analysis plan but was intended to follow up 
one of the patterns observed in the multiverse output. 
If this random slope was significant for a given study, 
it would indicate that there was significant variation 
across targets in the effect object had on shooting errors.

Shooter-Bias Results and Discussion

Overview

Error-data analysis. Among analyses of error data, 218 
analyses converged successfully, and 96 of these (44.0%) 
showed a significant Race × Object interaction, representing 
bias toward shooting Black targets (Fig. 2). Among the 96 
analyses that found a significant interaction, the mean 
regression coefficient was −0.107 (SD = 0.066; e−0.10 = 0.899), 
which would correspond to a decrease of about 10% in the 
odds of making an error when race and object are stereo-
type-congruent (i.e., a Black person holding a gun or a 
White person holding a harmless object).

Reaction-time analyses. Among analyses of reaction-
time data, 224 analyses converged successfully, 73 of 
which (32.6%) showed a significant Race × Object inter-
action (Fig. 3). Of these, 11 (across two studies) indicated 
a bias toward shooting White targets, and 62 indicated a 
bias toward shooting Black targets. The mean interaction 
coefficient of the 62 analyses showing bias toward shoot-
ing Black targets was −0.010 (SD = 0.005),6 indicating that 

responses were faster by 10 ms when targets were stereo-
type-congruent. The mean interaction coefficient of the 
11 studies showing bias toward shooting White targets 
was 0.013 (SD = 0.004).

Because relatively few analyses indicated a bias 
toward shooting White targets, and because these anal-
yses came from only two studies that were not similar 
in any of the measured variables, it is not possible from 
these data to identify predictors of the direction of the 
coefficient. Therefore, the discussion below focuses on 
predictors of statistically significant Race × Object inter-
action coefficients, including all analyses without regard 
to the direction of the effect.

Type of analysis and number of targets

Participant as a grouping factor. Although participant- 
level random effects (see Table 3) were generally signifi-
cant, the precise specification of effects at this level did 
not seem to be related to the significance of the Race × 
Object interaction in any way.7 That is, among logistic 
regressions predicting error with no target-level random 
effects, interactions were significant in 11 (61.1%) of 18 
converging analyses with random intercepts by partici-
pant (Fig. 2); and of 17 converging analyses with random 
intercepts and object slopes by participant or with ran-
dom intercepts and race slopes by participant, interac-
tions were significant in 10 studies (58.8%). Likewise, 
among 19 linear-regression analyses predicting reaction 
time, analyses with random intercepts by participant or 
with random intercepts and object slopes by participant 
yielded significant results in nine studies (47.4%), and 
analyses with random intercepts and race slopes by par-
ticipants yielded significant results in eight studies (42.1%; 
Fig. 3). This overall lack of a pattern is unsurprising, as 

Table 2. Random-Effects Structures Included in the Multiverse Analysis

Abbreviation Random effects

ANOVA None: ANOVA of participants’ mean error rates for each object/race combination
Fixed None
IP Random intercepts by participant
IOP Random intercepts by participant and random slopes for object by participant
IRP Random intercepts by participant and random slopes for race by participant
IT Random intercepts by target
IOT Random intercepts by target and random slopes for object by target
IP + IT Random intercepts by participant and random intercepts by target
IP + IOT Random intercepts by participant, random intercepts by target, and random slopes for object by target
IOP + IT Random intercepts by participant, random slopes for object by participant, and random intercepts by target
IRP + IT Random intercepts by participant, random slopes for race by participant, and random intercepts by target
IOP + IOT Random intercepts by participant, random slopes for object by participant, random intercepts by target, and random 

slopes for object by target

Note: The dependent variable was errors/reaction times for all structures except analysis of variance (ANOVA), for which the dependent variable 
was the mean error rate.
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allowing either the object or the race main effect to vary 
by participant should primarily affect the degrees of free-
dom (and therefore the significance) of that main effect 
rather than Race × Object interaction effects. Nonethe-
less, this has reassuring implications for past shooter 
studies that did not allow slopes to vary by participant, 

suggesting that this analytic misspecification may not 
have affected the accuracy of the results.

Target as a grouping factor. On the other hand, allow-
ing object main effects to vary by target should affect the 
Race × Object interaction because race is implicit in target 

Table 3. Random Effects for Models With Object Slopes Varying by Both Target and 
Participant

Study

Random intercepts Random slopes

By participant By target
For object by 
participant

For object  
by target

Errors
Correll1 .725 (.207)*** .518 (.155)*** .541 (.172)** .078 (.062)
Correll11 .090 (.037)* .326 (.074)*** .088 (.036)* .120 (.034)***
HarderP .112 (.029)*** .130 (.022)*** .089 (.024)*** .238 (.037)***
Harder1 .096 (.023)*** .170 (.019)*** .068 (.016)*** .159 (.018)***
Harder2 .088 (.021)*** .017 (.018)*** .046 (.011)*** .151 (.016)***
Harder3 .123 (.031)*** .522 (.080)*** .124 (.032)*** .181 (.031)***
Harder4 .181 (.043)*** .439 (.053)*** .151 (.036)*** .042 (.007)***
Ma1 .466 (.131)*** .357 (.104)*** .434 (.129)*** .081 (.048)
Kenw.1 .028 (.029) .226 (.055)*** .081 (.075) .029 (.024)
Ples.17a .246 (.065)*** .701 (.177)*** .156 (.045)*** .028 (.017)
Ples.17b .059 (.021)** .228 (.034)*** .068 (.024)** .105 (.017)***
Sim13a .307 (.065)*** .336 (.044)*** .388 (.082)*** .078 (.013)***
Sim13b .215 (.045)*** .439 (.060)*** .274 (.057)*** .128 (.020)***
Snow.17 .068 (.019)*** .540 (.051)*** .030 (.010)** .072 (.012)***

Response times
Correll1 .003 (.001)*** .003 (.001)*** < .001 (< .001)*** .003 (.001)***
Correll2 .003 (.001)*** < .001 (< .001)** < .001 (< .001)*** .001 (< .001)**
Correll11 .001 (< .001)*** < .001 (< .001)** < .001 (< .001)*** < .001 (< .001)**
HarderP .030 (.004)*** < .001 (< .001)* .004 (.001)*** < .001 (< .001)*
Harder1 .010 (.001)*** < .001 (< .001)*** .001 (< .001)*** < .001 (< .001)***
Harder2 .019 (.002)*** < .001 (< .001)** .002 (< .001)*** < .001 (< .001)***
Harder3 .030 (.005)*** < .001 (< .001)** .002 (.001)*** < .001 (< .001)***
Harder4 .003 (< .001)*** < .001 (< .001)*** .001 (< .001)*** < .001 (< .001)***
Kenw.1 .002 (< .001)*** < .001 (< .001) < .001 (< .001)** < .001 (< .001)
Kenw.2 .001 (< .001)*** < .001 (< .001) < .001 (< .001)* < .001 (< .001)
Ma1 .003 (.001)*** .003 (.001)*** < .001 (< .001)*** .003 (.001)***
Park08 .021 (.003)*** .001 (< .001)* .004 (.001)*** .001 (.001)*
Park11 .026 (.005)*** .001 (.001)* .005 (.001)*** .002 (.001)*
Ples.17a .001 (< .001)*** .002 (< .001)*** < .001 (< .001)** .001 (< .001)***
Ples.17b .011 (.002)*** < .001 (< .001)* .001 (< .001)*** < .001 (< .001)*
Sim13a .002 (< .001)*** .001 (< .001)*** < .001 (< .001)*** .001 (< .001)***
Sim13b .006 (.001)*** .001 (< .001)*** < .001 (< .001)*** .001 (< .001)***
Snow.17 .129 (.012)*** .013 (.004)*** .015 (.003)*** .011 (.003)**

Note: Values in parentheses are standard errors. See Table 1 for descriptions of the abbreviated study 
citations. Errors represent multilevel logistic-regression coefficients for the interaction between target 
race and target object predicting whether the participant made an error on a given trial. Response 
times represent multilevel linear-regression coefficients for the Race × Object interaction predicting the 
participant’s response time on a given trial. Each coefficient comes from a model with one of four random-
effects structures, indicated by the column headings. If random slopes were included for a grouping factor, 
random intercepts were also included for that grouping factor.
*p < .05. **p < .01. ***p < .001.
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identity. That is, when the grouping factor (target) contains 
information about one variable (race), allowing variance 
in the slope of the other variable (object) across levels of 
that grouping factor (i.e., allowing each target to have a 
different slope for object) will affect the degrees of free-
dom for the interaction of those two variables. Thus, for 
both error data and reaction-time data there was a strik-
ing difference between analyses that did versus did not 
control for random object slopes at the target level (Figs. 
2 and 3). Across analyses that did control for random 
object slopes at the target level, Race × Object interactions 
were significant in only 11.9% of converging reaction-time 
analyses and 10.3% of converging-error analyses, although 
among analyses with simpler random-effects structures, 
45.4% of reaction-time analyses and 56.3% of error analy-
ses found significant Race × Object interactions.

As stated earlier, differences in significance in a mul-
tiverse analysis do not themselves reveal the “right” way 
to analyze shooter data. That is, a multiverse analysis 
does not speak to whether a given significant result is 
a true positive or a false positive or whether a given 
nonsignificant result is a true or false negative. Such 
judgments must be based on an understanding of the 
analyses in question. In this case, there is good reason 
to believe that using more complicated random-effects 
structures is the best way to analyze data. However, it 
is also true that because of the small numbers of targets 
that characterized nearly every study, these studies 
were not sufficiently powered to detect shooter bias in 
such analyses.

Number of targets. Perhaps relatedly, results did not 
appear to differ between studies with larger numbers of 
targets and studies with fewer targets; this was true across 
the various analyses and for both reaction-time data and 
error data (Figs. 4 and 5). For reaction-time data, 34.2% of 
analyses from studies at or above the median number of 
targets (40) showed a significant Race × Object interac-
tion compared with 29.6% of analyses from studies below 
the median. For error data, the interaction was significant 
in 31.5% of analyses from studies above the median ver-
sus 47.0% of analyses from studies below the median. 
Interestingly, in the analyses of error data, studies with 
few targets may have yielded significant effects somewhat 
more often than studies with more targets. There is no 
clear reason why this pattern should have emerged; it 
may be due to the confounding influence of some unmea-
sured study-level variable. It is uncertain whether this 
observation represents a true pattern that would general-
ize to other data sets.

It is therefore difficult to draw conclusions about 
whether participants exhibited shooter bias in these 
studies. The analyses with simpler random-effects struc-
tures increase Type I error risks because they do not 

account for extraneous sources of variance, but the 
analyses with sufficiently complex random-effects 
structures increase Type II error risks because they are 
underpowered. This ambiguity demonstrates the impor-
tance of considering these issues when designing 
shooter studies. With respect to the studies analyzed 
here, the significant results of the regressions with 
simple random-effects structures should be treated with 
some skepticism when they are not matched with sig-
nificant results from regressions with more complete 
random-effects structures. In other words, the fixed 
effects that here became nonsignificant when object 
slopes vary randomly by target may or may not repre-
sent “true” effects.

Type of analysis. Finally, another pattern that emerged 
in the multiverse of analyses was that results of error-rate 
ANOVAs for Race × Object interactions were found to be 
significant less often than most of the trial-level regres-
sions (with the exception of those that allowed slopes to 
vary by target; see Fig. 2). Interactions were significant in 
5 of 19 error-rate ANOVAs compared with, for example, 
11 of 17 converging logistic regressions with random 
intercepts by participant and target. It should be noted 
that results from the multilevel logistic regressions are 
more likely to be accurate than results from the error-rate 
ANOVAs. Analyses of mean values, such as ANOVAs of 
error rates, are problematic because they do not account 
for differences in reliability among the means (Nezlek, 
2001).

Response window

Multiverse results indicated that the response window 
(Figs. 2 and 3) may, as hypothesized, be important in 
whether race bias appears in error data versus reaction-
time data. The hypothesis for error analyses was that 
lower response windows would be associated with a 
greater frequency of significant Race × Object interac-
tions. Such a pattern was not obvious from an examina-
tion of a median split of error analyses, given that 43.4% 
of converging error analyses from studies below the 
median response window (700 ms) showed a significant 
Race × Object interaction compared with 43.8% from 
studies above the median. However, a difference does 
seem to exist between response windows above versus 
below 850 ms. Among the six studies with response 
windows of 850 ms or higher, only 18.2% of converging 
error analyses showed a significant interaction.

The hypothesis for reaction-time analyses, in con-
trast, was that longer response windows would be asso-
ciated with a greater frequency of significant Race × 
Object interactions. Consistent with this hypothesis 
were results that showed a significant Race × Object 



1169

.0
23

.0
16

.4
90

.0
20

.0
14

.4
91

.0
15

.0
10

.4
85

.0
27

.0
19

.5
09

.3
26

.0
76

.0
52

.7
74

.0
69

.7
66

.0
83

.0
91

.7
80

.0
85

.0
63

.0
94

 <
 .0

01

 <
 .0

01

.0
11

 <
 .0

01

 <
 .0

01

.0
05

 <
 .0

01

 <
 .0

01

 <
 .0

01

.0
05

.0
01

.0
01

.1
18

 <
 .0

01

 <
 .0

01

.1
11

 <
 .0

01

 <
 .0

01

.1
18

 <
 .0

01

 <
 .0

01

.1
09

.0
61

 <
 .0

01

 <
 .0

01

.2
80

 <
 .0

01

 <
 .0

01

.2
71

 <
 .0

01

 <
 .0

01

.2
78

 <
 .0

01

 <
 .0

01

.2
76

.1
60

.0
17

.0
29

.4
44

.0
16

.0
29

.4
49

.0
16

.0
28

.4
46

.0
13

.0
25

.0
63

.0
01

.0
01

.0
03

.0
01

.0
02

.0
04

.0
01

.0
02

.0
04

.0
01

.0
02

.0
04

.0
16

.1
22

.0
93

.1
16

.0
83

.1
19

.1
09

.6
40

.1
21

.1
60

.5
08

.1
59

.8
92

.5
02

.1
53

.8
92

.4
66

.1
33

.9
09

.5
14

.1
58

.8
89

.7
20

.1
22

.1
58

.7
96

.1
18

.1
53

.7
96

.1
29

.1
68

.8
07

.0
95

.1
27

.7
79

.6
07

.0
16

.0
15

.2
74

.0
14

.0
12

.2
65

.0
13

.0
11

.2
63

.0
14

.0
11

.2
65

.3
25

 <
 .0

01

 <
 .0

01

.2
59

 <
 .0

01

 <
 .0

01

.2
57

 <
 .0

01

 <
 .0

01

.2
57

 <
 .0

01

.2
54

.0
23

.3
54

.3
55

.4
64

.3
94

.3
24

.3
26

.7
04

.3
27

.3
42

.3
36

.3
52

.2
22

.3
35

.3
48

.3
36

.3
98

.4
03

.3
85

.4
01

.3
81

.5
00

.3
79

.4
00

.3
81

.7
64

 <
 .0

01

 <
 .0

01

.0
76

 <
 .0

01

 <
 .0

01

.0
75

 <
 .0

01

 <
 .0

01

.0
78

 <
 .0

01

.0
70

 <
 .0

01

 <
 .0

01

 <
 .0

01

.0
94

 <
 .0

01

 <
 .0

01

.0
68

 <
 .0

01

 <
 .0

01

.0
64

 <
 .0

01

 <
 .0

01

.0
66

 <
 .0

01

.0
38

.0
37

.3
06

.0
28

.0
27

.3
07

.0
32

.0
30

.3
17

.0
28

.0
27

.2
13

.9
27

.8
10

.8
90

.8
94

.7
76

.8
89

.8
68

.7
43

.8
81

.8
73

.7
10

Fe
w

er
 T

ar
ge

ts
M

or
e 

Ta
rg

et
s

Ke
nw

.1
Ke

nw
.2

Co
rr

el
l2

Co
rr

el
l1

1
Pl

es
.1

7b
Pa

rk
08

Pa
rk

11
Pa

rk
15

Sn
ow

.1
7

Ha
rd

er
2

Ha
rd

er
3

Ha
rd

er
P

Ha
rd

er
1

Ha
rd

er
4

Pl
es

.1
7a

Co
rr

el
l1

M
a1

Si
m

13
a

Si
m

13
b

4
4

20
20

20
20

20
20

32
40

40
40

40
40

46
50

50
50

50

St
ud

y

Error Analysis

AN
OV

A

Fi
xe

d IP

IO
P

IR
P IT

IP
+I

T

IO
P+

IT

IR
P+

IT IO
T

IP
+I

OT

IO
P+

IO
T

IR
P+

IO
T

Nu
m

be
r T

ar
ge

ts
:

F
ig

. 
4
. 

R
es

u
lt
s 

(p
 v

al
u
es

) 
fr

o
m

 1
3 

an
al

ys
es

 p
re

d
ic

ti
n
g 

er
ro

rs
 i

n
 1

9 
st

u
d
ie

s,
 o

rd
er

ed
 b

y 
n
u
m

b
er

 o
f 

ta
rg

et
s.

 E
ac

h
 c

el
l 

re
p
re

se
n
ts

 a
 s

in
gl

e 
an

al
ys

is
/s

tu
d
y 

co
m

b
in

at
io

n
. 

Se
e 

T
ab

le
 1

 f
o
r 

d
es

cr
ip

ti
o
n
s 

o
f 
th

e 
ab

b
re

vi
at

ed
 s

tu
d
y 

ci
ta

ti
o
n
s.

 S
ee

 T
ab

le
 2

 f
o
r 

d
es

cr
ip

ti
o
n
s 

o
f 
th

e 
ab

b
re

vi
at

ed
 a

n
al

ys
es

. 
C

el
ls

 r
ep

re
se

n
ti
n
g 

n
o
n
si

gn
if
ic

an
t 
re

su
lt
s 

ar
e 

sh
ad

ed
 l
ig

h
t 
gr

ay
; 
ce

ll
s 

re
p
re

se
n
ti
n
g 

si
gn

if
ic

an
t 

b
ia

s 
to

w
ar

d
 s

h
o
o
ti
n
g 

B
la

ck
 t

ar
ge

ts
 a

re
 s

h
ad

ed
 d

ar
k
 g

ra
y.

 B
la

n
k
 c

el
ls

 i
n
d
ic

at
e 

an
al

ys
es

 t
h
at

 d
id

 n
o
t 

co
n
ve

rg
e.



1170 

.4
72

.4
88

.7
30

.7
60

.9
37

.6
40

.6
68

.8
85

.8
21

.8
52

.9
86

 <
 .0

01

 <
 .0

01

.2
19

 <
 .0

01

 <
 .0

01

.2
05

 <
 .0

01

 <
 .0

01

.2
05

 <
 .0

01

 <
 .0

01

.2
05

.4
26

.3
98

.5
99

.4
52

.4
24

.6
18

.4
08

.3
78

.6
04

.4
41

.4
11

.6
10

.0
11

.0
11

.1
68

.1
05

.1
02

.4
81

.1
54

.1
46

.5
31

.0
84

.0
83

.4
52

 <
 .0

01

 <
 .0

01

.2
15

 <
 .0

01

 <
 .0

01

.2
24

 <
 .0

01

 <
 .0

01

.2
25

 <
 .0

01

 <
 .0

01

.2
24

 <
 .0

01

.0
01

.0
95

 <
 .0

01

 <
 .0

01

.0
93

 <
 .0

01

 <
 .0

01

.0
96

 <
 .0

01

 <
 .0

01

 <
 .0

01

 <
 .0

01

.0
49

 <
 .0

01

 <
 .0

01

.0
51

 <
 .0

01

 <
 .0

01

.0
50

 <
 .0

01

 <
 .0

01

.0
51

.0
80

.1
23

.0
25

.0
88

.1
68

.0
27

.1
02

.1
82

.1
09

.2
75

.3
40

.5
48

.6
48

.9
34

.5
35

.6
38

.9
71

.4
19

.5
10

.9
16

.5
21

.6
23

.9
65

.9
90

.5
83

.9
24

.8
19

.4
07

.8
51

.8
15

.3
99

.8
60

.8
18

.4
08

.8
52

.1
18

.1
56

.3
86

.0
96

.1
54

.4
78

.0
88

.1
43

.4
81

.0
97

.1
55

.4
81

 <
 .0

01

 <
 .0

01

.0
89

 <
 .0

01

 <
 .0

01

.0
89

 <
 .0

01

 <
 .0

01

.0
94

 <
 .0

01

 <
 .0

01

.0
92

.2
17

.1
85

.6
55

.5
16

.8
21

.6
85

.5
42

.8
41

.6
71

.5
32

.8
28

.3
82

.3
65

.8
25

.4
00

.3
80

.8
33

.4
01

.3
81

.8
33

.4
02

.3
81

.8
34

 <
 .0

01

 <
 .0

01

.2
41

 <
 .0

01

 <
 .0

01

.2
15

 <
 .0

01

 <
 .0

01

.2
06

 <
 .0

01

 <
 .0

01

.2
14

.0
07

.0
05

.1
62

.0
01

 <
 .0

01

.1
14

 <
 .0

01

 <
 .0

01

.1
03

.0
01

.0
01

.1
29

.1
14

.1
15

.4
59

.0
83

.0
87

.4
75

.0
74

.0
77

.4
67

.0
83

.0
87

.4
76

.5
17

.5
07

.7
40

.6
06

.5
90

.7
79

.6
36

.6
15

.7
90

.5
83

.5
69

.7
73

Fe
w

er
 T

ar
ge

ts
M

or
e 

Ta
rg

et
s

Ke
nw

.1
Ke

nw
.2

Co
rr

el
l2

Co
rr

el
l1

1
Pl

es
.1

7b
Pa

rk
08

Pa
rk

11
Pa

rk
15

Sn
ow

.1
7

Ha
rd

er
2

Ha
rd

er
3

Ha
rd

er
P

Ha
rd

er
1

Ha
rd

er
4

Pl
es

.1
7a

Co
rr

el
l1

M
a1

Si
m

13
a

Si
m

13
b

4
4

20
20

20
20

20
20

32
40

40
40

40
40

46

 <
 .0

01

 <
 .0

01

.0
42

 <
 .0

01

 <
 .0

01

.0
43

 <
 .0

01

 <
 .0

01

.0
43

 <
 .0

01

 <
 .0

01

.0
43

50
50

50
50

St
ud

y

Reaction Time Analysis

Fi
xe

d IP IO
P

IR
P IT

IP
+I

T

IO
P+

IT

IR
P+

IT IO
T

IP
+I

OT

IO
P+

IO
T

IR
P+

IO
T

Nu
m

be
r T

ar
ge

ts
:

F
ig

. 
5
. 

R
es

u
lt
s 

(p
 v

al
u
es

) 
fr

o
m

 1
2 

an
al

ys
es

 p
re

d
ic

ti
n
g 

re
ac

ti
o
n
 t
im

es
 i
n
 1

9 
st

u
d
ie

s,
 o

rd
er

ed
 b

y 
n
u
m

b
er

 o
f 
ta

rg
et

s.
 E

ac
h
 c

el
l 
re

p
re

se
n
ts

 a
 s

in
gl

e 
an

al
ys

is
/s

tu
d
y 

co
m

b
in

at
io

n
. 
Se

e 
T
ab

le
 1

 f
o
r 

d
es

cr
ip

ti
o
n
s 

o
f 

th
e 

ab
b
re

vi
at

ed
 s

tu
d
y 

ci
ta

ti
o
n
s.

 S
ee

 T
ab

le
 2

 f
o
r 

d
es

cr
ip

ti
o
n
s 

o
f 

th
e 

ab
b
re

vi
at

ed
 a

n
al

ys
es

. 
C

el
ls

 r
ep

re
se

n
ti
n
g 

n
o
n
si

gn
if
ic

an
t 
re

su
lt
s 

ar
e 

sh
ad

ed
 l
ig

h
t 
gr

ay
; 
ce

ll
s 

re
p
re

se
n
ti
n
g 

si
gn

if
ic

an
t 
b
ia

s 
to

w
ar

d
 s

h
o
o
ti
n
g 

B
la

ck
 t
ar

ge
ts

 a
re

 u
n
sh

ad
ed

. 
C

el
ls

 r
ep

re
se

n
ti
n
g 

si
gn

if
ic

an
t 
b
ia

s 
to

w
ar

d
 s

h
o
o
ti
n
g 

W
h
it
e 

ta
rg

et
s 

ar
e 

sh
ad

ed
 d

ar
k
 g

ra
y.

 B
la

n
k
 c

el
ls

 i
n
d
ic

at
e 

an
al

ys
es

 t
h
at

 d
id

 
n
o
t 

co
n
ve

rg
e.



Multiverse of Methods 1171

interaction in 18.9% of converging reaction-time analyses 
from studies below the median compared with 44.9% 
above the median. In fact, among studies with response 
windows of 850 ms or higher, 52.1% of reaction-time 
analyses showed a significant interaction compared 
with only 18.2% of converging error analyses. Taken as 
a whole, the results suggest that response windows at 
or above 850 ms are more likely to reveal bias in 
response times, whereas response windows below 700 
ms are more likely to reveal bias in errors (no clear 
pattern emerged for response windows between 700 
and 850 ms). This pattern suggests that researchers 
should choose their response windows differently 
depending on their outcome of interest.

Sample size

Error-data analyses. An examination of the pattern of 
logistic-regression results across sample sizes (Fig. 6) 
indicates that studies with larger samples do not seem to 
produce significant Race × Object interactions in errors 
more often than studies with smaller samples. Among 
studies at or above the median sample size (N = 101), 
40.8% of converging error analyses yielded a significant 
Race × Object interaction in some analyses compared 
with 48.5% of analyses among studies below that sample 
size. The lack of a sample-size effect among the error 
analyses may at first appear surprising, as one would 
expect studies with larger samples to have higher power 
to detect a true effect. Moreover, a range restriction was 
not a problem in this set of sample sizes, which ranged 
from 38 to 300. However, for those analyses that con-
trolled for target-level random effects (intercepts and/or 
slopes), it may be at least partially explained by the fact 
that the power of studies to detect effects in these analy-
ses is limited by the number of unique targets. Simula-
tions from Judd et  al. (2012) suggest that when target 
random intercepts are specified, the statistical power for 
studies with a given number of targets begins to approach 
an asymptote for sample sizes greater than about 30. That 
is, after this point, the amount of power that can be 
gained from increasing the number of participants is rela-
tively small. All of the studies included here had sample 
sizes of 38 and above, so power may not have been 
strongly related to sample size for the majority of the 
analyses. However, this does not explain why sample 
size was also unrelated to significance for analyses that 
did not specify random effects for target. Some degree of 
publication bias may be to blame here.

Reaction-time analyses. In reaction-time analyses (Fig. 
7), 15.6% of converging analyses from studies at or above 
the median sample size yielded a significant interaction 
compared with 50.0% from studies with smaller sample 

sizes. That is, studies with larger samples (and thus higher 
power) were actually slightly less likely to find an effect. 
This pattern, however, should be interpreted with caution, 
as there is no statistical or methodological reason to 
expect such an effect of high sample sizes. It may be that 
some unmeasured factor covaries with sample size and is 
playing a confounding role.

Recommendations for shooter studies

In light of the current findings and the discussion above, 
certain recommendations seem reasonable. First, shooter 
studies should use more than 50 targets. Judd et  al. 
(2012) indicated that at least 50 targets were necessary 
to secure adequate power in a shooter study. The studies 
examined here, however, all used 50 or fewer targets, 
and very few showed any significant shooter bias when 
object slopes were allowed to vary randomly by target. 
If the studies had used larger numbers of targets, this 
problem might have been prevented.

Second, the choice of which response window to 
use should depend on the response variable of interest, 
as shooter bias was distributed differently across 
response window for error versus reaction-time data. 
To maximize the probability of detecting an effect 
should one exist, researchers interested in examining 
bias in shooting errors should use a short response 
window, such as 630 or 650 ms. Researchers interested 
in examining bias in shooting response times, however, 
should use a long response window, such as 850 ms.

Third, the current results suggest that shooter 
researchers should use multilevel regression models—
as opposed to ANOVAs of summary data—when analyz-
ing data. Moreover, random-effects structures should 
be as complex as the data set can handle without the 
models’ experiencing convergence problems.8 Never-
theless, results do indicate that specifying target-level 
slopes for object is more important to conclusions 
about racial bias than specifying participant-level 
effects. Thus, in situations in which random-effects 
structures must be simplified (e.g., if a researcher finds 
that the computational intensity of specifying random 
slopes at both the participant level and the target level 
is too great), it would be less likely to affect results if 
the researcher were to sacrifice the participant-level 
slopes rather than the target-level slopes.

General Discussion

The shooter-bias example illustrates how examining a 
multiverse of methods can inform methodological deci-
sions. It also illustrates how examining a multiverse of 
analyses can deepen the researcher’s understanding of 
statistical decisions. The results of this example suggested 
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that the effect of response window is indeed moderated 
by the response variable, which clarified the importance 
of selecting a response window with the response vari-
able of interest in mind. Moreover, the multiverse analysis 
not only confirmed that decisions about how to specify 
random effects can affect the outcome of an analysis but 
also demonstrated how results are interactively influ-
enced by the choice of analysis and the number of actors 
in the stimulus set.

Limitations and practical 
considerations

The shooter-bias multiverse analysis was limited by 
several factors. First, only 19 studies were included. 
Stronger conclusions could have been drawn if a larger 
number of data sets were available. In addition, there 
was an issue of range restriction in the number of tar-
gets these studies included, and this may have limited 
the ability of the analysis to detect patterns across stud-
ies because it meant that most studies were underpow-
ered. Moreover, an examination of Table 1 indicates 
that sample size, number of targets, and response win-
dow were also somewhat confounded with each other, 
although this pattern of confounding cannot explain 
most of the current findings. Finally, results for certain 
study-analysis combinations are missing because analy-
ses did not reach convergence; if those unknown results 
differed systematically from the known results in some 
way, it is possible that excluding them would alter the 
multiverse analysis’s conclusions. These limitations of 
the current example illustrate some practical consider-
ations that should inform the use of the multiverse-of-
methods approach and that largely stem from potential 
deficiencies of available data.

Many of the limitations of the shooting-bias example 
are related to a lack of data representing certain designs 
or combinations of designs. This is likely to be a com-
mon problem for projects examining a multiverse of 
methods. Often, the entire multiverse of methods—that 
is, every possible combination of decision options—will 
not be available in the published literature. Here is a 
simple example: Suppose there are two data-collection 
decisions that are of interest—whether to use rats or 
mice and whether to place electrodes at Site A or Site 
B. It may be the case that past research has included 
both rat studies and mouse studies, as well as both Site 
A studies and Site B studies, but all of the rat studies 
have placed electrodes at Site A. Multiverse results 
would be informative as to the effect of electrode place-
ment for mice and the effect of species when measuring 
at Site A but would not indicate whether the effect of 
electrode placement might be different for rats than for 

mice. At other times, not every reasonable decision 
option will be available in the literature even for a 
single variable, as in the current example in which no 
study used more than 50 targets. Such situations are 
particularly likely when examining small bodies of 
research. When drawing conclusions, researchers 
should therefore take care to consider how results are 
limited by unavailable data.

Moreover, when results from the multiverse are 
themselves missing, as in the current example when 
some analyses met with convergence issues, some effort 
should be made to determine whether missingness is 
systematic and/or has influenced conclusions. The 
shooter data may be illustrative here. In the current 
data, convergence issues typically occur in the error 
analyses and are more common among studies with 
longer response windows—which are also likely to 
have few errors and therefore less variability in the 
response variable. It so happens that these studies are 
also likely to have small sample sizes and small num-
bers of targets. All three of these are factors limiting 
the data’s capacity to support estimating complex mod-
els. This provides some explanation for the issues with 
convergence but also means that results are not missing 
at random. A potential concern is that conclusions may 
be limited to the subgroup of results that converged. 
Considering other patterns in the data may shed light 
on this. For study-level variables such as response win-
dow, it is possible to partially screen for the conver-
gence dependence of results by comparing results 
across studies for only the types of analyses that always 
converged (i.e., the rows in the figures labeled “ANOVA,” 
“Fixed,” and “IT”). Conclusions do not change if only 
these rows are considered.

Another consideration is that in most cases, if a 
study finds a significant effect for one analysis, it finds 
a significant effect for every converging analysis 
between the row labeled “Fixed” and the row labeled 
“IRP + IT.” As a thought experiment, we can fill in the 
nonconverging cells with hypothetical results consis-
tent with this pattern; doing so leads to the same con-
clusions as does examining the results with those cells 
excluded.9 Excluding the cells that did not converge, 
therefore, would affect the conclusions only if these cells 
had a tendency to violate the overall pattern. There is 
no theoretical reason to expect this—the study-level vari-
ables that are related to nonconvergence are not associ-
ated with marked violations of this pattern—but it is 
technically possible. Thus, it seems unlikely that the cells 
that did not converge are hiding alternative patterns of 
results, but it cannot be ruled out as a possibility. Ques-
tions such as these must be considered when certain 
analyses cannot be performed on certain studies.
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Finally, it is worth noting that comparing data from 
multiple studies carries the limitation that conditions 
and samples may vary across studies in unknown ways. 
Two studies conducted by different labs at different 
times may differ in a host of nuisance variables that 
will confound whatever difference between the two 
studies is actually of interest. Conclusions from multi-
verse analyses will be most robust when multiple stud-
ies are available per cell and when the studies in any 
two cells do not vary systematically in any nuisance 
variable (e.g., lab of origin).

Types of methodological ambiguity

The primary purpose of a multiverse analysis is to clar-
ify how methodological and analytic decisions affect 
results. This can be important for either of two reasons 
depending on the decision in question.

The first of these reasons is that for some of the 
choices researchers face, there is reason to believe that 
one particular option is the “correct”—or at least better—
way to do things. For example, if researchers vary in 
terms of the statistical analyses they use to address a 
particular question, it is often the case that one of these 
analyses is more appropriate than the other options. 
Or a particular data-collection method may generate 
less measurement noise than an alternative. These are 
the researcher decisions for which it would be useful 
to establish a consensus regarding best practice. In 
these cases, variation in practice is of concern simply 
because not all researchers are conducting their studies 
with optimal methods.

The second reason applies to decisions for which the 
question of which option is the “best” is more compli-
cated, as reasonable arguments could be made for mul-
tiple choices. In these cases, it may not be possible to 
answer the question of which option is best. Instead, 
the important question is whether the different options 
are likely to lead to different study conclusions. If they 
are, then there is a risk that researchers may try out 
multiple methods or analyses, selectively report results 
from the ones that produced significant effects, and 
ignore those that “did not work,” contributing to an 
overrepresentation of Type I errors in the published 
literature. Analytic options that enable such a process 
are often referred to as researcher degrees of freedom 
(Simmons, Nelson, & Simonsohn, 2011). However, the 
concept is applicable to methodological options as well 
because ambiguity about which methods to use can 
contribute to publication bias in a process directly anal-
ogous to the process by which analytic options inflate 
Type I error rates. For example, a researcher may run 
two or three shooter studies, trying out a different 
response window each time, until one of them shows 
a significant effect of the researcher’s hypothesized 

intervention or moderator. After obtaining a significant 
effect, the researcher is likely to report only this study, 
with hindsight-fueled confidence that it had obviously 
been the correct choice all along. Such practices can 
lead a researcher to inadvertently publish spurious 
effects. Developing a consensus on how to make such 
methodological decisions is therefore desirable to 
remove ambiguity about which method is best and 
reduce the frequency of these situations.

Applications of the multiverse-of-
methods analysis

A multiverse-of-methods analysis can be used to con-
front either of these sources of methodological variation. 
When one method is clearly superior to another, that 
superiority can usually be established through statistical 
reasoning or experimentation, without the use of a mul-
tiverse analysis. However, the task of persuading 
researchers that this difference is important enough to 
merit changing their methods can sometimes be difficult. 
As controversy over reproducible methods demon-
strates, there is variation in the extent to which research-
ers adopt best-practice methods ( John, Loewenstein, & 
Prelec, 2012). If the inferior methods are more familiar, 
or if implementing the superior methods would require 
obtaining new knowledge or equipment, adopting the 
superior methods could lead researchers to incur some 
short-term costs in effort, time, or money. In these situ-
ations, motivated reasoning can lead researchers to dis-
count arguments that they should make such 
methodological changes. A multiverse analysis, by pro-
viding a concrete demonstration of the consequences 
of a methodological choice, can be a useful persuasive 
tool in these methodological controversies.

The multiverse-of-methods analysis is also useful 
when multiple methodological alternatives exist but it 
is unclear whether any one of them is “better” than the 
others. In these cases, a multiverse analysis can clarify 
which of the alternatives differ from one another in 
terms of the typical results and whether this depends 
on other factors—as an example, consider how the 
influence of response window on shooter-study conclu-
sions depended on whether errors or reaction time 
were used as the dependent variable in the example 
above. Understanding such patterns can shed light on 
whether and why some methods might be preferable 
overall or preferable for certain research questions or 
designs. This can provide direction for subsequent 
research investigating the causes of the differences 
observed in the multiverse. Multiverse results may pro-
vide this direction by identifying which alternatives 
differ from each other, especially when there are several 
alternatives, and/or by suggesting hypotheses for why 
these differences exist (e.g., through their interactions 



1176 Harder

with other factors in the multiverse). By guiding 
research on the implications of various methods in this 
way, the multiverse-of-methods approach can assist 
with identifying best practices, improving research effi-
ciency and reducing ambiguity that researchers may 
inadvertently exploit to obtain significant results.

Moreover, when a multiverse analysis reveals that 
study conclusions do not vary across a set of method-
ological alternatives, this provides evidence that these 
alternatives may be equally valid options. That said, it 
should be noted that failing to find evidence for a dif-
ference is not the same as finding evidence for no dif-
ference, and further research will always be advisable 
to confirm a lack of difference among studies, particu-
larly if the multiverse included a small sample size of 
studies. However, such a finding is at least suggestive 
of no difference among methods, which is useful when 
evaluating past studies that used differing methods 
(e.g., when comparing two studies’ results or when 
making decisions about which studies to include in a 
meta-analysis). Finding no evidence for a difference 
among methods also suggests that future researchers 
may choose among these methods on the basis of prac-
tical considerations such as efficiency or expense with-
out concern that they are compromising the quality of 
their studies.

Conclusion

Through this extension of the multiverse analysis, 
researchers can address ambiguity around methodologi-
cal decisions that can obscure best practice and even 
inflate Type I error rates in the published literature. It 
has a role both when best practice is known but not 
universally implemented as well as when multiple meth-
ods are used across studies but it is unclear whether they 
produce differing results. In short, the multiverse-of-
methods analysis is useful in a variety of ways: as a 
persuasive tool, as a tool for narrowing down questions 
about how and why methodological alternatives produce 
different results, and as a source of information about 
how to evaluate past studies and design future studies.
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Notes

1. Other studies have analyzed error and response-time data 
in combination using the drift-diffusion model (e.g., Pleskac, 
Cesario, & Johnson, 2018). However, this is a less common 
approach and addresses process-level questions rather than 
behavioral racial bias; the current example therefore does not 
consider it as one of the analytic options to be compared.
2. Shooter studies have also used various models designed to 
provide information about the cognitive processes underly-
ing the behavioral data, such as signal detection theory (e.g., 
Correll, Wittenbrink, Park, Judd, & Goyle, 2011) and the drift-
diffusion model (see previous note). However, the discussion of 
these models is beyond the scope of this article.
3. For a helpful review of multilevel modeling and the impor-
tance of accounting for stimulus as a grouping factor, see Judd, 
Westfall, and Kenny (2012). For a more in-depth study of multi-
level modeling, see Hox, Moerbeek, and van de Schoot (2018).
4. The most complete possible random-effects specification 
would allow intercepts to vary randomly by both participant and 
target, allow object slopes to vary randomly by both participant 
and target, allow race slopes to vary by participant, and allow 
the slope for the Race × Target interaction to vary randomly 
by participant. However, the current multiverse analysis did not 
allow more than one slope at a time to vary by participant.
5. SPSS was used for these analyses because lme4, the R pack-
age used in the main multiverse analysis, does not calculate 
statistical significance for random effects.
6. In both error and reaction-time analyses, coefficients did not 
appreciably change with increasing analysis complexity.
7. However, an examination of Race × Object interaction coef-
ficients suggests that using greater numbers of targets may be 
slightly associated with smaller degrees of bias toward shoot-
ing Black targets in error and reaction-time analyses (see the 
Supplemental Material available online).
8. It may be of use to readers to know that there are some ways 
to make convergence issues less likely. One helpful tip is to 
mean-center continuous variables and effects-code categorical 
variables. Other strategies are software-specific; tips for achiev-
ing convergence in R can be found online (“lme4 convergence,” 
n.d.). However, one common cause of nonconvergence is sim-
ply that the random-effects structure that is specified is too com-
plex to be specified with the available data; that is, the model is 
“overparameterized” (Bates, Kliegl, Vasishth, & Baayen, 2015). 
Bates et al. (2015) provide a useful explanation of this issue and 
advice for making decisions about which parameters to discard 
when simplifying a model.

https://orcid.org/0000-0003-0751-8438
http://journals.sagepub.com/doi/suppl/10.1177/1745691620917678
http://journals.sagepub.com/doi/suppl/10.1177/1745691620917678
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9. For example, sample size continues to be unrelated to the 
significance of error analyses: 39% versus 41%. I do not walk 
through the arithmetic here for the sake of space, but readers can 
perform this thought experiment for themselves using Figures 2, 
4, and 6.
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