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There is growing evidence that personality traits are affected by many genes, all of which have very small
effects. As an alternative to the largely unsuccessful search for individual polymorphisms associated with
personality traits, the authors identified large sets of potentially related single nucleotide polymorphisms
(SNPs) and summed them to form molecular personality scales (MPSs) with from 4 to 2,497 SNPs.
Scales were derived from two thirds of a large (N � 3,972) sample of individuals from Sardinia who
completed the Revised NEO Personality Inventory (P. T. Costa, Jr., & R. R. McCrae, 1992) and were
assessed in a genomewide association scan. When MPSs were correlated with the phenotype in the
remaining one third of the sample, very small but significant associations were found for 4 of the 5e
personality factors when the longest scales were examined. These data suggest that MPSs for Neuroti-
cism, Openness to Experience, Agreeableness, and Conscientiousness (but not Extraversion) contain
genetic information that can be refined in future studies, and the procedures described here should be
applicable to other quantitative traits.
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The five-factor model (FFM; Digman, 1990) is a classification
of personality traits into five broad dimensions or factors, usually
called Neuroticism, Extraversion, Openness to Experience, Agree-
ableness, and Conscientiousness. The FFM structure subsumes
most of the traits in natural language and in the systems developed

by psychologists, and it appears to be universal, having been
replicated in over 50 cultures (McCrae et al., 2005). A likely
reason for the universality of the FFM is that the structure has its
roots in genetic factors shared by all human beings (Yamagata et
al., 2006). This article describes a new approach to uncovering the
molecular genetic basis of personality traits; although the results
are only a first step in that direction, the method and its rationale
may be of value in moving forward in this challenging area.

The heritability of personality traits is well established from
behavior genetic studies (Bouchard & Loehlin, 2001), and since
1996 (Benjamin et al., 1996; Lesch et al., 1996), there has been
intense interest in discovering the relevant genes. The initial ap-
proach was to identify candidate genes known to be involved in
neurotransmission and relate allele differences on these genes to
assessed trait levels. Some of these findings have been widely
publicized, and only readers familiar with the whole literature on
the molecular genetics of personality—which is replete with null
findings (e.g., Vandenbergh, Zonderman, Wang, Uhl, & Costa,
1997)—are aware that little, if anything, has been firmly estab-
lished.

For example, one of the most prominent candidate genes is the
serotonin transporter (5-HTT), which reuptakes serotonin from
synapses and is the site of action of selective serotonin reuptake
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inhibitors (SSRI antidepressants). Lesch and colleagues (1996)
reported that a polymorphism in the promoter region of 5-HTT
(5-HTTLPR) was associated with Neuroticism scores. They esti-
mated that the polymorphism accounted for 3%–4% of total vari-
ance and 7%–9% of the heritable variance of anxiety-related
personality traits in their sample of 505 individuals. Such relatively
large effects should be easily replicated, yet several studies have
failed to find an association of 5-HTTLPR with Neuroticism-
related traits. Meta-analyses of up to 60 samples (Munafò et al.,
2009; Schinka, Busch, & Robichaux-Keene, 2004; Sen, Burmeis-
ter, & Ghosh, 2004), and three large studies that included roughly
4,000 participants each (Munafò et al., 2009; Terracciano et al.,
2009; Willis-Owen et al., 2005), indicate that there is in fact no
association between the 5-HTTLPR and Neuroticism-related traits.

Unfortunately, similar failures to replicate have been observed
for other candidate genes. The Val66Met variant of the brain-
derived neurotrophic factor (BDNF), for example, appeared to be
related to Neuroticism in an earlier report based on 441 partici-
pants (Sen et al., 2003), but a recent meta-analysis (N � 15,251)
found that Val66Met was unrelated to Neuroticism (Terracciano,
Tanaka, et al., 2010). Genes (such as APO-E4) are known to
predispose individuals to illnesses (such as Alzheimer’s disease)
that alter personality traits (Siegler et al., 1991), but we are not
aware of any gene or SNP that is consistently related to a person-
ality trait in healthy individuals across a range of samples. At
present, the claim that personality traits have a genetic basis rests
chiefly on behavior genetic studies.

This failure to find consistent effects might be due to several
factors, including differences in the genetic bases of traits in
different populations or the small size of the effects of any single
gene. But it might also be due to the choice of the wrong candi-
dates: There are thought to be about 25,000 genes in the human
genome (Venter et al., 2001), and researchers are only beginning
to understand how they function. Hypotheses tested so far may
understandably have been incorrect.

Newer technology permits a different strategy: the genomewide
association (GWA) study. In this approach, a large number of
SNPs densely distributed across the entire genome are used as
markers. Each SNP is defined by variation in a single DNA base
(A, C, T, or G) that occurs with a frequency generally higher than
1% in the population. SNPs that are located close together on the
chromosome tend to cosegregate, forming what are called haplo-
type blocks, in which the SNPs are highly correlated (i.e., show
linkage disequilibrium). Association studies take advantage of the
high degree of linkage disequilibrium by testing only one or a few
SNPs (tag SNPs) that are representative of the neighboring vari-
ants. By the same principle, an SNP that shows an association with
the phenotype is not necessarily the mutation influencing the trait,
but is more likely a neighboring marker in high linkage disequi-
librium with the responsible gene. With the GWA approach,
association analyses are performed simultaneously on hundreds of
thousands of SNPs in search of those allelic variants that are
related to high scores on a given trait. This approach does not
require any hypotheses about which genes are related to the trait;
it is a strictly empirical exploration in which the mechanisms of
gene action are left to be inferred from future studies.

It is now possible to assess 500,000 or more SNPs for each
individual, covering about 80% of the common variation via
linkage disequilibrium (International HapMap Consortium, 2007).

Although this increases the likelihood that the relevant genes will
be assessed, it also means that the number of false-positive asso-
ciations with the phenotype will increase dramatically. GWAs are
efficient and successful methods when some genes have relatively
large effects that stand out from the distribution of random effects,
as is the case with some diseases (Uda et al., 2008; Zhang et al.,
2009). This is shown in Figure 1A, which illustrates the hypothet-
ical distribution of observed associations of SNPs with the phe-
notype for a full GWA study.

But use of this method in the search for genes related to
psychiatric disorders or psychological traits has yet to produce
reliable results: Genes identified in one study have not been
replicated in others (e.g., Plomin et al., 2002; Shifman et al., 2008;
Terracciano, Sanna, et al., 2010). The most plausible explanation
for this is that quantitative traits like intelligence, height, or Neu-
roticism result from the operation of many genes, each of which
has a small effect. If they are very small, such effects would be
almost impossible to separate from chance fluctuations, as illus-
trated Figure 1B.

Figure 1. Schematic representation of three possible distributions of
499,000 random (open curve) and 1,000 real (shaded curve) associations
between SNPs and a phenotype. The horizontal axis represents the mag-
nitude of correlations between single nucleotide polymorphisms (SNPs)
and the phenotype; the vertical axis represents frequency. A: Scenario with
large single SNP effects. B: Scenario with very small effects. C: Scenario
with small effects; the vertical line represents a cutoff separating poten-
tially real from random effects. (Curve graphic courtesy D. Elrod.)
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In principle, this difficulty can be overcome by the use of
extraordinarily large samples (see Wray, Goddard, & Visscher,
2007), because the effect of increasing the number of participants
is to reduce the standard error of observed correlations: The bell
curve of random associations in Figure 1B is progressively
squeezed until the true associations stand apart from error. This
approach has been successful in identifying a few of the many
genes associated with height (Sanna et al., 2008) and weight
(Frayling et al., 2007) but requires the assessment of tens of
thousands of individuals. Figure 1C is perhaps a more realistic
representation of what may be obtained from samples of a few
thousand cases.

Bonferroni correction is one way to reduce Type I errors, but at
great cost. With 500,000 SNPs tested, a p level of 1 � 10�7 is
required, and only very strong effects are likely to be considered
significant. If quantitative traits are the result of many uniformly
weak effects, Bonferroni correction is untenable. An alternative
correction procedure, controlling the false discovery rate (Ben-
jamini & Hochberg, 1995), is still likely to be too stringent for
dealing with the vast numbers of tests conducted in a typical
GWA.

The most common strategy for dealing with the problem of false
positives is to choose a small number of SNPs with the largest
associations with the phenotype and determine whether they are
significantly associated with the phenotype in a second, indepen-
dent replication sample. In essence, this is a version of the candi-
date gene approach, in which the candidate SNPs are selected
empirically rather than theoretically. Although it is undoubtedly
true that real, replicable effects are more likely to be found among
strong associations than among weak associations, it is also pos-
sible that many or most of the strongest observed effects are due to
chance.

In this article, we describe a strategy for identifying sets of SNPs
that are collectively associated with personality traits, creating
molecular personality scales (MPSs) from these sets, and provid-
ing tentative evidence of the scales’ validity. The idea of creating
a scale from SNPs was used by Baum and colleagues (2007), who
created an index of risk for bipolar disorder by summing 10 SNPs
that had replicated associations across two samples. They showed
that risk increased significantly with scores on this index (cf.
Willer et al., 2009). Similarly, Butcher and colleagues (2005)
created SNP sets by summing a small number of genes they had
found to be related to intelligence, and Lango and colleagues
(2008) assessed the combined risk for diabetes conferred by 18
SNPs. These studies, however, used small numbers of replicated
SNPs, and the purpose of the composite scales was to estimate the
cumulative impact of these SNPs on the phenotype. In the present
study, we created scales on the basis of large numbers of SNPs and
offer evidence of cross-validation of the scales as a whole; our
MPSs are intended merely to provide statistical evidence that a
collection of SNPs includes genetic information relevant to the
phenotype. This represents a step back from the identification of
individual SNPs or genes, but it is a strategic retreat necessitated
by the difficulty of findings specific SNPs reliably related to
personality traits. A similar approach was used successfully by the
International Schizophrenia Consortium (Purcell et al., 2009) in a
case-control study. Our analysis appears to be the first application
of this approach to the study of personality traits.

The Nature and Potential Use of Molecular Scales

Before turning to the mechanics of our approach, it is useful to
consider the nature and utility of the molecular scales we propose.
Our approach identifies a large number of SNPs that are associated
with the phenotype in derivation samples and sums them to esti-
mate the additive genetic basis of the trait in each individual. This
is a strictly empirical strategy, similar to that used to select items
for scales of the Minnesota Multiphasic Personality Inventory
(MMPI; Hathaway & McKinley, 1943) and the California Psycho-
logical Inventory (Gough, 1987). In principle, researchers need
know nothing about why a given item (or SNP) is associated with
the trait; they only require data showing that it is. Empirical scales
are conceptually primitive, although they can be pragmatically
useful.

How should molecular scales be evaluated? Internal consistency
is not relevant, because the different genes marked by the SNPs in
an MPS may be independent (i.e., uncorrelated) contributors to the
phenotype. Furthermore, the interpretation of internal consistency
is complicated by the redundancy (linkage disequilibrium) among
SNPs.1 Similarly, retest reliability is not an issue: DNA does not
change, and the reproducibility of MPS scores is limited only by
the technical accuracy of the assays, which is extremely high.

However, both convergent and discriminant validity are relevant
to the evaluation of MPSs. Significant correlations with the phe-
notype in the hypothesized direction in an independent validation
sample provide some degree of evidence for convergent validity,
although past experience with the molecular genetics of personal-
ity suggests that such correlations are likely to be quite modest in
magnitude. MPSs should also show discriminant validity: They
should be unrelated, or more weakly related, to phenotypes other
than the one for which they were developed.

It remains to be seen whether the approach presented here leads
to the development of effective MPSs: Sets of SNPs that in
combination are strongly associated with the phenotype. But if
so—and if they proved generalizable beyond the population in
which they were developed—how might MPSs be used? First,
they would provide objective measures of traits that would avoid
many of the methodological problems of self-reports and infor-
mant ratings: MPS scores are not subject to self-presentational
biases or halo effects.2 Second, an analysis of the genes associated
with the chosen SNPs should give clues to the biological mecha-
nisms underlying personality traits that could be useful in design-
ing interventions (e.g., drugs to decrease Neuroticism or increase
Conscientiousness).

1 We calculated rough estimates of split-half internal consistency reli-
ability for the five longest MPSs in the cross-validation sample by corre-
lating the 5% MPSs with the Difference MPSs (see text for a description
of these scales) for each factor. These Spearman-Brown-corrected reliabili-
ties ranged from .69 to .89.

2 This assertion is based on the assumption that MPSs are created using
criteria that are themselves unbiased. Otherwise, if response biases that
affect a criterion are themselves heritable, SNPs related to the bias might
be selected as part of the scale. Future research should use multiple
methods of measurement to define criteria as free from bias as possible. In
any case, successful MPS scales created using volunteer samples would
presumably be far less affected by bias than self-reports obtained in highly
evaluative situations, such as forensic assessment.
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Personality traits are not completely heritable, so no genetic
analysis could ever provide a perfect measure of personality.
However, successful MPSs—consisting of all and only SNPs truly
associated with the trait—would raise ethical problems, because
reasonably accurate personality assessment would require nothing
more than a sample of DNA, which might easily be obtained
without consent. Could an accused criminal’s genetic propensity to
low Agreeableness be used as evidence against him or her? Per-
haps fortunately, we are at present far from having to deal with
such issues: For the foreseeable future, MPSs are likely to be only
very weakly related to the phenotype.

Details of the Approach: Within-Sample Replication

Although small, real effects cannot be distinguished from ran-
dom effects on the basis of effect size, they may be detectable
through an internal replication strategy. If the data summarized in
Figure 1C were obtained from a second, independent sample, the
distribution of results would be similar, but by chance a different
set of SNPs would appear to the right of the vertical cutoff line. A
comparison of the two independent distributions would help iden-
tify real SNPs. If the cutoff represents, for example, the top 4% of
the distribution of 499,000 random effects but the top 50% of
1,000 real effects, then in either sample alone, one would expect to
find .04 � 499,000 � 19, 960 false-positive (“random”) SNPs and
500 true-positive (“real”) SNPs above the cutoff; only 500/
19,960 � 2.5% of the identified SNPs would be real. However, if
one examined the set of SNPs above the cutoff in both samples,
one would expect that .04 � .04 � .0016 � 0.16% of the 499,000
random SNPs—that is, 798 SNPs—would be found, whereas .5 �
.5 � .25 � 25% of the 1,000 real SNPs—250 SNPs—would be
identified. This replication approach thus yields a set of 1,048
replicated SNPs, of which 23.9% represent true genetic effects.
Although the set of replicated SNPs is still chiefly error, and
although it discards half the true-positive SNPs in either sample, it
is 10 times richer in real genetic information than the sets from the
two individual samples. If Figure 1C is realistic, identifying real
SNPs will require a consideration of many SNPs beyond those
with the largest effects.

Of course, the appropriate cutoff for identifying the optimal
proportion of real effects is not known, so an exploratory approach
must be used. At each of a series of cutoffs, the number of effects
replicated across two samples can be examined and compared by
chi-square with the number expected by chance. (This strategy of
evaluating sets of SNPs resembles that of Moskvina and col-
leagues, 2009, who compared statistically the number of SNPs
associated with a phenotype—schizophrenia or bipolar disorder—
that were within genes versus outside genes.) Although Figure 1
assumes that all the real effects are positive, the coding of SNPs is
arbitrary, so half the real effects are likely to be negative, and in
practice, SNPs must be considered beyond the cutoff at both tails
of the distribution.

Creating and Validating Scales

The sets of replicated SNPs associated with each cutoff can be
used to create MPSs. For each individual, each SNP is treated as
an item, scored in terms of the number of coded alleles it has. For
example, if the G allele for a certain SNP is associated with the

trait, individuals receive a score of 2 if both of their alleles for the
SNP are Gs; a score of 1 if exactly one is a G; and a score of 0 if
neither is a G. If the SNP is positively related to the trait, the item
is positively keyed; if it is negatively related, the item is reverse
keyed. An MPS can be created at each of several cutoff levels,
although each scale will include all the items from the shorter
scales. These scales will, of course, be correlated with the pheno-
typic trait in the samples in which they were derived, if only by
capitalizing upon chance. To validate the scales, it is necessary to
correlate the MPSs with the trait in a third, independent sample.
These cross-validations provide a basis for selecting the optimal
cutoff. The most direct way to implement this strategy is by
obtaining genetic data from a large sample and dividing it into
three subsamples, two for internal replication and the third for
validation.

The logic of validating MPSs is crucially different from that of
replicating individual SNPs used in candidate gene approaches.
Even when an SNP is truly related to the phenotype in a popula-
tion, in any given sample its association will also be influenced by
chance. SNPs that are truly associated with the trait and strongly
related to the phenotype in one sample may be weakly, or even
inversely, related in another sample, as may have happened in a
recent study of bipolar disorder (Kerner et al., 2009). It is only the
average effect across many items, indexed by the full scale score
(MPS), that can be expected to recur across samples. Thus, repli-
cability is assessed by the significance of the correlation of the
MPS with the phenotype, not by the associations of individual SNP
items. In the present study, we validated MPSs by correlating them
with the phenotype in an independent replication sample. Cross-
validated scales should contain true genetic information. Further-
more, because only a small number of hypothesized convergent
correlations are examined (25, in our case), corrections for multi-
ple statistical tests are not needed.

The association analyses used to create MPSs in this study are
limited to additive genetic effects. Dominance effects, in which
one copy of a dominant allele is not distinguished from two copies,
are harder to detect in this design, and epistatic effects, which
depend on the joint contributions of two or more genes, cannot be
detected at all. Furthermore, because only linear associations are
considered, this analysis also overlooks any heterozygous effects
(in which the combination of two different alleles, say A and T, is
more strongly associated with the trait than two copies of either,
i.e., two As or two Ts). The MPSs calculated here reflect only the
additive variance that is measured by narrow heritability. In the
Sardinia sample, estimates of additive heritability ranged from .20
for Conscientiousness to .33 for Openness to Experience (Pilia et
al., 2006). Thus, the upper limit of correlations between MPSs and
self-reported traits range from .201/2 � .45 to .331/2 � .57.

At a more basic level, it must be recalled that this study is
focused only on the presence or absence of particular sets of SNPs.
It cannot address important issues such as Gene � Environment
(G � E) interactions, or gene expression—which genes are actu-
ally functioning in an individual at any given point in the life span.
Nevertheless, the identification of genetic material that distin-
guishes between high and low scorers on various personality traits
would appear to be the first task in the complex enterprise of
understanding the genetics of personality.
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Method

Sample

DNA and self-reports of personality traits were obtained from
individuals living in the Ogliastra province of Sardinia (Costa et
al., 2007; Pilia et al., 2006; Terracciano et al., 2009). This is a
founder population, in which most individuals are descended from
a small group of common ancestors with minimal intermarriage
with other groups, which leads to greater genetic homogeneity in
such groups. (There is also substantial cultural homogeneity in this
sample that may increase the relative importance of genetic influ-
ences.) Founder populations are desirable for genetic studies be-
cause they reduce the possibility of a kind of confound know as
population stratification. If a sample contains two or more rela-
tively distinct ethnic groups, associations between genes and traits
can appear as an artifact of their association with the third variable
of ethnicity. For example, if a sample includes both African- and
Chinese Americans, genes that are more frequent among individ-
uals of Chinese ancestry will be (spuriously) associated with
behaviors more characteristic of Chinese Americans, such as the
ability to use chopsticks (Hamer & Sirota, 2000). This association
would not appear if the sample were more homogeneous and
contained only Chinese Americans or only African Americans. In
general, population homogeneity reduces such potential con-
founds.

There are two potential drawbacks to the use of a founder
population: Restriction of range in the phenotype and lack of
generalizability of findings to other populations. In Sardinia, there
is some evidence of phenotypic homogeneity, seen in reduced
variance of personality traits (Costa et al., 2007). However, this
effect is small; in most respects, Sardianians resemble mainland
Italians in the mean and range of their personality traits. With
regard to generalizability, previous studies have replicated gene
associations identified in Sardinia in other diverse populations
(Sanna et al., 2008; Tanaka et al., 2009; Willer et al., 2009).

A total of 6,148 participants enrolled in the SardiNIA project, of
whom 5,669 had valid personality data. Detailed pedigrees were
obtained to document kinship relations between all participants. A
10K genome scan was performed on 3,329 participants; however,
most of the genetic information was obtained from a full 500K
genome scan performed for an overlapping group of 1,412 partic-
ipants. The final sample size, with complete genomic and person-
ality data, consisted of 3,972 individuals (57% female), ranging in
age from 14 to 93 years. These included 1,277 individuals who had
had the full 500K scan. About 7% of the sample had a college
degree, whereas 23% had a primary school education or less.

Genotyping and Selection of SNPs

The Affymetrix 10,000 SNP Mapping Array was used to geno-
type 3,329 participants, and the Affymetrix 500,000 SNP Mapping
Array was used to genotype 1,412 participants selected to repre-
sent the largest families in the sample.3 The remaining 490,000
SNPs were imputed based on haplotype sharing of family mem-
bers (Burdick, Chen, Abecasis, & Cheung, 2006).

The genotyping approach used in the SardiNIA study takes advan-
tage of the large number of multigenerational families in this sample.
Related individuals, such as siblings and parents and their offspring,

share long stretches of chromosome. If these shared stretches are
genotyped with a high density array in only a few individuals, the
information from these individuals can be propagated to their
relatives (Chen & Abecasis, 2007; Li, Willer, Sanna, & Abecasis,
2009). This within-family imputation method, based on “identical-
by-descent” sharing and implemented by the MERLIN program
(Chen & Abecasis, 2007), has allowed researchers to conduct full
GWA scans in the SardiNIA sample that have been successfully
combined with other GWA studies of physical and psychological
traits, such as height and cigarette smoking (e.g., Liu et al., 2010;
Sanna et al., 2008).

The organization of SNPs into haplotypes in the entire human
population has been codified in a project called the HapMap
(International HapMap Consortium, 2007). Using this as a guide,
SNPs that are not directly assessed can be imputed with a high
degree of accuracy (Marchini, Howie, Myers, McVean, & Don-
nelly, 2007). This imputation process is a standard part of GWA
research (e.g., Li et al., 2009; Sanna et al., 2008). After the initial
within-family imputation to 500,000 SNPs (Burdick et al., 2006),
data from the HapMap were used to correct and expand these
imputations to 2.4 million SNPs (Li & Abecasis, 2006). Markers
showing low imputation quality (r2 � .3) were discarded from the
analysis, leaving a potential pool of 2.2 million autosomal SNPs.
Imputations are probabilistic so that the number of alleles attrib-
uted to an individual may be fractional.

Many of the SNPs assessed or imputed are in high linkage
disequilibrium, and thus highly redundant. To reduce the number
of SNPs to those that provide quasi-independent tests, the analyses
on tag SNPs selected to be a representative subset of available
SNPs were performed. A convenient set of tag SNPs are those
included in the Illumina platform. Of these, 340,105 matched the
2.2 million autosomal SNPs assessed or imputed in Sardinia. By
restricting attention to these tag SNPs, many of the closely related
and thus redundant SNPs were eliminated. The present results are
also potentially replicable in studies using the Illumina platform.

Measures

Personality was assessed with the Italian version of the Revised
NEO Personality Inventory (NEO-PI-R; Costa & McCrae, 1992;
Terracciano, 2003). The NEO-PI-R is a 240-item inventory that
measures 30 specific traits, or facets, six of which are combined to
form each of the five 48-item domains scales. Items use a 5-point
Likert response format, from 1 (strongly disagree) to 5 (strongly
agree), and scales are roughly balanced to control the effects of
acquiescence. Evidence on the reliability and validity of the in-
strument is summarized in the Manual (Costa & McCrae, 1992).
For this analysis, SNPs were correlated with continuous domain
scores, thus using all available information on the phenotype.

Education was coded from none (1) to college graduate (5).

Analyses

Creating random subsamples by assignment of individuals to
three groups would not yield maximally independent subsamples,

3 After controlling for age, age-squared, and gender, there were no
significant differences between the individuals directly assessed with the
500K assay and the remainder of the sample on any of the five NEO-PI-R
domains or the largest MPSs.
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because members of the same family in this highly related sample
could be found in different subsamples. Consequently, all related
individuals were grouped into families, and the families were
randomly assigned to Subsamples 1 (n � 1,339), 2 (n � 1,340) or
3 (n � 1,339). In essence, this randomization tests whether results
can be generalized across families in Sardinia.

Linear associations (correlations) between SNPs and pheno-
types were estimated by methods that make use of family infor-
mation (Chen & Abecasis, 2007) and control for age, age-squared,
and gender. Within Subsamples 1 and 2, SNPs were ordered in
decreasing magnitude of signal strength (effect size) for each of
the five factors, without regard to the direction of the association.
Within each subsample, sets of SNPs were identified from the top
down, that is, beginning with the largest effect size for each
personality factor. Our first set (for each of the five factors)
consisted of the 850 SNPs with the largest effect size; this is
approximately 0.25% of the total of 340,105 SNPs. The second set
consisted of the 1,700 SNPs (0.5% of the total) with largest effect
sizes (that is, the first set plus the next 850 SNPs in descending
order). Additional cutoffs were used to identify cumulative sets of
3,400 (1%), 8,500 (2.5%), 17,000 (5%), 34,000 (10%), 68,000
(20%), and 170,000 SNPs (50%) in each subsample. The two
larger sets were used only for preliminary analyses; no attempt was
made to create scales from them.4

At each cutoff, the SNPs identified in Subsample 1 were com-
pared with those in Subsample 2. If the same SNP appeared in both
sets, and if it was associated in the same direction with the
phenotype, it was considered an internal replication and used as an
item in an MPS. This might, however, occur by chance. For
example, the probability that the same SNP would appear in the
top 10% of two independent samples purely by chance is .1 � .1 �
.01. Thus, at the 10% cutoff level, .01 � 340,105 � 3,400 SNPs
would be expected to appear in both sets, and of these, half would
be in the same direction. Thus, the expected number of SNPs in an
MPS scale at the 10% cutoff level is 1,700. Chi-square tests can be
used to determine whether the observed number of replications
exceeds the expected number. However, SNPs are not necessarily
independent, so chi-square tests and their associated probabilities
are distorted to an unknown degree. Additional evidence of an
association—one that is not affected by the nonindependence of
SNPs—is provided by correlations of the MPSs with the pheno-
type in Subsample 3.

Replication in independent samples is so important for estab-
lishing the molecular genetic basis of personality traits that it is
worthwhile to attempt it in subsets of Subsample 3 itself. For that
purpose, correlations of each significant MPS were examined with
its phenotype within subgroups defined by age and gender. If
significant overall effects are replicated in these subgroups (de-
spite the lower sample sizes and consequent loss of statistical
power), it will strengthen the evidence that the effect is real. If
effects are seen only in certain subgroups (such as women or older
persons), it will serve as a caution to future researchers to consider
these variables as possible moderators of the MPS–trait relation-
ship.

Results

Following traditional methods for the analysis of GWA data, we
first examined the distribution of p values in the full sample. There

were thousands of effects significant at p � .05—in fact, about 5%
of SNPs showed so large a correlation. This is precisely what
would be expected if only a very small proportion of the SNPs are
truly related to the phenotype. However, both Bonferroni correc-
tion and the more liberal false discovery rate analyses suggested
that not a single SNP was statistically significant; there were no
clear outliers from the random distribution of effects. Clearly,
Figure 1A is not the correct model for personality factors in this
population.

Table 1 presents results of replication across Subsamples 1 and
2. The first data cell, for example, indicates that only one repli-
cated SNP was found for analyses of Neuroticism at the 0.025%
cutoff—a number that would be expected purely by chance. How-
ever, chi-square analyses appear to provide evidence for the pres-
ence of genetic influences on all five personality factors when
more inclusive cutoff points are used. Chi-square tests are only
meaningful for cutoffs of 1% and greater; in 26 of these 30
comparisons (87%), more SNPs were observed to replicate than
would be expected by chance. Across all five factors, chi-square
values tended to increase and peak at the 50% cutoff, suggesting
that the genetics of personality traits is characterized by an ex-
traordinarily large number of very small effects. Effects for Ex-
traversion were considerably smaller than for the other factors.

At each cutoff level from 0.5% to 10%, replicated SNPs were
combined into an MPS after reverse-keying those negatively re-
lated to the phenotype. Correlations of these scales with the do-
main scale in derivation Subsamples 1 and 2 ranged from .158 to
.291 at the 0.5% cutoff and from .525 to .626 at the 10% cutoff,
with monotonic increases for the intervening cutoffs. However,
these correlations certainly capitalize greatly on chance. Cross-
validation is essential, and it is provided by correlations in Sub-
sample 3, given in Table 2. These are partial correlations, control-
ling for age, age-squared, and gender. No significant effects were
seen for Extraversion, which had shown the smallest effects in
Table 1, and significance was reached for Neuroticism only at the
highest cutoff. However, Openness to Experience, Agreeableness,
and Conscientiousness showed significant findings at several lev-
els.

The strongest effects are found for the 5% and 10% cutoffs,
where scales of about 500 or about 2,000 SNPs are created. At
these two levels, correlations for the longer MPSs are not appre-
ciably larger than those for the shorter MPSs. Is anything gained
by adding 1,500 more SNPs to the 500-item MPSs? To answer that
question, we created Difference scales by subtracting the 5% MPS
from the 10% MPS for each factor (leaving Difference MPSs with

4 It is useful to give some idea of the magnitude of the associations of
these SNPs with the traits. Because the great majority of SNPs are pre-
sumably unrelated to the phenotype, the distribution of the observed
associations is essentially random. That means that 5% of the SNPs (2.5%
at each tail, if direction is considered) will have nominal p values of .05 or
better, corresponding to correlations (with sample sizes � 1,400) of about
r � .05. This is therefore the approximate magnitude of the 17,000 SNPs
at our 5% cut-off level. By the same logic, the 850 SNPs at the highest
cut-off value (0.25%) have associations corresponding to correlations of
r � .08, and the 34,000 at the lowest cut-off value used to create MPSs
(10%) show associations of about r � .04. These are small values, but
recall that the MPSs consist only of SNPs found at this magnitude in both
of two independent subsamples.
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about 1,500 SNPs), and calculating partial correlations of these
Difference scales with the phenotype. As shown in the last column
of Table 2, these correlations were significant for Neuroticism,
Openness to Experience, Agreeableness, and Conscientiousness,
suggesting that it is indeed worthwhile to examine at least as many
as 2,000 SNPs. Although SNPs in the Difference scales would not
be considered candidates for replication in traditional approaches,
they are collectively associated with the phenotype. Note that the
5% MPSs and Difference MPSs are nonoverlapping, thus, two
distinct sets of SNPs are significantly associated with personality
traits in the independent Subsample 3.

We repeated analyses separately for subgroups including 595
men and 724 women (controlling for age and age-squared) and for
667 participants over age 40 and 652 participants age 40 or
younger (controlling for gender) in Subsample 3. Results are
indicated by table footnotes, which show that, despite the smaller
sample sizes, most effects are replicated in at least one subgroup.
For Agreeableness, effects are consistently found in the older
participants, but never in the younger, as if the genes associated
with these scales function only in later life. Effects are strongest
for Openness to Experience and Conscientiousness, which, at the
10% level, are significant in all four subgroups.

Openness to Experience is known to be modestly associated
with intelligence in most samples (McCrae & Costa, 1997), and it
might be argued that the relatively strong correlations are due to
SNPs associated with intelligence. Intelligence was not measured
in the Sardinia sample, but education, which is strongly correlated
with it, was. However, partial correlations controlling for educa-
tion had little effect on the correlations between MPSs and Open-
ness to Experience in Table 2. For example, the partial correlation
of the 10% MPS declined only slightly, from .125, p � .001, to
.105, p � .001, when education was controlled.

To assess the discriminant validity of the MPS scales, we
correlated each of the 10% MPS scales with all five NEO-PI-R
domains. Of the 20 nonpredicted correlations (e.g., MPS Consci-
entiousness with NEO-PI-R Neuroticism), 16 were nonsignificant,
and (except in the case of Extraversion) all discriminant correla-
tions were smaller than the relevant convergent correlations shown
in Table 2.5

Lists of the SNPs included in each of the MPS scales are
available from the corresponding author (PTC).

Discussion

When the SardiNIA project was begun, it was hoped that a
genome-wide scan in that founder population would reveal a new
set of genes for personality traits by identifying SNPs whose
associations with traits were well beyond chance. It was soon clear
that single SNPs do not explain large amounts of variance, and
with a sample of a few thousand participants it is difficult to
distinguish small but real effects from chance findings. The data
clearly indicate that personality traits are the result of very large
numbers of genes, each of which has a very small effect (cf.
Purcell et al., 2009).

In this study, therefore, we sought to identify sets of SNPs that
were collectively related to traits. An internal replication strategy
provided evidence that the number of replicable SNP associations
exceeded chance (see Table 1). Correlations of the MPSs formed
from these sets with the phenotype in an independent subsample
provided consistent evidence that some truly associated SNPs had
been identified and that real genetic information was contained in
the scales we created. Given the repeated failures to replicate
trait/phenotype associations for candidate genes, this is arguably
some of the best molecular evidence to date for the genetic basis
of personality.

5 We also conducted supplementary analyses to test a simplified method
of creating MPSs. We combined the two derivation subsamples and se-
lected SNPs with the highest signal strength in the combined sample (N �
2,679). To parallel the MPSs in Table 2, each of these new MPSs had the
same number of SNPs as those in Table 2. The original and new MPSs
were expected to show considerable overlap, because an item is unlikely to
be among the strongest signals in the combined derivation subsample
unless it is relatively high in both. In fact, correlations between the two
MPSs for a given factor ranged from r � .32 at the 0.25% level to r � .89
at the 10% level, and both showed similar results when applied in Sub-
sample 3. One difference was that none of the new MPSs for Neuroticism
was significantly related to the phenotype in Subsample 3.

Table 1
Observed Number of Replicated SNPs Across Subsamples 1 and 2

Factor

Cutoff in each subsample

0.25% 0.5% 1% 2.5% 5% 10% 20% 50%

Expected 1 4 17 106 425 1,700 6,801 42,498
Neuroticism 1 7 27 154 566 2,149 7,810 45,409

�2a 5.9� 21.4��� 46.9��� 119.3��� 152.7��� 227.8���

Extraversion 2 10 15 107 481 1,788 7,048 43,330
�2a 0.2 0.0 7.4�� 4.6� 9.1�� 18.6���

Openness 0 4 14 112 508 1,992 7,577 44,617
�2a 0.5 0.3 16.3��� 50.5��� 90.3��� 120.7���

Agreeableness 4 13 36 188 720 2,497 8,954 49,219
�2a 21.2��� 62.8��� 205.2��� 375.8��� 695.3��� 1214.5���

Conscientiousness 4 12 34 144 540 2,035 7,743 45,408
�2a 17.0��� 13.4��� 31.2��� 66.4��� 133.1��� 227.6���

Note. Chi-square is not calculated for the first two cutoffs because the expected value is less than 5. SNPs � single nucleotide polymorphisms.
a df � 1; N � 340,105.
� p � .05. �� p � .01. ��� p � .001.
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For four of the factors, scales composed of approximately the
top 500 items were significant predictors, as were Difference
scales composed of the next 1,500 items. In contrast to standard
approaches that examine only a handful of the strongest effects
(e.g., Terracciano, Sanna, et al., 2010), the present study suggests
that valid genetic variance is to be found deep into the distribution
of effect sizes. Two thousand SNPs is a small fraction of the
340,000 we examined—only about one-half of one percent—but
it is orders of magnitude larger than the number usually consid-
ered.

The correlations in Table 2 are small, but not unexpectedly so
(cf. Arden, Harlaar, & Plomin, 2007). A comparison of the ex-
pected and observed numbers of SNPs in Table 1 shows that most
of the SNPs used in these scales are the result of chance, and
contribute only noise to the associations with the phenotype in
independent samples. Furthermore, the maximal possible correla-
tion is limited by the additive heritability of the traits. In view of
this, the results in Table 2 appear to be strong evidence that
SNPs—and thus genes—truly associated with the phenotypes are
to be found among the item pools, at least for Neuroticism,
Openness to Experience, Agreeableness, and Conscientiousness.

In this study, we examined only five personality factors. How-
ever, the same strategy might profitably be applied to many other
quantitative trait variables, including more specific personality
traits or facets, such as anxiety, assertiveness, or achievement
striving; cognitive traits including memory, decision speed, and
general intelligence; and dimensional measures of personality pa-
thology (Costa & Widiger, 2002), depression, and other forms of
psychopathology.

Other Genetic Analyses

One limitation of the present study is that analyses were re-
stricted to the search for additive genetic effects in 22 pairs of
chromosomes. An obvious extension is to consider SNPs on the X
chromosome as well as the few on the Y chromosomes and in

mitochondrial DNA, which are not routinely genotyped or im-
puted.

It is likely that the effects of many personality-related genes are
modified by other genes—a phenomenon known as epistasis.
Without theoretical guidance, the search for epistatic effects is
extraordinarily difficult, because the number of combinations of
SNPs, two or more at a time, soon becomes astronomical. One
possibility would be to examine interactions between pairs of
SNPs defining MPSs. At the 5% cutoff level, this would entail
some 250,000 statistical tests.

Psychologists have been particularly excited about the possibil-
ity that genetic effects are moderated by experience (e.g., Caspi et
al., 2003). In principle, it would be possible to examine such G �
E effects for all the SNPs assessed here, provided measures of the
relevant environments were available. In practice, we do not know
which of the myriad of situational variables is relevant, and even
if we did, much larger sample sizes would probably be needed to
provide the statistical power to detect interaction effects (Flint &
Munafò, 2008). Soberingly, recent large-scale studies (Surtees et
al., 2009) and meta-analyses (Munafò, Durrant, Lewis, & Flint,
2009) have failed to replicate earlier reports of G � E effects. The
need for alternative approaches—such as MPSs—seems clear.

From Scales to Genes

The strategy of creating scales on the basis of empirical asso-
ciations with a criterion is well known to psychologists and psy-
chiatrists because it was used in the development of the MMPI
(Hathaway & McKinley, 1943). In an era when the self-reports of
psychiatric patients were regarded with great suspicion, MMPI
scales seemed to offer a way to circumvent defensive distortions:
Whatever the items ostensibly concerned, they were chosen solely
because they distinguished a group of patients from controls. Yet
over time, the item content was analyzed rationally (Wiggins,
1966), and the clinical scales themselves were related to theoret-

Table 2
Partial Correlations of Molecular Personality Scales With NEO-PI-R Domains as a Replication in Subsample 3, Controlling for Age,
Age-Squared, and Gender

Factor

Cutoff in each subsample

0.5% 1% 2.5% 5% 10% Difference

Neuroticism .023 .029 .054b .016 .063�c,e .079��c,d

k 7 27 154 566 2,149 1,583
Extraversion .009 .018 .007 .013 .009 .006

k 10 15 107 481 1,788 1,308
Openness .007 �.006 .019b .095���b,e .125���a,d .123���a,d

k 4 14 112 508 1,992 1,484
Agreeableness .074��c,f .069�c,f .060�c,f .057�b,f .080��a,f .086��a,f

k 13 36 188 720 2,497 1,785
Conscientiousness .004 .021 .083��a,d .112���a,d .095��a,d .077��c,f

k 12 34 144 540 2,035 1,495

Note. N � 1,319. k � number of single nucleotide polymorphisms (items) in the Molecular Personality Scale (MPS); Difference � (10% MPS � 5%
MPS); NEO-PI-R � Revised NEO Personality Inventory.
a Significant in both males and females. b Significant in males only. c Significant in females only. d Significant in both older and younger. e Significant in
younger only. f Significant in older only.
� p � .05. �� p � .01. ��� p � .001, one-tailed.
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ically grounded personality constructs (McCrae, 1991). Similarly,
MPSs can be used simply as empirically based SNP scales, but
they can also be scrutinized as a guide to genes likely to affect
personality traits.

As measures of personality, our MPSs perform poorly. No one
would recommend assessing personality with scales whose valid-
ity coefficients are less than .10. This does not, however, mean that
they are useless. In fact, the MPSs created here should be valuable
in understanding and stimulating research on the genetics of per-
sonality. For example, the present results confirm what has been a
growing suspicion: that genetic effects on personality are due to
the influence of a very large number of genes. They suggest that
this may be particularly true for Neuroticism and Extraversion,
classical dimensions of temperament that have analogues in many
other species (Gosling, 2001). Has evolution accumulated an ex-
ceptionally large array of genes that influence these two basic
traits?

As another example, consider the question of the replicability of
findings across population groups. The general failure of the
candidate genes approach might be interpreted to mean that early
studies reported false-positive effects. But another possibility is
that different genes may be responsible for personality traits in
different groups. The present study suggests that the same genes
are relevant to traits in different groups of families in Sardinia, but
it is not clear whether they would also be relevant in Asia or the
United States. Correlating MPSs developed in Sardinia with per-
sonality scores in other populations could answer the question of
generalizability quickly and efficiently.

Studies that attempt to identify individual SNPs associated with
traits typically focus on genes related to the SNP and discuss the
mechanisms by which they might influence the phenotype. That
strategy is less promising when examining MPSs with as many as
2,000 items. Many of the SNPs included in these MPSs were
surely selected by chance, although we do not know which ones.
Replication in other samples could weed out many chance find-
ings, though it would also discard some real SNPs that happened
to show weak associations in the replication sample. Applying this
successive replication approach to large pools—2,000 SNPs in-
stead of 500 or 10—may most effectively balance the pursuit of
true positives and avoidance of false negatives. Indeed, even
longer MPSs than those examined here might prove useful as a
starting point, especially for Neuroticism and Extraversion.

A recent study of pancreatic cancer (Jones et al., 2008) sug-
gested that there are numerous alterations of individual genes but
that the disease process might be understood in terms of distur-
bances to a relatively small number of cellular signaling pathways
affected by these genes. In the same way, future research may
make sense of the large sets of SNPs identified here in terms of
common pathways of gene expression that shape the personality
phenotype.

In many respects, the pools of SNPs we have identified are
comparable to low-grade ore. For precious metals like platinum,
even with relatively rich deposits, it may be necessary to process
tons of ore to extract a single ounce of metal. The SNPs in our
MPSs can be considered rich deposits of genetic information, but
they will still require extensive processing, perhaps using tech-
niques not yet devised, to yield the genetics of personality.
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