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The call for researchers to report and interpret effect sizes and their corresponding confidence
intervals has never been stronger. However, there is confusion in the literature on the definition of
effect size, and consequently the term is used inconsistently. We propose a definition for effect size,
discuss 3 facets of effect size (dimension, measure/index, and value), outline 10 corollaries that
follow from our definition, and review ideal qualities of effect sizes. Our definition of effect size is
general and subsumes many existing definitions of effect size. We define effect size as a quantitative
reflection of the magnitude of some phenomenon that is used for the purpose of addressing a
question of interest. Our definition of effect size is purposely more inclusive than the way many have
defined and conceptualized effect size, and it is unique with regard to linking effect size to a question
of interest. Additionally, we review some important developments in the effect size literature and
discuss the importance of accompanying an effect size with an interval estimate that acknowledges
the uncertainty with which the population value of the effect size has been estimated. We hope that
this article will facilitate discussion and improve the practice of reporting and interpreting effect
sizes.
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Researchers are commonly advised by methodologists, jour-
nal editors, reviewers, and professional organizations to report
effect sizes and their corresponding confidence intervals as a
replacement for or supplement to null hypothesis significance
tests (NHSTs). Although effect size is a topic often discussed as
if everyone concerned were in agreement on what an effect size
is, a review of the literature leads us to conclude that there is
room for improvement in the conceptualization of effect size. In
fact, in the methodological literature there is a great deal of
variability and ambiguity regarding the definition of effect size.
However, there is also a clear push for effect sizes to be more
widely reported and used as a basis for communicating results
and discussing the importance of those results from research
studies. Indeed, some have suggested that the use of NHSTs
should be abandoned and replaced with effect sizes and confi-
dence intervals (e.g., Schmidt, 1996). Because of the growing
importance of effect sizes in research, coupled with inconsis-
tencies in definition and conceptualization of effect sizes in the
literature, we believe it will be useful to define effect size in a
way that encompasses the way in which effect sizes are and can
be used in research, as well as to delineate various properties of
effect sizes.

Much of the impetus for this work is to provide a discussion
and formalization of various aspects of the “effect size move-
ment” (Robinson, Whittaker, Williams, & Beretvas, 2003, p.
51) that are scattered across the methodological literature. In
this article we provide a broad conceptualization of effect size,
review guidelines and arguments for reporting effect sizes,
provide examples of existing definitions of effect size, present
our own definition of effect size, show that effect size consists
of multiple facets, and provide corollaries of our definition in a
way that is directly applicable to applied research. We hope that
this article will facilitate discussion and improve the develop-
ment, reporting, and interpretation of effect sizes so that more
meaningful and cumulative knowledge can come from research
in psychology and related disciplines.

Existing Guidelines for Reporting Effect Size

As recommended by Wilkinson and the American Psycho-
logical Association (APA) Task Force on Statistical Inference
(1999), researchers should “always present effect sizes for
primary outcomes” (p. 599). Wilkinson and the APA Task
Force go on to recommend that “interval estimates should be
given for any effect sizes involving principal outcomes” (p.
599). The Publication Manual of the American Psychological
Association (APA, 2010; hereafter APA Manual) states in its
most recent edition that NHSTs are “but a starting point and that
additional reporting elements such as effect sizes, confidence
intervals, and extensive description are needed to convey the
most complete meaning of the results” (p. 33). The APA Manual
goes on to say that “complete reporting for all tested hypotheses
and estimates of appropriate effect sizes and confidence inter-
vals are the minimum expectations for all APA journals” (p.
33). The language in the APA Manual (e.g., “minimum expec-
tations”) is much stronger than that given in the previous
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edition (APA, 2001), which was not as clear at conveying the
importance of reporting effect sizes (e.g., Section 1.10).1

Besides the APA, other organizations have stated officially the
importance of effect sizes. The American Educational Research
Association’s (AERA) Standards for Reporting on Empirical So-
cial Science Research in AERA Publications (Task Force on Re-
porting of Research Methods in AERA Publications, 2006) states
that “an index of the quantitative relation between variables” (i.e.,
an effect size) and “an indication of the uncertainty of that index
of effect” (e.g., a confidence interval) should be included when
reporting statistical results (p. 10). The Society for Industrial and
Organizational Psychology (SIOP, 2003) has stated policies re-
garding personnel selection in its Principles for the Validation and
Use of Personnel Selection Procedures. The SIOP policy on per-
sonnel selection states that “the analysis should provide informa-
tion about effect sizes and the statistical significance or confidence
associated with predictor–criterion relationships” (p. 19). Addi-
tionally, the National Center for Education Statistics (NCES,
2002), which is the principal statistical agency within the U.S.
Department of Education, has published a set of statistical guide-
lines in the NCES Statistical Standards. The NCES Statistical
Standards is “intended for use by NCES staff and contractors to
guide them in their data collection, analysis, and dissemination
activities” (p. 1). The NCES Statistical Standards states that

when the results of an analysis are statistically significant, it is useful
to consider the substantive interpretation of the size of the effect. For
this purpose, the observed difference can be converted into an effect
size to allow the interpretation of the size of the difference. (Section
5-1)

Editors of several journals in psychology and related disciplines
have made explicit their commitment to requiring effect sizes to be
reported. For example, Educational and Psychological Measure-
ment, an early adopter of strong language regarding effect sizes,
states that “authors reporting statistical significance will be re-
quired to report and interpret effect sizes” (B. Thompson, 1994, p.
845; italics in original). Educational and Psychological Measure-
ment is largely a methodological journal, so it would be under-
standable if its policies differed from those of more substantively
oriented journals. However, many substantive journals have sim-
ilar policies. For example, a Journal of Applied Psychology edi-
torial states that

if an author decides not to present an effect size estimate along with
the outcome of a significance test, [the editor] will ask the author to
provide specific justification for why effect sizes are not reported. So
far, [the editor has] not heard a good argument against presenting
effect sizes. (Murphy, 1997, p. 4)

Similarly, a Journal of Consulting and Clinical Psychology edito-
rial states that “evaluations of the outcomes of psychological
treatments are favorably enhanced when the published report in-
cludes not only statistical significance and the required effect size
but also a consideration of clinical significance” (Kendall, 1997, p.
3). The author guidelines for Psychological Science regarding
statistics begins “effect sizes should accompany major results” and
does not mention NHSTs (Association for Psychological Science,
2011). Many more journals have stated as policy their strong
preference or requirement for effect sizes to be reported (Vacha-
Haase & Thompson, 2004, noted that, at the time, 23 journals had

such policies; a partial list is provided in Fidler & Thompson,
2001).

Issues of effect size reach beyond psychology, education, and
management. The International Committee of Medical Journal
Editors’ (2007) Uniform Requirements for Manuscripts Submitted
to Biomedical Journals: Writing and Editing for Biomedical Pub-
lication illustrates biomedical editors’ preference for the use of
effect sizes and confidence intervals:

When possible, quantify findings and present them with appropriate
indicators of measurement error or uncertainty (such as confidence
intervals). Avoid relying solely on statistical hypothesis testing, such
as the use of P values, which fails to convey important information
about effect size. (Section IV.A.6.c)

Additionally, the Consolidated Standards of Reporting Trials
(Schulz, Altman, & Moher, 2010, Items 17a and 17b) and the
Transparent Reporting of Evaluations with Nonrandomized De-
signs (Des Jarlais, Lyles, Crepaz, & the TREND Group, 2004,
Item 17) both state that effect sizes and confidence intervals should
be reported for primary and secondary outcomes. Clearly, there is
growing recognition of the importance of reporting effect sizes
along with confidence intervals for interpreting and communicat-
ing the magnitude of an effect and discussing its importance.

Existing Definitions of Effect Size

Even with the importance of effect size in modern research,
there are different and conflicting definitions of effect size in the
literature. Nakagawa and Cuthill (2007) discuss how effect size
can mean (a) “a statistic which estimates the magnitude of an
effect” (e.g., r), (b) “the actual values calculated from certain
effect statistics” (e.g., r � .3), or (c) “a relevant interpretation of
an estimated magnitude of an effect from the effect statistics” (e.g.,
“medium”; p. 593). Because effect size is used in three entirely
different ways, it can be problematic to know precisely what is
meant by the term effect size. Later, we provide terms to clearly
distinguish the first two uses of effect size documented by Naka-
gawa and Cuthill. The third way Nakagawa and Cuthill document
that the term effect size is used, namely, as a qualitative interpre-
tation of a quantitative value, is generally problematic and is an
issue we discuss later. Notice that effect is used in each of the three
meanings of effect size discussed by Nakagawa and Cuthill, which
is an illustration of the difficulty of discussing effect sizes in a way
separated from the word effect. We will not define effect size with
the term effect in the definition, or size, so as to avoid defining
effect size with one of its two root words.

Effect size is often linked to the idea of substantive significance
(e.g., practical, clinical, medical, or managerial importance), which
can be understood to be the degree to which interested parties
(scientists, practitioners, politicians, managers, consumers, deci-
sion makers, the public at large, etc.) would consider a finding
important and worthy of attention and possibly action. Substantive

1 The previous (fifth) edition of the APA Manual (APA, 2001) did state
that confidence intervals “can be an extremely effective way of reporting
results” (p. 22) and that researchers should “provide the reader not only
with information about statistical significance but also with enough infor-
mation to assess the magnitude of the observed effect or relationship” (p.
26).
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significance is context specific and can mean different things to
different parties in different situations. The idea of substantive
significance is more subjective than statistical significance, which
has a highly objective meaning (i.e., obtaining a p value less than
the specified Type I error rate).2 Although objective, Aiken (1994,
p. 857) reminds us that even a small p value need not imply
substantive significance.

Contrary to conventional wisdom, what may seem like a trivial
effect size can translate into a substantively important finding.
Rosenthal and Rubin (1982) and Abelson (1985) provide illustra-
tions of how what some may regard as a trivial effect size can
translate into substantive significance. Consider the Physicians’
Health Study. The Data Monitoring Board recommended early
termination of this randomized study because a “statistically ex-
treme beneficial effect on nonfatal and fatal myocardial infarction
had been found” (Steering Committee of the Physicians’ Health
Study Research Group, 1988, p. 262). This “statistically extreme”
effect can be translated into a product–moment correlation coef-
ficient of the dichotomous explanatory variable (group member-
ship) and outcome (myocardial infarction or not) of .0337, which,
when squared to obtained the proportion of explained variance, is
only .0011 (e.g., Rosenthal, 1994). However, another way to
interpret the results is that the physicians not assigned to the
aspirin group had a 1.82 times higher odds of having a heart attack
(i.e., �189/11,034� / �104/11,037� � 1.82; Steering Committee of
the Physicians’ Health Study Research Group, 1988). This is, by
all accounts, an important finding with much practical importance.

Kirk (1996) reviews the idea of substantive significance and
uses the term effect magnitude for supplementary measures to
accompany NHSTs, in which “measures of effect size” was a
special case of effect magnitude relating specifically to standard-
ized mean differences (pp. 748 –749). Kazis, Anderson, and
Meenan (1989) describe effect size as “a standardized measure of
change in a group or a difference in changes between two groups”
(p. S180). Olejnik and Algina (2003) define an effect size measure
as “a standardized index” that “estimates a parameter that is
independent of sample size and quantifies the magnitude of the
difference between populations or the relationship between ex-
planatory and response variables” (p. 434). One of the ways in
which NCES Statistical Standards (NCES, 2002) defines effect
size is “standardized magnitude of the effect” (p. 131). We believe
that these definitions of effect size are too narrow, as they exclude
many measures that we believe are effect sizes. However, Kirk’s
“effect magnitude” is more encompassing and is consistent with
our broad conceptualization of effect size, which we discuss mo-
mentarily. Like Grissom and Kim (2005), who note “effect size . . .
is not synonymous with practical significance,” we believe that
“knowledge of a result’s effect size can inform a judgment about
practical significance” (p. 4).

Effect size has often been defined relative to the value of the
null hypothesis for a corresponding NHST (Berry & Mielke, 2002;
Henson, 2006; Kirk, 1996, 2002). Grissom and Kim (2005) state
that “we use the label effect size for measures of the degree to
which results differ from what is implied for them by a typical null
hypothesis” (p. 4). An updated edition of the Grissom and Kim
work states that “whereas a test of statistical significance is tradi-
tionally used to provide evidence (attained p level) that a null
hypothesis is wrong, an effect size (ES) measures the degree to
which such a null hypothesis is wrong (if it is wrong)” (Grissom &

Kim, 2012, p. 5). The second way that the NCES Statistical
Standards (NCES, 2002) defines effect size is the “the departure
from the null hypothesis” (p. 131). Similarly, one of the ways that
Cohen (1988) defined effect size is “the degree to which the null
hypothesis is false.” Vacha-Haase and Thompson (2004) define
effect size as a “statistic that quantifies the degree to which sample
results diverge from the expectations . . . specified in the null
hypothesis” (p. 473). Similarly, B. Thompson (2004) states that
“effect sizes quantify by how much [emphasis in original] sample
results diverge from the null hypothesis” (p. 608), and Creswell
(2008) states that “the calculation of effect size varies for different
statistical tests” (p. 167), both of which link effect size to an
NHST. We believe that linking the definition of effect size to
NHSTs is something that should be avoided, as effect sizes and
NHSTs represent fundamentally different ways of using data to
make inferences. Furthermore, for the same set of data, the effect
size calculated would be dependent on the null value specified by
a researcher. For example, if a null value of the population corre-
lation coefficient were specified at a value of .10 by one researcher
and 0.00 by another, for an obtained value of the correlation
coefficient of .20, one researcher’s effect size is .10, whereas the
other’s is .20. Defining an effect size relative to the null hypothesis
specified in an NHST suffers from a fundamental problem in that
each researcher could report a different effect size for the same
phenomenon in the same data set.

As noted, one way that Cohen (1988) defined effect size was
tied to an NHST. Another way that Cohen defined effect size was
the “degree to which the phenomenon is present in the population”
(p. 9). Conversely, Vacha-Haase and Thompson (2004) confine
their definition of effect size to “sample results” (p. 473). We see
that wedding the definition of effect size to either a population or
a sample is overly limiting, because generally it is useful to
conceptualize a population effect size as well as an effect size in a
sample (i.e., both sample values and population values of effect
sizes exist).

Sometimes effect size is defined specifically with respect to an
independent or dependent variable, and sometimes both. For ex-
ample, Miller (2007) describes an effect size as “a measure of how
strong the relation is between the independent and dependent
variable” (p. 147), and Vaske, Gliner, and Morgan (2002) define
effect size as “the strength of the relationship between the inde-
pendent variable and the dependent variable” (2002, p. 290).
Similarly, Peyton’s (2005) definition of effect size is “the magni-
tude of the impact of treatment on an outcome measure” (p. 186).
We believe that these definitions are useful but unnecessarily
narrow.

Rather than provide a formal definition of effect size, some
works use a definition-by-example approach (e.g., P. D. Ellis,
2010, Chapter 1; Rosenthal, 1994). We believe that defining a term
by providing examples is generally not the ideal way to articulate
the full scope of the term. Although such an approach may provide
representative examples, there may be ambiguity when attempting
to generalize beyond the specific examples given. We believe that

2 There is an element of arbitrariness in selecting the Type I error rate.
Although a Type I error rate of .05 may be the modal value used in
psychology and related disciplines, the value of .05 is itself simply an
arbitrary convention.
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definition-by-example approaches to defining effect size fail to
convey the rich variety of types of effect sizes that exist.

There is a wide range of restrictive definitions of effect size in
the literature. We see the multitude of restrictive definitions as a
hindrance to the increased use of effect sizes. Although a great deal
of emphasis has been placed on using effect sizes to facilitate
interpretation of the results of empirical research, many research-
ers rely on the results of NHSTs to come to research conclusions.
Due to the limitations, inconsistencies, and various issues outlined
thus far, we believe that the time is right to offer a general
definition of effect size and delineate various properties of effect
size. We hope our discussion will provide a general framework for
discussions of effect sizes, assist in understanding the importance
of linking questions of interest to effect sizes, and help researchers
better communicate the magnitude of findings in rigorous and
useful ways, which we believe will ultimately facilitate a more
cumulative science.

A Definition of Effect Size

Before defining effect size, we first define effect and size in the
present context. In a research context, we define effect as a
quantitative reflection of a phenomenon and size as the magnitude
of something. Using effect and size as core components, with
consideration of how research is reported and interpreted, leads to
our definition: Effect size is defined as a quantitative reflection of
the magnitude of some phenomenon that is used for the purpose of
addressing a question of interest. Our definition of effect size is
more than the combination of effect and size, as our definition
depends explicitly on addressing a research question of interest.
The question of interest might refer to central tendency, variability,
association, difference, odds, rate, duration, discrepancy, propor-
tionality, superiority, or degree of fit or misfit, among others (cf.
Preacher & Kelley, 2011). Our definition of effect size is inten-
tionally more inclusive than the ways in which many others have
previously defined or conceptualized effect size.

We believe that effect size is necessarily tied to a question of
interest, and we regard this aspect of our definition to be very
important. An estimated effect size is a statistic, whereas a popu-
lation effect size is a parameter. However, a statistic or parameter
is not necessarily an effect size. One might then ask, What is the
difference between an effect size and a statistic (or parameter)? We
regard the difference between a statistic (or parameter) and an
effect size to be a function of its purpose: An effect size is a
statistic (or parameter) with a purpose, which is to quantify some
phenomenon that addresses a question of interest.

In some cases, what will be classified as an effect size in one
study may not be classified as an effect size in another study. The
idea of an effect size being a statistic (or parameter) with a purpose
is the reason why reporting effect size is so often suggested or even
required when discussing the results of a study. That is, effect sizes
are used for the purpose of conveying the magnitude of some
phenomenon, where that phenomenon is explicitly linked to some
research question. For example, in some contexts, a regression
coefficient’s only purpose is to make an objective prediction of a
criterion variable from a set of regressors in an automated fashion.
In such situations the particular value of a regression coefficient
may not be of interest—rather, it is simply used in an automated
prediction equation. However, in other situations a regression

coefficient is used to quantify the linear relation between a regres-
sor and a criterion variable when holding other regressors constant
in an effort to convey the strength of the relationship. The former
example need not be regarded as an effect size because it is not
literally addressing a question of interest (rather, it is used for
automated prediction), but the latter use is explicitly addressing a
question of interest (i.e., the strength of the relationship). When
used as part of an automated prediction, for example, its value may
never be of interest in and of itself—it is simply treated as a part
of an algorithmic method of reaching a prediction. This is a
completely different use than when the size of the regression
coefficient is explicitly of interest to address a research question.

What about a proportion from a random sample—is it an effect
size or “just” a statistic? The answer from the previous discussion
implies that it depends on its purpose and on whether or not it
addresses a research question. Consider the description of a par-
ticular firm, where the proportion of women in managerial roles
can be regarded simply as a description of what is true: “Women
hold 12% of the managerial roles at the firm.” However, the
proportion of women in managerial roles can also be regarded as
an effect size, as it represents the magnitude of some phenomenon
for a question of interest. This effect size could be used as a
comparison to the proportion of women in managerial positions in
other firms of similar scope, as an impetus to better investigate
why it is such a small proportion, or as a reflection of a collection
of factors inhibiting women from promotion to managerial roles,
among other uses. Thus, even a statistic as simple as a proportion
can be used not only as a description of what exists in a data set,
but to address a particular research question. Many other examples
could be provided, but the idea is that an effect size addresses a
question of interest.

Notice that our definition is not wedded to any particular null
hypothesis or NHST. In fact, we believe that linking the definition
of effect size to a null hypothesis or NHST should be avoided
because effect size and null hypotheses represent two fundamen-
tally different ways of using data. Although the move to a more
effect-size-based literature, it could be argued, is motivated by a
move away from NHSTs (Robinson et al., 2003), our purpose is
not to disparage null hypothesis significance testing or the frame-
work in general. Rather, we believe it is important to note the
conceptual independence of effect sizes and NHSTs. However, if
a connection must be made between effect sizes and NHSTs, it is
that NHSTs are dependent on effect size, not the reverse, as
NHSTs involve testing whether a population effect size differs
from some stated null value. Effect size itself need not invoke a
null hypothesis or an NHST in order for it to be used as a way to
express the size of an effect, but it should always be accompanied
with a confidence interval to explicitly show the uncertainty asso-
ciated with the estimate.

Regarding definitions that link effect size to the dependent
variable, sometimes there is no clear distinction between indepen-
dent and dependent variables. For example, the correlation coef-
ficient between two variables can be of interest even if one
variable is not treated as a predictor of the other (e.g., the corre-
lation between two independent variables in the context of multi-
ple regression). In such a situation the correlation may be of
interest to assess collinearity, which can affect statistical power
and accuracy of parameter estimation. The correlation coefficient
also extends to a multivariate effect size in canonical correlation
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analysis, where there may be several variables in each of two sets, and
linear composites of the sets are correlated. Also, for evaluating fit or
misfit in a structural equation modeling context, often the discrepancy
between observed and model-implied covariances for an entire model
is evaluated, and it is difficult to conceptualize this situation in
independent–dependent variable terms.

Although it is more general than many definitions of effect size,
there is support for our broadly conceptualized definition of effect
size. For example, Fidler, Thomason, Cumming, Finch, and Lee-
man (2004) review the ways in which confidence intervals and
effect sizes are used and reported in research. In a section titled
“Effect Sizes,” Fidler et al. note the type of effect sizes they coded
as part of their study. They state that “we coded any effect size
measures” and go on to list more than 12 specific types of effect
size measures, including means, odds ratios, percentages, propor-
tions, and explained variance statistics. Additionally, as noted
previously, one way that Cohen (1988, p. 9) defined effect size was
the “degree to which the phenomenon is present in the population.”
Although Cohen’s definition may implicitly invoke a null hypoth-
esis of zero, the generality of the definition speaks to a broad
conceptualization of effect size, albeit only in the context of the
population.

The Facets of Effect Size

Within the context of effect size, we have identified three facets
that are important to delineate. By “facet,” we mean a particular
aspect of effect size that corresponds to how the term is used.
Similar to how Nakagawa and Cuthill (2007) discuss three mean-
ings of effect size, we formalize three facets to how we concep-
tualize effect size. The first facet of effect size addresses the type
of information of interest; the second facet is the operationalization
of the effect size via the equation that links the data, statistics, or
parameters to the effect size; and the third facet is the particular
value of the effect size. More formally, the facets are effect size
dimension, effect size measure/index, and effect size value, each of
which is defined below, with examples illustrating the meaning of
each of the facets.

Facet 1: Effect Size Dimension

In physics, dimensions are regarded as generalized units (Car-
man, 1969; B. Ellis, 1966, p. 142; Ipsen, 1960, Section 3.6). The
basic idea of a dimension is that it identifies an abstraction of the
variable of interest, but not the units with which the abstraction
will be measured. Example dimensions in physics are length,
weight, density, force, and energy. A dimension can be operation-
alized in different units (e.g., the dimension of distance can be
operationalized in units of millimeters, inches, miles, or light-
years, among others).

Effect size dimension is an abstraction of a quantifiable quality
in a generalized way that does not have a particular unit. An
example of an effect size dimension is variability, which can be
operationalized in units of variance, standard deviation, range,
interquartile range, etc. Notice that the effect size dimension of
variability is itself not a specific unit; rather, it is an abstraction
related to the degree to which values differ—variability is thus a
quality that will be quantified in some way. Momentarily we

discuss effect size measure, which is the way in which the effect
size dimension is operationalized in a particular context.

Consider effect size dimension in an applied context. Suppose
interest concerns the relationship between two variables. The di-
mension of relatedness (or some similar term that describes the
dimension) can be operationalized in the form of a correlation
coefficient, covariance, regression coefficient, among others. The
dimension of relatedness is the abstract concept and not any
particular operationalization of the dimension. That is, the effect
size dimension provides the general idea (i.e., abstraction) of the
way in which the question will be addressed. Momentarily (in
Corollary 3 in the next section) we discuss how dimensions are
formalized in the effect size context.

Facet 2: Effect Size Measure

Effect size measure, or synonymously effect size index, is a
named expression that maps data, statistics, or parameters onto a
quantity that represents the magnitude of some phenomenon. That
is, it is the equation that defines the particular implementation of
the effect size dimension or dimensions of interest. For example,
an effect size measure used to operationalize the effect size di-
mension of separation between two group means is the standard-
ized mean difference, which is defined as

d �
X� 1 � X� 2

spooled
,

where X� j denotes the mean of the jth group (j � 1,2) and spooled is
the square root of the unbiased estimate of the within-group
variance (i.e., the square root of the mean squared error). That is,
the effect size measure is the above-noted equation that maps the
statistics onto the particular effect size.

Another example of an effect size measure is the root-mean-
square error of approximation (RMSEA, or ε̂), which is an opera-
tionalization of the estimated effect size dimension of model fit,
specifically in the context of structural equation models (other
such effect size measures are the normed fit index, the goodness-
of-fit index, adjusted goodness-of-fit index, and Tucker–Lewis
index). The effect size measure of the RMSEA is defined as

ε̂ � �max �0,
F̂0

v �,

where F̂0 is the estimate of the population maximum likelihood
discrepancy function and v is the number of degrees of freedom.
Each such effect size measure of model misfit has its own imple-
mentation. The idea of the effect size index is that it represents a
very precise way in which the data, statistics, or parameters are
used to implement a particular effect size dimension in order to
address some question of interest.

Facet 3: Effect Size Value

When an effect size measure is applied to data, statistics, or
parameters, a real number results that we term the effect size value.
This value is the realization of a particular effect size measure, that
itself was a particular operationalization of an effect size dimen-
sion. The effect size value is literally the magnitude of some
phenomenon as discerned from the data, statistics, or parameters.
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For example, the effect size value obtained for the effect size
measure “the standardized difference between means” that opera-
tionalized the “separation between two group means” in a partic-
ular study may be d � 0.70. The value of 0.70 is a real number that
results from applying data, statistics, or parameters to an effect size
measure (i.e., an equation or algorithm) that operationalizes a
particular effect size dimension (i.e., a generalized abstraction).
Another example of an effect size value is the value observed for
the misfit between the theoretical model and a data set, such as
ε̂ � .0375.

Each of the three facets of effect size (i.e., effect size dimension,
effect size measure, and effect size value) will be referred to
simply as “effect size” in different contexts. This generally poses
no problem in practice, as the context in which the term effect size
is used will usually provide clarification to determine the particular
facet (i.e., if it refers to effect size dimension, an effect size
measure, or effect size value) being referenced. However, for any
effect size value to make sense, the specific effect size measure
necessarily needs to be clearly stated. Stating an effect size dimen-
sion and then providing an effect size value does not convey how
the effect size dimension was implemented; that is, the particular
effect size measure is unknown (or at least ambiguous). For
example, stating that “the relationship between X1 and Y is .7” is
not sufficient, because the .7 value could be an unstandardized
regression coefficient, a standardized regression coefficient, a co-
efficient from a regression analysis in which only the regressors
(and not Y) are standardized, or some type of correlation coeffi-
cient (e.g., partial or otherwise). As is discernible from our defi-
nition of effect size dimension, it is a more general term that
speaks to the type of effect size that is of interest, whereas effect
size measure is very specific regarding the way in which effect size
is operationalized. Effect size value is then a real number from an
expressly stated effect size measure that conveys information
about some type of effect size dimension of interest based on data,
statistics, or parameters.

Corollaries From the Effect Size Definition

In this section we discuss 10 corollaries that stem from our
definition of effect size, which allows us to clarify various aspects
and types of effect sizes. We discuss these corollaries because we
believe they will help provide clarity to researchers. However, the
failure to discuss a topic as a corollary does not imply that the
particular aspect is not a corollary or is in some way unimportant.
For each of the corollaries, we provide an overview and examples.

1. Effect Sizes Can Represent Sample Values,
Population Values, or Theoretical Values

An effect size obtained from data is a sample value, which is
used to estimate the corresponding population value. In many
cases the population value is a theoretical value that is unknow-
able. However, in other cases the population value can be obtain-
able from perfectly reliable census data. How often “perfectly
reliable census data” are available in a particular context, or even
if they can be, is not relevant for the corollary. Rather, the idea of
the true population value of some effect size existing is the point
we want to emphasize. Additionally, theoretical values that may or
may not be equal to the sample or population values also exist. For

example, a theory might predict that the true correlation coefficient
between variables X and Y is 0.00. The population value may in
fact be .10, and the sample value may be .175. The fact that there
are three effect size values (i.e., theoretical, population, and sam-
ple) poses no particular problems. Of course, whenever the situa-
tion is not abundantly clear from the context, the particular type of
effect size value (e.g., theoretical, population, and sample) should
be clearly noted.

2. Effect Sizes Can Quantify Absolutely or
Comparatively

Some effect sizes are absolute in nature, in the sense that the
effect size does not require some referent value for its interpreta-
tion. Other effect sizes, however, are comparative in nature, in
which the interpretation of the effect size does require some
referent value or values. The referent values can be from another
group, situation, model, or theoretically interesting benchmark,
such as the maximum, minimum, or baseline value, among others.
Comparative effect sizes are used when there is some explicit
comparison that is important to quantify. For example, the number
of participants that relapse after taking part in a smoking cessation
program is an absolute (referent free) effect size measure. How-
ever, the number of participants that relapse after taking part in the
smoking cessation program relative to the total number of partic-
ipants (i.e., the proportion of participants that relapse) is a com-
parative effect size. For another example of a comparative effect
size, consider the number needed to treat (NNT) in the context of
two groups with binary outcomes (e.g., success or failure). The
NNT is “the estimated number of patients who need to be treated
with the new treatment rather than the standard treatment for one
additional patient to benefit” (Altman, 1998, p. 1309). The number
needed to treat is defined as

NNT � 100� 1

pN � pS
�,

where pN and pS are the proportions of participants with successful
outcomes in the new and standard treatments, respectively (Alt-
man, 1998).

3. Effect Sizes Can Be Dimensionless, Unidimensional,
or Multidimensional

Recall that the first facet of effect size is effect size dimension,
which is a generalized abstraction of a unit. Determining the
number of dimensions of a particular effect size measure is the
basis of this corollary. In physics a dimensional analysis “treats
the general forms of equations that describe natural phenomena”
(Langhaar, 1951, p. v), so that a variable can be decomposed into
its basic dimensions. Another way to conceptualize a dimensional
analysis is as “a method by which the variables which characterize
a phenomenon may be related” (Ford & Cullmann, 1959, p. 11). In
a dimensional analysis, a functional relationship is given that
“remains true no matter what the size of the units in terms of which
the quantities are measured” (Bridgman, 1922, p. 1). For example,
consider the following dimensions, where brackets are used to
denote dimension and �

d means “is dimensionally equal”:
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�Time� �
d

�Time�,

�Length� �
d

�Length�.

The dimensions of [Time] and [Length] are each unidimensional
because they do not depend on other abstractions, which is why the
left-hand and right-hand sides of the equation are the same, as they
cannot be further reduced. When a dimension does not depend on
other dimensions, that is, when it is unidimensional and cannot be
reduced, it is a fundamental dimension considered to be a basic
building block. However, dimensions such as [Velocity] are mul-
tidimensional because they are defined in terms of other dimen-
sions:

�Velocity� �
d �Length�

�Time�
.

Notice here that the left-hand and right-hand sides differ, unlike
the case for [Time] and [Length] above, because a multidimen-
sional abstraction (on the left-hand side) is represented as a func-
tion of its unidimensional components (on the right-hand side).
Multidimensional phenomena, such as [Velocity], are “derived
magnitudes” that are obtained in a more complicated way than by
comparing the phenomena to a particular unit (e.g., as both
[Length] and [Time] are each obtained in the dimensional equation
above).

We extend the idea of a dimensional analysis to an effect size
context, where an effect size measure is decomposed into its basic
dimensions. Dimensional analysis in the effect size context is
useful because it allows the number of dimensions of an effect size
measure to be determined. As we show, effect size measures can
be multidimensional, unidimensional, or dimensionless, which im-
pacts the way in which an effect size can be interpreted. We expect
dimensional analyses to be most relevant to methodologists study-
ing various effect sizes that may be appropriate in a particular
context. However, applied researchers will also benefit by better
understanding the dimensions that combine to form various effect
sizes.

Take, for example, the population effect size measure of the
mean difference, defined as

� � �1 � �2

in the population, where �j is the population mean for the jth group
(j � 1,2). The effect size value of a mean difference is based on
only a single dimension, namely, central tendency. Although there
are two instances of central tendency in the effect size measure of
�, there is only one dimension (because those two instances of
central tendency are in fact the same dimension). More formally,

��� �
d

�Central Tendency� � �Central Tendency�

and thus consists of only a single dimension, central tendency. The
fact that a difference is taken between two measures of the same
dimension in not problematic, as dimensional analysis uses dimen-
sional equations and not ordinary algebraic equations, in which
[Central Tendency] � [Central Tendency] would be 0. Recall that
dimensional analysis describes a phenomenon in terms of the
mathematical form of the basic dimensions of the phenomenon.
For �, the effect size measure used to operationalize [Central

Tendency] here is the mean, but any other measure of [Central
Tendency] (e.g., the median) could have been used without the
dimension itself changing, just the operationalization of the dimen-
sion via a different effect size measure (e.g., the difference be-
tween medians).

An example of an effect size measure that is multidimensional
is the standardized mean difference, which is defined for the
population as

� �
�1 � �2

�
,

where � is the common within-group population standard devia-
tion. The effect size � consists of dimensions of [Central Ten-
dency], operationalized as the mean (of which a difference is
taken), and of [Variability], operationalized as the common stan-
dard deviation:

��� �
d �Central Tendency� � �Central Tendency�

�Variability�
.

Thus, the standardized mean difference is a bidimensional effect
size because it is composed of two fundamental dimensions (they
are fundamental because they are at the most basic level).

Some effect size measures are dimensionless abstractions,
which is a term used when a dimensional analysis reveals that the
effect size is based on no specific dimensional component (nota-
tionally as �Effect Size Measure� �

d �1�). Note that saying an effect
size has dimension of [1] is different from saying it has a single
dimension, such as [Variability]. Dimensionless variables describe
what can be considered a natural variable, which when realized is
a natural number that does not depend on any arbitrary convention
of expression (such as a particular scaling of an abstraction, e.g.,
kilograms). Natural numbers have a natural unit of 1. For a
concrete example from physics, consider the slenderness of a
cylinder, defined as the ratio of height to diameter, both of which
are measures of distance (i.e., the ratio of distance along the
cylinder to the distance around the cylinder). A dimensional anal-
ysis shows, then, that slenderness is a dimensionless variable that
produces a dimensionless number, as it is a ratio of two distances
	�Slenderness� �

d �Distance�/�Distance� �
d �1�
. Regardless of the

particular scaling of distance used to measure the height and
diameter, slenderness remains the same because the same dimen-
sions are in the numerator and denominator and are thus “divided
out.”

Consider the estimated squared multiple correlation coefficient
(i.e., the estimated coefficient of determination), which is defined
as the ratio of the sums of squares due to the regression model to
the total sums of squares,

R2 �
SSRegression

SSTotal
�

�
i�1

N 	Ŷi � Y� 
2

�
i�1

N 	Yi � Y� 
2
,

where Yi is the score of the dependent variable for the ith
individual (i � 1, . . . , N), Y� is the mean of the dependent
variable, and Ŷi is the model implied value from the regression
model for the ith individual. For R2, the effect size dimension in
the numerator (i.e., [Sum of Squared Deviations]) is the same as

143ON EFFECT SIZE



the effect size dimension in the denominator (i.e., [Sum of
Squared Deviations]). Thus, R2 is a dimensionless effect size
(i.e., �R2� �

d �1�). Again, for clarity, we are not saying that R2 is
an effect size with 1 dimension, but rather that it is dimension-
less, and its dimensional components, of which there are none,
is represented as [1], due to the dimensions of sum of squares
being divided out. The practical utility of a dimensional anal-
ysis comes from having a better understanding of how dimen-
sions affect the interpretation of an effect size.

4. Effect Sizes Can Be Standardized, Partially
Standardized, or Unstandardized

An unstandardized effect size is one whose interpretation is
dependent on the units of the measurement instrument. Examples
of unstandardized effect sizes are (a) unstandardized regression
coefficients based on the observed data from one or more different
measurement scales, (b) mean differences based on untransformed
(i.e., raw) data, (c) path coefficients in a structural equation model
based on the covariance matrix (not the correlation matrix), and (d)
the product of unstandardized regression coefficients (or path
coefficients; e.g., the indirect effect in mediation models).

In addition to or instead of a dimensional analysis, what we term
a unit of measurement analysis can also be performed in a manner
analogous to the dimensional analysis. The idea is to determine
whether the measurement units cancel, creating a type of effect
size that needs no unit label, termed a standardized effect size. This
is fundamentally different from a dimensional analysis but may
initially seem similar. The difference concerns whether the anal-
ysis concerns the dimensions or the units of measurement. A
standardized effect size is one in which the measurement units
themselves cancel, not necessarily but possibly the dimensions,
too, so that the particular units of the measurements are no longer
wedded to the interpretation of the effect size. Note that a stan-
dardized effect size can be dimensionless or have some number of
dimensions. Examples of standardized effect sizes are (a) stan-
dardized regression coefficients (e.g., when regression analysis is
based on z scores of the outcome variable and all regressors), (b)
the standardized mean difference, (c) the coefficient of variation,
and (d) a standardized path coefficient from a structural equation
model. For a standardized effect size, knowledge of the particular
units of the measurement scale are not needed in order to interpret
the value of the effect size. In this sense, a standardized effect size
is similar to a dimensionless effect size, but the distinction between
the two is important because they represent different concepts.

Consider again the population standardized mean difference.
The numerator is in terms of whatever units of measurement
represent the phenomenon of interest (e.g., reaction time), but so
too is the denominator. Thus, the measurement units expressing
the magnitude in the numerator and the units expressing the
magnitude in the denominator cancel, leading to an effect size
measure that needs no unit label due to the measurement units
canceling.

Another type of scaling of effect sizes is partial standardization.
For example, the standardized solution in a multiple regression
model is one in which the dependent variable and all independent
variables are all standardized. However, standardizing the inde-
pendent variables but not the dependent variable leads to regres-
sion coefficients that are partially standardized. The interpretation

of such coefficients is that each coefficient is interpreted to mean
the expected change in the unstandardized criterion variable for a
1 standard deviation change in the standardized regressor variable,
holding other standardized regressors constant. More generally, an
effect size is said to be partially standardized when at least one
component of the effect size is standardized and at least one
component is unstandardized. In such situations, the interpretation
of the effect size is at least partially based on one or more specific
measurement units.

Although dimensionless effect size measures from Corollary 3
and standardized effect size measures from this corollary (Corol-
lary 4) may seem similar, they are theoretically distinct. Recall that
a dimensionless quantity is one that has dimension of [1]; that is,
it has no dimensions (e.g., due to the same dimensions in the
numerator and denominator canceling). An effect size value can
have multiple dimensions and (a) need no specific measurement
unit label (e.g., the standardized mean difference is not wedded to
any particular measurement unit, such as scores on a depression
inventory, and is invariant to linear transformations) or (b) be
wedded to specific measurement units (e.g., an unstandardized
regression coefficient, which is scaled in terms of the particular
measurement scales of the regressor and outcome variables). An
effect size can also have a single dimension and (a) need no
specific measurement unit label (e.g., a cardinal number used to
measure the size of a set, which conveys the same information
regardless of the label of the units contained within the set) or (b)
have a single dimension and be wedded to a specific measurement
unit (e.g., mean difference on a performance scale depends on the
scale of the variable in which a mean difference was taken).
Additionally, an effect size can be dimensionless and (a) need no
specific measurement unit label (e.g., the squared multiple corre-
lation coefficient is not wedded to the measurement scales of any
variable in the model) or (b) be specific to a particular unit of
measurement (e.g., the ratio of unstandardized regression coeffi-
cients involving regressors of different scales).

5. Effect Sizes Can Be Base-Rate Dependent or
Base-Rate Independent

The idea of an effect size being base-rate dependent versus
base-rate independent is that a base-rate dependent effect size is
fundamentally linked with the proportionality of the size of the
sample or population to which the effect size corresponds. Con-
sider the point biserial correlation coefficient, which is defined in
part by the proportion of a sample or population accounted for by
each of two groups. In particular, when there are two groups and
a continuous outcome variable, the sample point biserial correla-
tion can be written as

rpb �
X� 1 � X� 2

SX
�p1p2,

where p1 is the proportion in the first group (p2 � 1 � p1 is thus
the proportion in the second group) and SX is the standard devia-
tion of the data (i.e., using the grand mean) with N (not N � 1) as
the divisor, that is,

SX � ��
i�1

N 	Xi � X� ··

2/N,
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where X� ·· is the grand mean of the N Xi scores (Cohen, Cohen,
West, & Aiken, 2003, Section 2.3.3). Whereas the point biserial
correlation depends in part on the size of the groups via their
proportions, the standardized mean difference is independent of
group size, making it a base-rate independent effect size. Such a
distinction can be important for interpretation purposes. McGrath
and Meyer (2006) discuss how the point biserial correlation coef-
ficient and the standardized mean difference can lead to different
conclusions when applied to the same data when one variable is a
grouping variable and the other is a continuous variable.

The point biserial correlation coefficient is not the only base-
rate dependent effect size, of course. Consider again the example
of the proportion of women in managerial roles at a particular
organization. The actual count of women in managerial roles is
base-rate independent. However, the proportion of women in man-
agerial roles depends not only on the count of women managers,
but also on the total count of managers. This proportion is itself the
base rate of women managers. Odds are also base-rate dependent,
because they compare the number of “successes” with the number
of “failures.” Likewise, an odds ratio is the ratio of odds from two
groups and is itself based on the proportionality of successes to
failures for two groups. The point is, an effect size may or may not
be dependent on a base rate (i.e., a proportion in a population or
sample).

6. Effect Sizes Can Quantify Phenomena That Are
Causal or Observational

Effect sizes may apply in causal situations or in observational
situations; there is no special difference between causal and ob-
servational settings with regard to the effect size itself, as the same
effect sizes can generally be used when quantifying causal rela-
tionships or associations. A major difference between effect sizes
that quantify causal versus observational, however, is how the
effect size is communicated and interpreted. For example, consider
a simple linear regression in which the unstandardized regression
coefficient is 5. It might be tempting to say “a 1-unit change in the
regressor causes a 5-unit increase in the criterion variable.” How-
ever, such language would be appropriate only if the values of the
regressor were randomly assigned to a random sample from a
population of interest, the independent variable preceded the de-
pendent variable with sufficient time to allow the causal process to
manifest, alternative explanations for the effect can be dismissed,
and the assumption of linear relationships among variables were
satisfied. Certainly one might believe an observational relationship
is causal due to theoretical arguments, especially after “control-
ling” for various other variables thought to be correlated with both
the regressor and the independent variable, but there may well be
one or more lurking variables that actually influence the change in
the outcome variables. In short, effect sizes in and of themselves
are distinct from issues of causality. That is, inferring causality
adds requirements that do not influence the use of effect sizes (e.g.,
Pearl, 2009).

7. Effect Sizes Can Quantify Phenomena That Are
Omnibus, Targeted, or Semitargeted/Semiomnibus

An omnibus effect size is one that quantifies an overarching
effect, whereas a targeted effect size is one that quantifies an

isolated effect. The questions of interest that relate to targeted
effect sizes are narrowly focused and specific, whereas questions
of interest that relate to omnibus effect sizes are general. Omnibus
effects are generally based on a collection of targeted effects.
Thus, whereas omnibus effects describe general effects, targeted
effects often can describe the isolated components that compose
the omnibus effect.

To better understand the distinction, consider a balanced single-
factor between-subjects analysis of variance in which the indepen-
dent variable is a randomly assigned level of a quantitative factor,
such as time spent on a certain task. A trend analysis can be used
to decompose the between sums of squares into a set of polynomial
trends (e.g., linear, quadratic, cubic; see Maxwell & Delaney,
2004, Chapter 6, for a review of trend analysis). An effect size
(e.g., partial eta-squared, denoted �p

2) can be formed for the overall
effect (i.e., based on the between sums of squares) or for each of
the individual polynomial trends. The �p

2 value of the overall
model speaks to the overall (i.e., omnibus) effect, whereas the
individual �p

2 values speak specifically to the individual trends
(i.e., a targeted effect for each polynomial trend).

Examples of other targeted effect sizes are regression coeffi-
cients, pairwise or complex contrasts or comparisons in an analysis
of variance context, and path coefficients in a structural equation
modeling context. Examples of other omnibus effect sizes are
squared multiple correlation, Cramér’s V in a chi-square goodness-
of-fit context, the Mahalanobis distance for a standardized measure
of the separation of multiple means (i.e., a vector) for two groups,
and fit indices in the context of structural equation modeling.

Some effect sizes are a combination of a targeted and omnibus
effect, which we term semitargeted or semiomnibus, both of which
have the same meaning. Consider again the trend analysis in the
analysis of variance context. In contrast to the overall effect or the
individual polynomial trends, multiple polynomial trends can be
combined (e.g., the cubic and quartic trends) and �p

2 can be formed
for the multiple trends, creating a semitargeted effect size. Al-
though for semitargeted effect sizes the exact contribution of
each component is not known based on the semitargeted effect size
itself, there are fewer unknowns than the corresponding fully
omnibus effect size. As another example, consider the increase in
the squared multiple correlation coefficient when X3 and X4 are
added to a model in which Y is already modeled as a function of
regressors X1 and X2. The contribution of any individual regressor
cannot be discerned simply from the change in the squared mul-
tiple correlation coefficient when multiple regressors are consid-
ered simultaneously. That is, only the aggregate change is known,
and it is impossible to pinpoint the targeted effect of each indi-
vidual regressor without a more targeted effect size. In particular,
the change in the squared multiple correlation coefficient for each
of the individual regressors could be given, which then provides a
targeted effect sizes.

8. Effect Sizes Can Be Used to Convey Substantive
Significance (e.g., Clinical, Practical, or Managerial
Significance) or for Simple Description

Wedding effect size to substantive significance (e.g., practical,
clinical, medical, or managerial importance) may be tempting, but
the level of importance attached to a particular value of effect size
may vary greatly from one area to another. What is considered
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impressive in some research areas may not be considered impres-
sive in other research areas. Glass, McGaw, and Smith (1981)
argue that “there is no wisdom whatsoever in attempting to asso-
ciate regions of the effect-size metric with descriptive adjectives
such as ‘small,’ ‘moderate,’ ‘large,’ and the like” (p. 104). Con-
sequently, as tempting as it may be, the idea of linking universal
descriptive terms (e.g., “small,” “moderate,” or “large”) to specific
effect sizes is largely unnecessary and at times misleading (e.g.,
Baguley, 2009; Lenth, 2001; Robinson et al., 2003; B. Thompson,
2002).

Our view is that the meaningfulness of an effect is inextricably
tied to the particular area, research design, population of interest,
and research goal, and it would be inappropriate to wed effect size
to some necessarily arbitrary suggestion of substantive signifi-
cance. This issue is similar to artificially dividing a continuous
variable into arbitrary, discrete categories—it is almost always
inappropriate to do it (see MacCallum, Zhang, Preacher, &
Rucker, 2002, for a review). Our experience is that these qualita-
tive categorizations are sometimes appreciated in certain situations
due to their supposed ease of interpretation and even requested or
required by reviewers or editors when describing effect sizes.
However, categorizing a continuous measure for the purpose of
“simpler” interpretation, especially because such categorizations
are generally arbitrary and context specific, is usually a poor way
to effectively communicate the results of a study. Furthermore,
without clearly communicating the actual value (i.e., not an arbi-
trary suggestion of meaningfulness) of the effect size, using the
study to help plan the sample size for a future study or including
such a categorical description of an effect size in a meta-analysis
is difficult due to the limited information contained within such a
categorical summary.

For example, reducing unplanned absences by 3 days over a
year can have a major impact in terms of revenue generation (thus,
effect size is �3 here). For example, suppose an employee gen-
erates a mean revenue for an organization of $70 per hour. For 7
actual working hours for each of 3 days, there is an increase in
overall revenue of $1,470 (3 � 7 � 70 � 1,470). But that is only
for a single employee. For multiple employees this revenue can
add a significant amount to the company’s total revenue. However,
increasing a third grader’s vocabulary by three over the typical
vocabulary growth (i.e., the same magnitude in the opposite di-
rection of the revenue generation example) would be rather trivial,
since the growth of vocabulary in third grade is generally many
words (with three words being only a small fraction of the overall
vocabulary growth for a typical third grader). These examples can
be thought of in the context of Abelson’s (1985) paradox, where
many small effects can cumulatively have a large effect.

Although effect size can be used to convey substantive signif-
icance, it does not necessarily convey something that is important.
That is to say, although an effect size (by the definition we
provided) is a quantitative reflection of the magnitude of some
phenomenon for the purpose of addressing a question of interest,
that question may be more descriptive in nature than illustrating
something that is necessarily important. For example, it may be of
interest to note the mean difference in educational attainment
between high-level and midlevel managers in a particular organi-
zation. However, that difference may not represent something of
substantive importance. Conveying the substantive importance of
something, however, is often a useful purpose of effect size.

As is well known in the literature, statistical significance need
not say anything about importance. However, statistical signifi-
cance has a precise meaning; namely, the probability of the ob-
served or more extreme data, given that the null hypothesis is true,
is less than the Type I error rate (i.e., 
). However, substantive
significance does not have such a formal, well-defined meaning, as
substantive significance is necessarily context specific and gener-
ally a subjective judgment within an area. Cohen (1990) reminds
us of the distinction between substantive significance and statisti-
cal significance when he discusses how researchers sometimes
inappropriately interpret “statistical significance” as if the effect
size were large or important (p. 1307). What may be clearly a
substantively significant effect size in one area may not be sub-
stantively significant in another area.

9. Effect Size Values May Not Be Static

An effect size need not be the current value of an effect; rather,
it could be the size of an effect size that once existed (e.g., obtained
from historical data) or that may exist in the future (e.g., specula-
tive). Effect sizes can be dynamic and themselves be modeled over
time. Whereas a conceptualization of effect size as a static quantity
may make sense for some phenomena, many phenomena will
change as a function of time, context, or characteristics of the
population (e.g., the reliability of a multi-item scale). Additionally,
the same effect size value may differ for the same phenomenon
across different populations. Correspondingly, careful consider-
ation should be given to the interpretation of effect sizes in the
sense that an effect size value in one instance (e.g., time or
population) need not be the value obtained in another instance,
(i.e., another time or for another population) even if considering
the population value, which would not include sampling error.

10. Many Combinations of Corollaries 1–9 Exist

Not all relevant corollaries of our definition were provided in
Corollaries 1–9. Additionally, many of the various corollaries can
be combined in multiple ways. Rather than attempt to provide a
discussion of combinations of the various corollaries, we focused
on what we regard as primary corollaries that may be considered
the building blocks for the variety of combinations that exist. For
example, an effect size can be a sample value (Corollary 1) that
quantifies absolutely (Corollary 2) a dimensionless number (Cor-
ollary 3) that is base-rate independent (Corollary 5), observational
(Corollary 6), and omnibus (Corollary 7)—such an effect size
might be the squared multiple correlation coefficient (R2) in a
multiple regression context. Of course, many other such examples
can be given, but the major take-away message is that effect size
is a general idea that consists of multiple facets with a multitude of
uses.

What Makes a Good Effect Size?

Depending on the situation and the question of interest, some
effect size dimensions and effect size measures are preferable to
other competing effect sizes. We see as the overarching recom-
mendation that effect sizes (as a general concept encompassing
effect size dimension, effect size measure, and effect size value) be
tied to the particular research question of interest, which mandates
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that the question of interest itself be clearly articulated and the
scope and context of the question clearly delineated. Preacher and
Kelley (2011) provide a discussion of several desirable properties
of effect sizes. In particular, they discuss how good effect sizes
should have the following properties:

1. Effect size values should be scaled appropriately, given
the measurement and the question of interest.

2. Effect size values should be accompanied with confi-
dence intervals.

3. The point estimate of the population effect size value
should be independent of sample size.

4. Estimates of effect sizes values should have desirable
estimation properties; namely, they should be unbiased
(their expected values should equal the corresponding
population values), consistent (they should converge to
the corresponding population value as sample size in-
creases), and efficient (they should have minimal vari-
ance among competing measures).

Not all effect sizes have the complete set of desirable properties.
However, competing effect sizes that address the question of
interest that most closely satisfy the properties are generally the
most preferred. Sometimes historical precedent dictates which
effect size or effect sizes are most commonly reported and inter-
preted in a particular area. However, nothing bars a researcher
from reporting multiple effect sizes addressing the same question
of interest in an effort to better communicate the meaning of the
results.

Although not necessarily a good or bad quality of an effect size,
an appropriate interpretation of an effect size is based on the
particular design of the research. Olejnik and Algina (2000, 2003;
see also Morris & DeShon, 1997) discuss how an effect size
measure in the context of, for example, analysis of variance in a
between-subjects design can have a different interpretation if a
blocking factor is used. When blocking or including covariates,
some of what would have been error variance without the blocking
factors or covariates may now be explained by the blocking factors
or covariates, and thus the error variance will be smaller than it
otherwise would have been. For a standardized effect size that uses
the error variance or some function thereof, it is important to note
exactly how the error variance is used. The issue is especially
important in the context of meta-analysis when the same question
is addressed in multiple studies, yet where some of the studies may
use a blocking factor (or covariate). Glass et al. (1981, Chapter 5)
suggest that meta-analysts should ignore blocking factors when
computing effect size and provide conversion formulas to convert
an effect size based on a blocking factor into one that corresponds
to the group difference at the end of a study. Glass et al. (p. 114)
argue that an effect size for an unadjusted final status score is more
relevant and more readily interpretable.

We emphasize the reporting of confidence intervals for effect
sizes throughout this article and elsewhere. The idea of reporting
a confidence interval along with an estimated effect size value is
not new (see also Smithson, 2001, 2003, for reviews). However,
historically, confidence intervals were not often included in many

empirical works in psychology and related disciplines. In part due
to easy-to-use software and mandates from various sources, con-
fidence intervals are now being used more frequently (e.g., Cum-
ming et al., 2007). The idea of including a confidence interval
along with an estimate can be extended to other interval estimates,
such as credible intervals (e.g., an analogue of confidence intervals
from a Bayesian perspective, also termed a posterior interval; e.g.,
Gelman, Carlin, Stern, & Rubin, 2009), prediction intervals, or
tolerance intervals (e.g., Hahn & Meeker, 1991). In some cases the
parametric assumptions of confidence intervals will not be satis-
fied. Even in those situations, confidence intervals with good
properties usually can be obtained via a bootstrap method. Boot-
strap methods are nonparametric procedures, in which the data
obtained are resampled with replacement many times (e.g.,
10,000) and the statistic of interest is computed for each of the
bootstrap resamples. The statistic of interest from the many boot-
strap samples forms an empirical sampling distribution, without
reliance on any theoretical distribution (e.g., normal, t, or F dis-
tributions). The percentiles (e.g., 2.75 and 97.5 for 95% confidence
intervals) or functions of them based on the sampling distribution
of the bootstrap resamples can be used to form confidence bounds,
even when no known analytic confidence bounds are known (see,
e.g., Chernick, 2008, or Efron & Tibshirani, 1993, for details).

Any effect size estimated from a sample is itself only an esti-
mate of a corresponding population quantity. Levin (1998) calls
the practice of reporting effect sizes with no recourse to hypothesis
tests “absurdly pseudoscientific” (p. 45). We agree that reporting
only an effect size is a scientifically impoverished approach to
communicating results; indeed, it would be a throwback to the
days before the effects of chance (i.e., sampling error) were con-
sidered in understanding obtained results. That is, an effect size
alone ignores the sampling distribution of the effect size and thus
does not establish a range of plausible parameter values.3 There-
fore, a good effect size should have a way to obtain interval
estimates, such as a confidence interval.4 Interval estimates are
critical when a population effect size value is of interest, as such
intervals explicitly acknowledge the fallibility of the estimate as a
representation of its corresponding population value. In most sit-
uations population effect size values are of primary interest, not
literally the idiosyncratic effect size value obtained in a particular
finite sample (e.g., Balluerka, Gómez, & Hidalgo, 2005; Bird,
2002; Cumming & Finch, 2001; Fidler & Thompson, 2001; Hen-
son, 2006; Kelley, 2005, 2007, 2008; Kelley & Maxwell, 2003;
Kirk, 1996; Smithson, 2001; B. Thompson, 2002, 2007). Conse-
quently, the results of an analysis should always include an interval
estimate whenever an effect size estimate is reported, which we
regard as a rule that has only one exception we are able to identify,
which is when perfectly measured census data (i.e., the whole

3 Another implication of ignoring the sampling distribution of the effect
size is that it is unclear whether the population effect size differs from some
specified null value. That is, by ignoring the sampling distribution, no
NHSTs can be performed. Although we generally advocate the use of
confidence intervals, under some circumstances NHSTs can be beneficial.

4 If inference is done in the context of a Bayesian framework, credible
intervals based on both the specified priors and data should be provided.
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population) are used.5 By including an interval estimate, the in-
terval limits become an explicit part of the interpretation of the
results, rather than the point estimate itself, which is known to
have error in almost all situations. Thus, seemingly impressive
effect size estimates that are accompanied by a wide confidence
interval may not seem as impressive if the confidence interval also
brackets very unimpressive values.6

An important issue when forming an interval estimate for some
parameter of interest is whether or not the interval estimate pro-
cedure is exact. An exact procedure is one for which the nominal
interval coverage (e.g., 95%) is exactly equal to the empirical
interval coverage. When certain assumptions are satisfied, many
effect sizes have a corresponding exact confidence interval proce-
dure. For those effect sizes that do not yet have an associated exact
confidence interval procedure or the assumptions of the confidence
interval procedure are not likely to be satisfied sufficiently, re-
searchers can often use various bootstrap techniques to obtain an
approximate confidence interval with, in many cases, desirable
properties (e.g., Chernick, 2008; Efron & Tibshirani, 1993).

Although confidence intervals are exceedingly important, it is
advantageous to have the best point estimate possible. Generally,
an unbiased estimate of the population quantity is desirable. The
bias of an estimator is the degree to which the expected value of
the statistic differs from the corresponding population parameter
value. Thus, an estimator is unbiased when the expected value of
the estimate is exactly equal to the population quantity that it
estimates. In general, unbiased estimates are preferred to biased
ones, unless a biased statistic is superior in other respects that
offset the bias. A biased (or more biased) estimate can often be
tolerated in return for substantial gains in precision, such that the
overall accuracy of the estimate (the root-mean-square error) is
improved. Statistically, accuracy is a function of precision and
bias. If accuracy can be improved (i.e., the root-mean-square error
decreases) by using an estimator that is more biased yet more
precise as compared to an unbiased and less precise estimator, the
biased estimator can be considered advantageous. This criterion
was espoused by Gauss (1809; as cited in J. R. Thompson, 1968,
p. 113) when he proposed that the smallness of the mean square
error of an estimator be used as its measure of excellence. For
example, shrinkage estimators, such as empirical Bayes estimates
used in the context of multilevel modeling for estimating individ-
ual effects (e.g., an individual’s intercept and slope; Kreft & de
Leeuw, 1998), are biased estimators that are more precise and
generally more accurate than their “unshrunken” counterparts
(e.g., Efron & Morris, 1975; Lehmann & Casella, 1998). Addi-
tionally, effect sizes that are consistent (i.e., the effect size estimate
should converge on the population value as N increases) and
efficient (i.e., the effect size estimator should have low sampling
variability compared to other estimators of the same quantity) are
preferred, all else being equal.

Regarding the desire for an effect size to be independent of
sample size, the size of the sample should not affect the expected
value of the effect size. Rather, an effect size should be an estimate
of a particular parameter value. If an effect size is not independent
of sample size, then understanding its meaning will be at best
difficult. For example, the chi-square fit statistic is highly depen-
dent on sample size. Some fit indices that use it, such as �2/df, are
themselves highly dependent on sample size, whereas other fit
indices that use the chi-square are less sensitive to sample size,

such as the RMSEA, where the sample size is essentially canceled
due to division. Some effect sizes are only mildly sensitive to
sample size, in that there is a bias for small sample sizes that
essentially disappears for all practical purposes when sample size
is not small (e.g., Hedges & Olkin, 1985). Such effect sizes (e.g.,
the standardized mean difference, the squared multiple correlation
coefficient, coefficient of variation) are much less problematic
than effect sizes whose expectation is highly dependent on sample
size. However, it is useful to keep in mind that some effect sizes
that are biased due to their dependence on sample size have
unbiased (or less biased) versions that can be used (e.g., the
adjusted squared multiple correlation coefficient is preferred when
estimating the population value as compared to its unadjusted
counterpart). Furthermore, an effect size that depends on sample
size limits the comparability of such effect sizes across studies
with different sample sizes. The lack of comparability limits the
feasibility of a particular effect size from contributing to a cumu-
lative literature in a meta-analytic fashion.

Another consideration when reporting an effect size and its
confidence interval is to determine whether an unstandardized or a
standardized effect size would be a more beneficial way to com-
municate results. In many cases, it is not difficult to report both the
unstandardized and corresponding standardized effect sizes (see
Baguley, 2009, for a different view of reporting both standardized
and unstandardized effect sizes). For example, change in the Dow
Jones Industrial Average is typically reported in raw value (raw
effect size) and as a percentage (a standardized effect size). A
practical example is, rather than report a correlation matrix with
the upper triangle empty (as is often done because the upper
triangle is equal to the transposition of the lower triangle), re-
searchers could use the upper triangle to report the covariances
with the main diagonal elements equal to the variances of the
variables. In such a covariance–correlation table, both standard-
ized and unstandardized values are reported, and little additional
journal space is required. For another example, regression tables
are often reported in journal articles. An additional column for
standardized regression coefficients can easily be included. In fact,
this is the way in which SPSS reports the output for linear regres-
sion analysis, whereas with SAS the option STB in PROC REG
yields the same result. Similarly, in a multiple-group context, it is
generally trivial to report all the means for several groups, the
standard deviation of each group, and the common within-group
standard deviation (i.e., the root-mean-square error) as well as
selected unstandardized or standardized mean differences and
unstandardized or standardized contrasts. When multiple effect
sizes (e.g., standardized and unstandardized) are reported, the
burden is on the researcher to explain the meaning of the effect
sizes. Even if only one type of effect size (either standardized or
unstandardized) is provided, the other type can generally be com-

5 Even for census data an interval estimate should often be provided, as
populations are often dynamic, and interpretations can then apply more
broadly than being wedded to the particular population for which data were
collected at a particular point in time.

6 We have purposely used the term impressive here rather than large
effect size. The reason is that an effect size may be considered “small” by
some standard but in reality may be very “impressive.” Indeed, in some
cases effect sizes are most impressive by being as small as possible.
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puted if the sufficient statistics have been included as part of the
reported results. Sufficient statistics in the context of a particular
model are the statistics necessary in order to yield the same results
as the complete set of information (i.e., raw data). For example, in
the context of covariance structure analysis, assuming a multivar-
iate normal distribution in the population and known sample size,
only the covariance matrix is necessary in order to yield identical
results as the full set of data. Including the sufficient statistics can
be important so that the work can be included in a meta-analysis at
some point or assisting in designing another study in which various
effect sizes may be needed.

Discussion

Huberty (2003) and Kirk (1996) remind us that the discussion of
effect size measures is not new, but rather has a long history. For
example, Yates (1951, p. 32) noted that researchers paid too much
attention to the results of NHSTs and too little attention to the
magnitudes of the effects in which they are interested (see also
Tukey, 1969). Cohen (1990) wrote on the importance of effect
sizes: “I have learned and taught that the primary product of a
research inquiry is one or more measures of effect size, not p
values” (p. 1310; see also Cohen, 1965). Methodologists have long
emphasized consideration of effect size when interpreting results
and have often stated that researchers have ignored their calls for
using effect sizes. In addition to the effect size itself, providing the
confidence interval is necessary, because not providing a confi-
dence interval can be considered a disservice to readers (e.g.,
Bonett, 2008; Kelley, 2005; B. Thompson, 2002).

We believe that the lack of interval estimates, especially confi-
dence intervals, and the lack of interpretation of the interval limits
when reported, is a major weakness in research in psychology and
related disciplines. Translating the effect size along with the cor-
responding interval estimate into meaningful substantive terms is
something that we see as a principal use of effect sizes. Some
studies report effect sizes but interpret the results from only the
perspective of a dichotomous reject or fail-to-reject outcome from
a null hypothesis testing framework, perhaps with only an addi-
tional consideration of the direction of the effect size.

Our view is that transitioning to a research literature focused on
interval estimates of effect sizes that address the question of
interest should be a top priority. Confidence intervals are, after all,
interval-valued quantifiers of uncertainty. In general, no point
estimate in an applied research setting is perfect. Forming an
interval estimate for the population effect size is a very useful way
of quantifying this uncertainty while simultaneously conveying the
plausible range for the parameter of interest at some level of
probabilistic uncertainty (e.g., a 95% confidence interval). An
implication of such an approach is that hypothesis testing can be
conducted by comparing the confidence limits to one or more
values of the null hypothesis, if in fact an NHST addresses the
question of interest. The only thing that is lost by moving to an
interval-centric approach to statistical inference is the exact p
value of the NHST. However, there is no reason why p values
cannot be reported along with effect sizes and confidence intervals.
We believe that even when the null hypothesis is not rejected,
estimates of effect size and confidence intervals are valuable and
should be reported (contrast this view with Knapp & Sawilowsky,
2001a, 2001b). Indeed, effect sizes, regardless of their associated

p values, can be used as input for future meta-analysis. In some
situations effect sizes are biased, especially in small samples.
Often such bias can be reduced by using an unbiased (or more
unbiased) estimate, which is discussed in some meta-analytic
sources (e.g., Hedges & Olkin, 1985). Systematically avoiding the
publication of effect sizes for effects that failed to reach statistical
significance can lead to publication bias, where truth and published
reality differ (e.g., Rothstein, Sutton, & Borenstein, 2005).

Effect sizes and research design go hand in hand, especially
issues of sample size planning. Methods for sample size planning
can be broadly segmented into answering two fundamentally dif-
ferent types of research questions about effect sizes: The first
involves inferring the existence of a nonnull effect in the popula-
tion (power analysis), and the second involves inferring the mag-
nitude of the size of the effect (accuracy in parameter estimation;
see, e.g., Maxwell, Kelley, & Rausch, 2008, for a recent review of
the two approaches to sample size planning). In particular, when
the research question of interest concerns rejecting a null hypoth-
esis, it is advisable to plan a study so that there is sufficient
statistical power to reject the null hypothesis (e.g., Bausell & Li,
2002; Chow, Shao, & Wang, 2003; Cohen, 1988; Kraemer &
Thiemann, 1987). However, when the research question of interest
concerns the magnitude of an effect in the population, it is advis-
able to plan a study so that the obtained confidence interval will be
sufficiently narrow, which is the goal of the accuracy in parameter
estimation approach to sample size planning (e.g., Jiroutek,
Muller, Kupper, & Stewart, 2003; Kelley & Maxwell, 2003).
Regardless of the approach, sample size planning procedures gen-
erally require effect size values in order to implement the proce-
dure, which are usually either speculated (i.e., population value
assumed known) or set to some minimum value of practical
importance. Due to the difficulty when estimating population
effect size values for sample size planning purposes, effect sizes
have been called the “problematic parameter” (Lipsey, 1990,
Chapter 3). Better reporting of effect size values from individual
studies will facilitate future sample size planning in a similar way
that meta-analysis benefits.

The use of the term effect size separates what is simply a statistic
(or parameter) from a statistic (or parameter) that addresses a
question of interest for some purpose. In some ways, however,
effect size is simply a name applied to special types of statistics
and parameters, but what’s in a name? In Shakespeare’s Romeo
and Juliet, Juliet notes “that which we call a rose by any other
name would smell as sweet.” Correspondingly, whatever the field
calls the idea of a quantitative reflection of the magnitude of some
phenomenon, in some ways, is irrelevant. It is when we use such
quantitative measures to address questions of interest that ad-
vances can be made. Using quantitative measures in such a way is
a rationale for the widespread use of effect sizes, which we hope
to help advance by having a wide-ranging discussion on what the
term effect size conveys and how it encompasses a broad set of
statistics (or parameters) when they are used to address questions
of interest.

We believe that with a full implementation of the effect size
movement in the applied literature, study results will be better
communicated, and studies can be better planned in an effort to
increase the cumulative knowledge of psychology and related
disciplines. A fundamental question is, How do we learn from
data? Certainly calling something an effect size does not neces-

149ON EFFECT SIZE



sarily help us learn from data. However, understanding how dif-
ferent statistics can be used to estimate the magnitude of a phe-
nomenon, where the magnitude helps to address a question of
interest, we would argue, is an important way to learn from data.
We believe that our encompassing definition and delineation of
effect size will help advance applied research by elucidating what
is actually meant by a term often mentioned but not often clearly
articulated.

References

Abelson, R. P. (1985). A variance explanation paradox: When a little is a lot.
Psychological Bulletin, 97, 129–133. doi:10.1037/0033-2909.97.1.129

Aiken, L. R. (1994). Some observations and recommendations concerning re-
search methodology in the behavioral sciences. Educational and Psychological
Measurement, 54, 848–860. doi:10.1177/0013164494054004001

Altman, D. G. (1998). Confidence intervals for the number needed to treat. British
Medical Journal, 317, 1309–1312. doi:10.1136/bmj.317.7168.1309

American Psychological Association. (2001). Publication manual of the
American Psychological Association (5th ed.). Washington, DC.

American Psychological Association. (2010). Publication manual of the
American Psychological Association (6th ed.). Washington, DC.

Association for Psychological Science. (2011). Submission guidelines for Psycho-
logical Science. Retrieved from http://www.psychologicalscience.org/
index.php/publications/journals/psychological_science/ps-submissions

Baguley, T. (2009). Standardized or simple effect size: What should be
reported? British Journal of Psychology, 100, 603–617. doi:10.1348/
000712608X377117
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