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Abstract
A worrying number of psychological findings are not replicable. Diagnoses of the causes of this “replication crisis,” and
recommendations to address it, have nearly exclusively focused on methods of data collection, analysis, and reporting. We
argue that a further cause of poor replicability is the often weak logical link between theories and their empirical tests. We
propose a distinction between discovery-oriented and theory-testing research. In discovery-oriented research, theories do not
strongly imply hypotheses by which they can be tested, but rather define a search space for the discovery of effects that would
support them. Failures to find these effects do not question the theory. This endeavor necessarily engenders a high risk of Type
I errors—that is, publication of findings that will not replicate. Theory-testing research, by contrast, relies on theories that
strongly imply hypotheses, such that disconfirmation of the hypothesis provides evidence against the theory. Theory-testing
research engenders a smaller risk of Type I errors. A strong link between theories and hypotheses is best achieved by
formalizing theories as computational models. We critically revisit recommendations for addressing the “replication crisis,”
including the proposal to distinguish exploratory from confirmatory research, and the preregistration of hypotheses and
analysis plans.
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Psychology has a problem. Over the past decade it has become
clear that many findings, among them some deemed well
established, are not replicable (Marsman et al., 2017; Open
Science Collaboration, 2015). Numerous recommendations
have been made for how to address this “replication crisis”
(Asendorpf et al., 2013; Munafò et al., 2017). Virtually all
these recommendations pertain to our methods of data collec-
tion, analysis, and publication. Here, we argue that, in addition
to poor methods, the replication crisis is also due to the prev-
alence of theories that have only a weak logical relation to the
hypotheses through which they are evaluated empirically. We
suggest that the replication crisis is best resolved by focusing
attention on the role of theorizing, and we do not believe that
current recommendations that focus entirely on data

generation are sufficient to overcome the crisis. To help clarify
our argument, we summarize the intended meaning of some
key terms in Table 1.

Scientific reasoning relies on inferences on two levels (see
Fig. 1). On the first, the empirical level, we link hypotheses
(e.g., X, Y, Z) to data (e.g., “x,” “y,” “z”). Most of our elabo-
rate tools of inferential statistics serve to formalize the induc-
tive inference from data to hypotheses: To the extent that an
effect observed in a sample is significant (in classic null-
hypothesis testing) or supported by a strong Bayes factor (in
Bayesian statistical inference), we gain confidence that the
effect is real—that is, it holds in the population from which
we drew the sample. Credible hypotheses are empirical gen-
eralizations: Systematic relationships between variables that
we believe to hold in the population—for instance, the
Stroop effect (MacLeod, 1991), or the correlation between
working-memory capacity and fluid intelligence (Conway,
Kane, & Engle, 2003). The inductive inference from data to
empirical generalizations is mirrored by a deductive inference:
If an empirical generalization holds, we can predict that we
will observe it whenever we test it with an appropriate study
design. In other words, if an effect is real, we expect that we
will be able to replicate it.
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On a second level of inference, the theoretical level, we use
theories (T) to derive hypotheses—often referred to as predic-
tions1—which claim that some empirical generalizations X, Y,
or Z are real. Established empirical generalizations, in turn,
license inferences about theories, supporting them if they match
the hypotheses derived from them, and questioning them if not.

As most of the method development in psychology focuses
on formalizing the inductive inference on the empirical level,
it is perhaps not surprising that much of the discussion on the
causes of the replication crisis, and how to fix it, also concen-
trates on that level: Underpowered studies (Button et al.,
2013), deficiencies of null-hypothesis significance testing
(Wagenmakers, 2007), p-hacking (Simmons, Nelson, &
Simonsohn, 2011), and publication bias (Ferguson & Heene,
2012) have been cited as reasons for the limited credibility of
empirical generalizations we infer from data. There is much
value in those critical reflections on this branch of the scien-
tific reasoning cycle. At the same time, we argue that too little
attention has been paid to weaknesses of our inferences on the
theory level (for two commendable exceptions, see Fiedler,
2017; Muthukrishna & Henrich, 2019). We argue that those
weaknesses at the theory level also contribute to the replica-
tion crisis.

Discovery-oriented research
and theory-testing research

To illuminate the problem, we outline the steps that are often
involved in generating results that turn out to be nonreplicable.
Step 1: Start from a theory that implies that a certain class of
phenomena can be observed under some circumstances. For
instance, take a theory of embodiment priming that we put

1 The term prediction has the connotation of foreseeing future events.
Therefore, we use the term hypothesis for a statement of an empirical gener-
alization inferred from a theory regardless of whether that statement is formu-
lated before or after the empirical generalization has been established; we
reserve the term prediction for the more limited case of hypotheses about
empirical generalizations not yet known.

Table 1 Terminology

Term Notation Definition

Theory T An integrated set of propositions about latent (not directly observable) mechanisms, processes,
and variables, and their causal relations to each other and to manifest (observable) variables

(Formal) model T A theory that is formalized, so that hypotheses can be derived from it through automatic derivation
(e.g., logical proof, mathematical proof, computer simulation)

Inferential link (none) The relation between a set of premises (e.g., a theory) and a conclusion (e.g., a hypothesis). Inferential links
vary in strength. Strength of an inferential link can be defined by howmany auxiliary assumptionsmust be
added as further premises to render the link deductive, and how credible these auxiliary assumptions are.

Empirical
generalization

X, Y, Z A statement describing a phenomenon, that is, an empirical regularity that holds generally,
that is, for all members of a defined population,
across a set of (not always well defined) situations,
and across time

Hypothesis X, Y, Z The assumption that an empirical generalization holds

Prediction X, Y, Z An expectation of an empirical generalization not yet established by data
(i.e., an expectation formulated a priori)

Explanation (none) An empirical generalization is explained by a theory to the degree that there exists a strong inferential link
from the theory to the hypothesis that the empirical generalization must hold.

Observation, data “x”, “y”, “z” The result of a single study supporting X, Y, and Z, respectively.

True/false positive (none) A result that provides evidence for a true/false empirical generalization

Confirmatory
diagnosticity

P(X|T)/P(X|¬T) Diagnosticity of the confirmation of a hypothesis X for theory T (i.e., increase in credibility of theory T)

Disconfirmatory
diagnosticity

P(¬X|T)/P(¬X|¬T) Diagnosticity of the disconfirmation of a hypothesis X for theory T (i.e., decrease in credibility of theory T)

Theory

Hypotheses

Empirical Generaliza�ons

Data

Theory

Level
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Level
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Fig. 1 Two levels of scientific inference. On the theory level, theories
imply hypotheses. Hypotheses may be confirmed as empirical
generalizations. Empirical generalizations support or question theories,
depending on whether they match or mismatch the hypotheses derived
from them. On the empirical level, empirical generalizations imply
expectations for data from individual studies. Data support or question
hypotheses. Well-supported hypotheses become empirical
generalizations
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forward to illustrate our case. We imbue the theory with the
following core assumptions: (1) All abstract concepts are
grounded in bodily states, sensations, or movements. (2)
Experimentally inducing the bodily state, sensation, or move-
ment in which a given concept is grounded activates (primes)
that concept. (3) The activated concept influences behavior
related to that concept.2 This theory entails the hypothesis that
inducing a state, sensation, or movement can lead to biases in
judgments and decisions that depend on the concepts primed
by this state, sensation, or movement.

Empirically testing this hypothesis involves search in a
very large search space: There are many abstract concepts;
for each of them, there are many ways in which it could be
grounded in bodily states, sensations, and movements, and for
each such presumed embodiment there are numerous ways in
which it can be experimentally induced. Moreover, for each
abstract concept there are judgments or decisions potentially
influenced by it that one could investigate for the predicted
bias. The combination of all these possibilities constitutes the
space of possible tests of the embodiment priming theory
(EPT). For instance, researchers could test the hypothesis that
having people turn kitchen-paper rolls clockwise (as opposed
to counterclockwise) activates their orientation toward the fu-
ture, thereby priming the concept of novelty, so that they score
higher on the personality scale “openness to experience”
(Topolinski & Sparenberg, 2012). Or researchers could test
whether people who are asked to briefly hold a cup of hot
coffee subsequently rate another person as more “warm” com-
pared with people who held a cup of cold coffee (Williams &
Bargh, 2008).

The theory does not imply that the predicted bias will occur
for each possible test in that space—it merely predicts that it
occurs in some, arguably small, subset of possible tests. As a
consequence, each individual test that confirms the predicted
bias counts as evidence for the theory, but each individual test
failing to show the predicted bias does not count as evidence
against it—it merely shows that this particular combination of
a concept, its assumed grounding, the chosen manipulation,
and the chosen judgment is not an informative test of the
theory. In that case, instead of revising the theory, researchers
need to ask “what went wrong” with their study: They might
have chosen the wrong judgment or decision as the dependent
variable, they might have made the wrong assumptions about
how exactly the concept in question is embodied, or they
might have failed to induce the relevant bodily state. In any
case, it is reasonable for the researcher to dismiss such a fail-
ure as uninformative and move on to another spot in the search
space.

It might be tempting to dismiss this kind of research as
flawed—especially in light of the fact that the examples cited
above did not hold up in replication attempts (Lynott et al.,
2014; Wagenmakers et al., 2015)—but that would be unjusti-
fied. Many respectable and useful research programs follow the
same rationale, such as the search for exoplanets, the search for
new drugs, or, closer to home, the search for neural correlates of
a psychological phenomenon. We can call this endeavor discov-
ery-oriented research.3 What makes this kind of research gener-
ate nonreplicable results is the second step in the sequence:
Conduct an extensive search through the vast space of possible
tests; carry out each test only once; and evaluate the evidence
from each test by the conventional standards of statistical infer-
ence (e.g., a p value <.05; Pashler & Harris, 2012). Those infer-
ential standards were, however, designed for a different kind of
endeavor, which we will call theory-testing research.

To explain the difference, we characterize the two kinds of
research formally. We will use T for the theory in question, X for
an empirical generalization that can be stated as a testable hy-
pothesis (i.e., the proposition that a certain experimental effect or
correlation exists in the population), and “x” as evidence from an
individual study supporting hypothesis X (e.g., an experiment
yielding a significant effect as expected fromX). Table 2 presents
all equations and a numerical example. Table 3 presents the
corresponding equations for the case where a study yields
disconfirming evidence “¬x” that speaks against hypothesis X.

Discovery-oriented research

In discovery-oriented research, the theory motivating it im-
plies the existence of phenomena in a broad class Ω, of which
X is an instance. For example, the EPT implies that the phe-
nomenon of priming of abstract concepts through bodily
states, sensations, or movements exists. The theory does not
specify under which conditions this phenomenon will be
observed—it merely motivates the search for it. Each test of
that general expectation tests a specific hypothesis X—for
instance, that people’s scores on an “openness for experience”
questionnaire will increase after they have rotated kitchen rolls
in a clockwise direction. However, the theory implies no more
than that a small subset of possible hypotheses X out of Ω are
actually true (i.e., they describe real effects). In other words,
for any given X, P(X|T) is small—to give a numerical exam-
ple, let’s say P(X|T) = 0.1. Confirming X as an empirical
generalization is still diagnostic, supporting theory T, as long
as the probability of such an effect being real, assuming the
theory is false, is much lower, say P(X|¬T) = 0.02. These are
the values we assume in the numerical example in Table 2.
Note that in this example we assume that the confirmatory
diagnosticity of X for T (as defined in Table 1; it can be
computed as the ratio of rows 2 and 3 in Table 2) is equal in

2 Whereas our embodiment priming theory is inspired by several sources (e.g.,
Jostmann, Lakens, & Schubert, 2009; Körner, Topolinski, & Strack, 2015), we
do not ascribe it to any particular author because it is meant to be a rational
reconstruction of contemporary ideas rather than a faithful expression of one
specific author’s writing. 3 We borrow the term discovery oriented from Ioannidis (2005)
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the discovery-oriented and the theory-testing cases because
we want to compare them free of confounds with unjustified
differences. We do the same for other parameters, such as
P(T), the prior probability that the theory is true.

Taken together, in discovery-oriented research the probability
that X is a true hypothesis is low, regardless of whether T is true
or not:

P Xð Þ ¼ P X jTð ÞP Tð Þ þ P X j:Tð ÞP :Tð Þ:

Assuming equal priors for our theory to be true or not, P(T)
= P(¬T) = 0.5, then P(X) = 0.06 (see Table 2). In other words,
phenomena of the kind predicted by our theory have a low
base rate of occurrence. Therefore, success in the search for
these phenomena is sometimes hailed as demonstrating sur-
prising, “counterintuitive” effects, with the added benefit of
attracting attention and headlines.

If X is a true hypothesis, we can expect that a well-designed
study provides evidence for it—which we call “x”—with

Table 2 Equations for inferences, with examples for discovery-oriented and theory-testing research

Term Equation Discovery oriented Theory testing

Theory level
Prior of theory being
true / being false

P(T), P(¬T) = 1 − P(T) .5 .5

Likelihood of hypothesis
if theory is true

P(X| T) .1 1

Likelihood of hypothesis
if theory is false

P(X| ¬T) .02 .2

Prior of hypothesis P(X) =P(X| T)P(T) + P(X| ¬T)P(¬T) .06 .6
Posterior of theory, given
hypothesis is true

P T jXð Þ ¼ P X jTð ÞP Tð Þ
P X jTð ÞP Tð ÞþP X j:Tð ÞP :Tð Þ

:1�:5
:1�:5þ:02�:5ð Þ ¼ :83 1�:5

1�:5þ:2�:5ð Þ ¼ :83

Posterior of theory, given
hypothesis is false

P T j:Xð Þ ¼ P :X jTð ÞP Tð Þ
P :X jTð ÞP Tð ÞþP :X j:Tð ÞP :Tð Þ

:9�:5
:9�:5þ:98�:5ð Þ ¼ :48 0

0þ:8�:5ð Þ ¼ 0

Empirical level
Prior of hypothesis being
true / being false

P(X), P(¬X) = 1 − P(X) .06,
.94

.6,

.4
Likelihood of empirical
support if hypothesis is
true

P("x"| X) = 1 − β .8 .8

Likelihood of empirical
support if hypothesis is
false

P("x"| ¬X) =α .05 .05

Posterior of hypothesis,
given empirical support

P X j“x”ð Þ ¼ P “x”jXð ÞP Xð Þ
P “x”jXð ÞP Xð ÞþP “x”j:Xð ÞP :Xð Þ

:8�:06
:8�:06þ:05�:94ð Þ ¼ :51 :8�:6

:8�:6þ:05�:4ð Þ ¼ :96

Combining both levels
Posterior of theory,
given empirical support
for hypothesis

P(T| "x") =P(T| X)P(X| "x") +P(T| ¬X)P(¬X| "x") .83 × .51 + .48 × .49 = .66 .83 × .96 + 0 = .80

Table 3 Equations for inferences from disconfirming evidence

Term Equation Discovery oriented Theory testing

Empirical level

Prior of hypothesis being true / being
false

P(X), P(¬X) = 1 −P(X) .06,
.94

.6,

.4

Likelihood of disconfirming
evidence if hypothesis is true

P(" ¬ x"|X) = β .2 .2

Likelihood of disconfirming
evidence if hypothesis is false

P(" ¬ x"| ¬X) = 1 −α .95 .95

Posterior of hypothesis,
given disconfirming evidence

P X j“:x”ð Þ ¼ P “:x”jXð ÞP Xð Þ
P “:x”jXð ÞP Xð ÞþP “:x”j:Xð ÞP :Xð Þ

:2�:06
:2�:06þ:95�:94ð Þ ¼ :01 :2�:6

:2�:6þ:95�:4ð Þ ¼ :24

Combining both levels

Posterior of theory, given evidence
disconfirming the hypothesis

P(T| " ¬ x") = P(T| X)P(X| " ¬ x") + P(T| ¬X)P(¬X| " ¬ x") .83 × .01 + .48 × .99 = .48 .83 × .24 + 0 = .20

Note. Equations for the theory level, and numerical values used for the examples, are the same as in Table 2
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reasonably high probability—for instance P(“x”|X) = 0.8. If X is
false, there is still a chance that evidence supporting it is obtain-
ed due to sampling error and measurement error, say P(“x”|¬X)
= 0.05. The values we assigned to these two conditional prob-
abilities are for illustrative purposes only, but they are not chosen
arbitrarily. In the framework of null-hypothesis significance test-
ing, P(“x”|X) is the statistical power of a study, 1 − β, and
P(“x”|¬X) is the criterion for significance, α, which sets the
expected rate of false positives. The values 0.8 and 0.05 are
representative of the power that is often recommended, and
the conventional Type I error rate, respectively.

We can now use Bayes’ rule to calculate the probability that
a study yielding evidence “x” reflects a real effect X:

P X jxð Þ ¼ P “x”jXð ÞP Xð Þ
P “x”jXð ÞP Xð ÞP “x”j:Xð Þ þ P :Xð Þ :

The implications of Bayes’ rule are easy to grasp when
working through an example in frequency formats
(Gigerenzer & Hoffrage, 1995): With the probabilities given
above, out of 100 tests of our theory T—each testing a differ-
ent hypothesis X out of the theory’s search space—we can
expect six to test a true effect, because P(X) = 0.06.
Assuming P(“x”|X) = 0.8, we can expect around five of them
to provide evidence “x” for the effect. Of the remaining 94
tests aimed at nonexisting effects, we must expect approxi-
mately five to yield evidence “x” due to the false-positive rate
P(“x”|¬X) = 0.05 (we report rounded results in the text to
facilitate exposition, whereas Table 2 contains results
expressed to the second decimal digit). Hence, the proportion
of true effects out of those tests that yielded evidence for an
effect is around 5/10. In general, the lower the base rate P(X),
the higher the posterior probability that an observation “x”
speaking in favor of an effect is a false positive (Fiedler,
2017; Ioannidis, 2005; Miller, 2009).

Theory-testing research

Now, consider theory-testing research. This kind of research
starts from a theory that provides strong inferential links for
deriving hypotheses. Whereas a theory that is guiding discov-
ery implies that X in Ω can be the case, a theory suitable for
theory-testing research implies that, under conditions speci-
fied in the theory, X must be the case. Take, for example, a
temporal-context theory of episodic memory such as SIMPLE
(Brown, Neath, & Chater, 2007). This theory implies that
extending the (filled or unfilled) delay between encoding
and retrieval reduces the temporal distinctiveness of events
(such as words in a memory list), which necessarily reduces
the chance of accurate retrieval.4 This hypothesis follows de-
ductively from the core assumptions of temporal-context

theories; in the case of SIMPLE, which formalizes these as-
sumptions by a set of equations, they can be derived mathe-
matically. This tight logical link between theory and hypoth-
esis implies that establishing X as an empirical generalization
speaks in favor of theory T, and conversely, empirically estab-
lishing that X is not true counts as evidence against T (e.g., see
Lewandowsky, Duncan, & Brown, 2004, for evidence against
the prediction from SIMPLE mentioned above). This is why
we call this kind of research theory testing: It offers a chance
to obtain strong evidence both in favor and against a theory.

Ideally, the hypothesis follows deductively from the theory,
such that P(X|T) = 1. For confirmation of X to be diagnostic
(see Table 1), we hope that P(X|¬T) << 1 (in the example in
Table 2 we set this value to 0.2, keeping confirmatory
diagnosticity the same as for discovery-oriented research).
Now the prior probability of X is at a minimum equal to the
prior of the theory. As long as the theory has a reasonably high
prior—meaning that it is not highly implausible to begin
with—this implies a fairly high base rate of hypothesis X.
Assuming P(T) = 0.5 (the same value as for our discovery-
oriented example), with P(X|T) = 1 and P(X|¬T) = 0.2, we
obtain P(X) = 0.6 (see Table 2). This means we can expect that
out of 100 tests of hypotheses that share the assumed charac-
teristics of X, 60 are true. Of these, given our presumed power
of 0.8, we can expect 48 to be supported by evidence “x.” Of
the remaining 40, we expect two to yield false positives.
Hence, the posterior probability that an observation “x” re-
flects a true effect is 48/50, or 0.96.

Obviously, real cases are rarely that ideal, and the inferential
link between theory Tand hypothesis X is often less than perfect,
so that P(X|T) < 1. We should therefore think of the distinction
between discovery-oriented and theory-testing research as a con-
tinuum that varies with the strength of the inferential link from T
to X; here, we focus on its extremes to clarify the distinction, and
we show how the probabilities of interest vary as we vary P(X|T)
continuously in Fig. 2. The left panel of Fig. 2 shows how the
prior probability of a hypothesis, P(X), increases with the
strength of the inferential link, P(X|T). The figure also shows
the implications of that prior for the posterior probability of the
hypothesis when supported by data, P(X|“x”), and in light of
contradictory evidence, P(X|“¬x”), based on the equations and
assumed parameters in Tables 2 and 3, respectively. Discovery-
oriented research corresponds to values on the left of the x-axis,
near zero, whereas theory-testing research corresponds to values
nearer 1. The right panel of Fig. 2 shows how the two possible
outcomes of a study (“x” or “not x”) translate into the posterior
probability of the theory being true, P(T|“x”) and P(T|“¬x”),
respectively, as a function of P(X|T). This plot shows how, as
the logical link between theory and hypothesis becomes stronger,
we learn more from both possible outcomes: If the data support
the hypothesis, they provide stronger evidence for the theory, so
that P(T|“x”) rises more above the theory’s prior, P(T) = 0.5
(indicated by the horizontal red line). Perhaps more striking is4 Assuming the words are still presented at the same rate.
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the pattern of P(T|“¬x”), showing that evidence against the hy-
pothesis becomes increasingly informative (i.e., moving the pos-
terior of the theory away from its prior) as P(X|T) becomes larger.
We can use the disconfirmatory diagnosticity—that is, the infor-
mativeness of failed hypothesis tests (see bottom row of
Table 1)—as the key criterion for placing a research endeavor

on the continuum between discovery-oriented and theory-testing
research by asking, To what extent does disconfirmation of a
hypothesis derived from the theory count as evidence against
the theory?

To conclude, applying conventional criteria of evidence for
an effect, such as α = 0.05 and 1 − β = 0.8, results in an

Fig. 2 Effects of continuously varying the strength of the inferential link
from theory to hypothesis, P(X|T). Left: Prior probability of the
hypothesis, P(X), and posterior probability of the hypothesis in light of
confirming (“x”) or disconfirming (“not x”) data. Right: Posterior

probability of theory, given confirming or disconfirming data. The red
horizontal line demarcates the prior of the theory. Probabilities are
calculated with the equations and parameter values given in Table 2.
(Color figure online)
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arguably tolerable false-positive rate in the context of theory-
testing research, but in a clearly unacceptable false-positive
rate in the context of discovery-oriented research. Obviously,
false positives are typically not replicable. One reason for the
replication crisis in psychology, we suspect, is that a large part
of psychological research is discovery oriented, but uses evi-
dentiary criteria that are suited for theory-testing research, but
are far too lax for discovery-oriented research.

For these reasons, the focus of the contemporary discussion
on how to address the “replication crisis” by reducing the chance
of Type I errors, or “false positives,” is entirely justified for
discovery-oriented research. Researchers engaging in theory-
testing research, by contrast, should be more concerned with
fully exploiting the evidence in the data. In particular, they
should be concerned asmuchwith establishing that a hypothesis
is false as with establishing that it is true. The specific strength of
theory-testing research is that we can leverage the disconfirma-
tion of a hypothesis as evidence against any theory that entails it
(right panel in Fig. 2). To make full use of this high
disconfirmatory diagnosticity, we need methods to establish that
a hypothesis is false. Null-hypothesis significance testing does
not provide the tools for that purpose—we can at best fail to
provide evidence against the null hypothesis. Bayesian model
comparison, by contrast, enables researchers to gauge the evi-
dence both for the alternative hypothesis—as with conventional
frequentist statistics—and also—unlike frequentist statistics—
for the null hypothesis (Wagenmakers, Marsman, et al., 2018b).

We now discuss some of the proposed remedies for the
replication crisis within the framework of the two levels of
inference. We explore the limitations of those remedies before
turning to sketching a way forward that emphasizes the devel-
opment of stronger theories over improvements to data collec-
tion and analysis.

Proposed remedies for the replication crisis

Many remedies have been proposed to address the replication
crisis, among them: (1) More stringent statistical standards for
inferring that an observed effect is real (Benjamin et al., 2018).
(2) High-powered direct replications using the exact same mate-
rials and protocol as the original study, preferentially distributed
across many labs to ensure generalization (e.g., Wagenmakers
et al., 2016). (3) Open data, open materials, and open analysis
algorithms. (4) A clear distinction between hypotheses formulat-
ed a priori (before looking at the data) and those formulated a
posteriori—sometimes referred to as HARKing (Hypothesizing
After Results Are Known; Kerr, 1998)—and, relatedly, a clear
distinction between exploratory and confirmatory research
(Wagenmakers, Dutilh, & Srafoglou, 2018a; Wagenmakers,
Wetzels, Borsboom, van der Maas, & Kievit, 2012). (5)
Preregistration of the hypotheses, the data collection plan (in
particular, stopping rules for data collection), and the analysis

plan to limit the “researcher degrees of freedom” (Simmons
et al., 2011) in hypothesis formulation and in making analytical
choices that invite HARKing and p-hacking, respectively.

Many of these proposals are helpful ideas for raising the
standards of good research practice, primarily ensuring more
trustworthy inferences on the empirical level of scientific
inference—the level connecting observations to empirical
generalizations (see Fig. 1). Our concern is that shoring up
the strength of inferences on the empirical level does not by
itself address deficits on the theory level—the level
connecting empirical generalizations to theories. As we show
next, the recommendations presently discussed are either ir-
relevant to the theory level or even misleading about it.

More stringent statistical standards and direct
replication

An obvious remedy to reduce the rate of false positives is to
raise the bar for declaring a discovery. An impressive lineup of
scholars recently proposed to redefine statistical significance as
a p value <.005 (Benjamin et al., 2018). Adopting a stricter
criterion reduces false positives but also true positives, unless
the loss of power is compensated for by an increase in sample
size. Is this worth the price? Returning to our numerical exam-
ples:When a discovery-oriented research endeavor starts with a
low prior probability of an effect, P(X) = 0.06, then setting α to
0.005 reduces the false-positive rate from 5 out of 94 to 0.5 out
of 94, and assuming we invest the necessary resources to main-
tain power at 0.8 (i.e., through increasing the typical sample
size by 70%; see Benjamin et al., 2018), we can still expect
about 5 out of 100 true positive results. This means that the
proportion of true positives among all positives becomes a rea-
sonably acceptable 5 out of 5.5 (or 91%), a large improvement
over the 5/10 (50%) we had with α = 0.05. In the case of
theory-testing research, starting from P(X) = 0.6, we reduce
the false positives from 2 to 0.2 out of 40. Again keeping power
at 0.8, we can expect to improve the proportion of true positives
among all positives from 48/50 (96%) to 48/48.2 (99%). Unless
false positives have very high practical costs, this is arguably a
negligible improvement, hardly worth the extra cost (see also
Fiedler, Kutzner, & Krueger, 2012). Figure 3 summarizes the
effects of reducing α on the posteriors of the hypothesis (left
panel) and the posterior of the theory that entails it (right panel)
after obtaining a significant result supporting the hypothesis.
The figure shows that discovery-oriented research stands much
to gain from reducingα—theory-testing research, not so much.

An analogous argument holds for direct replications. A sin-
gle reasonably well-powered study conducted as part of
discovery-oriented research tests a hypothesis with a low prior
probability, and therefore empirical support for the hypothesis
returns only a modest posterior probability for it—in our nu-
merical example above (and in Table 2), that posterior would be
P(X|“x”) = 5/10. In that case, direct replication is indispensable
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to gain a reasonable level of confidence that X is a real effect. In
contrast, when the same study is carried out as part of a theory-
testing endeavor, we start with a higher prior, and therefore
obtain a higher posterior—in our numerical example,
P(X|“x”) = 48/50. A successful direct replication would still
increase the posterior further, but not by much. The resources
for a second study might therefore be better invested for testing
a second hypothesis derived from the same theory.

Table 4 presents the equations for calculating the posterior
probability of T, given “x1” followed by a successful replica-
tion, “x2,” in comparison to the posterior of T, given “x1”
followed by observation “y” that supports a further hypothesis
Y derived from the same theory. The likelihoods of this new
prediction, P(Y|T) and P(Y|¬T), are assumed to be the same as
those for X. For the numerical example illustrating theory-
testing research, the posterior after replication, P(T|“x1” +
“x2”) = .83, whereas the posterior after successful test of a
second prediction, P(T|”x1” + “y”) = .94. Note that for the
example illustrating discovery-oriented research, by contrast,
the direct replication yields not only a substantially increased
posterior of X but also a slightly larger posterior of T than the
test of a new prediction (.81 vs. .79). Figure 4 shows that this
is a general result that holds regardless of the prior of the
theory.

We explored the issue further with Fig. 5, which plots the
advantage (or disadvantage, if negative) of direct replication
compared with testing a second hypothesis, defined as the
difference in the posterior of the theory achieved after two
experiments. Here, we varied P(X|T) continuously, rather than
focusing on the two extreme ends—discovery-oriented versus
theory-testing research—and in addition varied the confirma-
tory diagnosticity of the hypothesis—that is, the ratio of
P(X|T) to P(X|¬T). Figure 5 shows that, with the majority of
constellations explored here, a successful test of a second hy-
pothesis yields more evidence for the theory than a successful
direct replication (i.e., most data points fall below the zero
line, indicating that a direct replication was less beneficial than
testing a second hypothesis).

Specifically, whenever the links between theory and hy-
potheses, P(X|T) and P(Y|T), are at least moderately strong,
or the confirmatory diagnosticity of the hypotheses is medi-
um to low, then the theory stands to gain more support from
a successful test of a second hypothesis derived from it than
by a successful direct replication of the first test. In Fig. 5,
this refers to values below the red lines, which cluster to-
ward the left (lower diagnosticity) and involve stronger links
between theory and hypotheses—higher values of P(X|T)
(see legend). The exception is the test of highly

Fig. 3 Effects of reducing the alpha level for obtaining evidence “x” in
favor of a hypothesis X by rejecting the null hypothesis (Simulations
based on values in Table 2, varying alpha). With more stringent alpha
levels, the posterior of both the hypothesis (left panel) and the theory that

entails it (right panel) after obtaining a significant result “x” increase. For
discovery-oriented research, this increase is steeper because the
hypothesis starts from a lower prior
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“counterintuitive” hypotheses typical for discovery-oriented
research: This kind of hypothesis is not derived from the
theory but merely motivated by it, so P(X|T) is low, and at
the same time the hypothesis is highly diagnostic, because if
the theory were false, its prior probability would be close to
zero. As a result, its overall prior is very low, so it has much
to gain from direct replication. This corresponds to values
above the red lines in Fig. 5, which arise with high
diagnosticity and low values of P(X|T) only.

All this is not to say that direct replications are useless.
Obviously, when our goal is to establish whether or not an
empirical generalization for which we have initial evidence
is real, then direct replication of the initial study is the only
way to achieve that. As long as our focus is on establishing
reliable facts at the empirical level, direct replication remains
the gold standard. When our primary interest is with establish-
ing which theories are credible, however, we find that often
testing new hypotheses to evaluate a theory—provided the

Table 4 Posterior probabilities of theories after a direct replication and after a test of a second hypothesis

Term Equation Discovery oriented Theory testing

Knowledge after first experiment (from Table 2)

Prior of theory after first
finding

P(T| "x1") .66 .80

Prior of hypothesis X after
first finding

P(X| "x1") .51 .96

Posterior of theory, given
hypothesis is true

P(T| X), P(T| Y) .83 .83

Posterior of theory, given
hypothesis is false

P(T| ¬X), P(T| ¬Y) .48 0

Likelihood of empirical
support if hypothesis
is true

P("x"| X)¼ P("y"| Y)¼ 1 − β .8 .8

Likelihood of empirical
support if hypothesis
is false

P("x"| ¬X)¼ P("y"| ¬Y)¼ α .05 .05

Direct replication

Posterior of hypothesis,
given successful
replication

P X j“x1”þ “x2”ð Þ ¼ P “x2”jXð ÞP X j“x1”ð Þ
P “x2”jXð ÞP X j“x1”ð ÞþP “x2”j:Xð ÞP :X j“x1”ð Þ

:8�:51
:8�:51þ:05�:49ð Þ ¼ :94 :8�:96

:8�:96þ:05�:04ð Þ ≈1:0

Posterior of theory, given
all outcomes of all
empirical tests

P(T |"x1"þ "x2")¼
P(T| X)P(X| "x1"þ " x2")þ P(T| ¬X)P(¬X| "x1"þ "x2")

.83 × .94 + .48 × .06¼ .81 .83 × 1.0 + 0¼ .83

Test of new hypothesis

Likelihood of new
hypothesis if theory
is true

P(Y| T) .1 1

Likelihood of new
hypothesis if theory
is false

P(Y| ¬T) .02 .2

Prior of new hypothesis,
given current prior of
theory

P(Y) =P(Y| T)P(T| "x") + P(Y| ¬T)P(¬T| "x") .1 × .66 + .02 × .34¼ .07 1× .80 + .2 × .20¼ .84

Posterior of new
hypothesis, given
empirical support for
new hypothesis

P Y j“y”ð Þ ¼ P “y”jYð ÞP Yð Þ
P “y”jYð ÞP Yð ÞþP “y”j:Yð ÞP :Yð Þ

:8�:07
:8�:07þ:05�:94ð Þ ¼ :56 :8�:84

:8�:84þ:05�:4ð Þ ¼ :99

Posterior of theory, given
empirical support for
old hypothesis, and
new hypothesis is true

P T j“x1”þ Yð Þ ¼ P Y jTð ÞP T j“x1”ð Þ
P Y jTð ÞP T j“x1”ð ÞþP Y j:Tð ÞP :T j“x1”ð Þ

:1�:66
:1�:66þ:02�:34ð Þ ¼ :91 1�:80

1�:80þ:2�:20ð Þ ¼ :95

Posterior of theory, given
support for first
hypothesis, and new
hypothesis is false

P T j“x1”þ :Yð Þ ¼ P :Y jTð ÞP T j“x1”ð Þ
P :Y jTð ÞP T j“x1”ð ÞþP :Y j:Tð ÞP :T j“x1”ð Þ

:9�:66
:9�:66þ:98�:34ð Þ ¼ :64 0�:80

0�:80þ:8�:20ð Þ ¼ 0

Posterior of theory, given
support for first and
second hypothesis

P(T| "x1" þ "y")¼
P(T| "x1" þ Y)P(Y| "y")þ P(T| "x1" þ ¬ Y)P(¬Y| "y")

.91 × .56 + .64 × .44¼ .79 .95 × .99 + 0¼ .94
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theory strongly implies the hypotheses—is a better investment
of our resources than a direct replication.

“Exploratory” and “confirmatory” research revisited

A further common recommendation to address the replication
crisis is to clearly distinguish between exploratory and
confirmatory research, with an understanding that only the latter
can provide strong evidence for a hypothesis (Wagenmakers,
et al., 2018a; Wagenmakers et al., 2012). This recommendation
is usually coupled with the appeal to preregister hypotheses and
analysis plans. The distinction between exploratory and confir-
matory research is perhaps reminiscent of our distinction be-
tween discovery-oriented and theory-testing research introduced
above, but the exploratory-confirmatory contrast is usually de-
fined in a different and, we argue, unhelpful way. Research is
regarded as confirmatory if and only if hypotheses and data
analysis plan are fixed before looking at the data, whereas hy-
potheses and analysis decisions that are chosen after looking at
the data, and perhaps in response to characteristics of the data,
count as exploratory. Exploratory research is criticized for being
vulnerable to intentional or unintentional confirmation bias:
When the data inform which hypothesis to test, or which com-
bination of data transformation and statistical analysis procedure
to choose, then researchers keen on finding reportable effects are
tempted to choose hypotheses and analysis plans likely to yield
confirmation of an expected effect. A related argument is the

critique of HARKing, the practice of presenting a post hoc hy-
pothesis that was formulated after looking at the data as if it were
an a priori hypothesis that has been formulated before looking at
the data (Kerr, 1998).

This critique is certainly valid.What we find unhelpful about
it is its emphasis on the temporal order in which a researcher
specifies their hypothesis and analysis plan on the one hand,
and interrogates the data on the other (see also Rubin, 2017b,
for a similar critique). Fixing hypotheses and analysis plans
before analyzing the data is regarded as good practice; reversing
the order is considered bad practice. Preregistration is argued to
address the problem because it enforces the right temporal order
of these actions. This way of framing the problem and the
solution remains superficial because it uses a distinction that
does not matter—temporal order—as a proxy for one that does
matter—the distinction between justified and arbitrary choices
of hypotheses and analysis procedures.

The question of whether temporal order matters in es-
tablishing the validity of hypotheses or theories is known
as the paradox of predictivism in philosophy of science
(Barnes, 2008). The paradox arises from a contradiction
between two strong intuitions. One is that a theory re-
ceives stronger confirmation from the prediction of a nov-
el finding—not known to the theorist at the time of for-
mulating the theory—than from the explanation of an al-
ready known finding. The other intuition is that the evi-
dential value of a finding for a theory should not depend

Fig. 4 Posterior of theory T, given data from an initial finding “x1” confirming hypothesis X, and either a replication of that finding, “x2”, or data “y”
confirming a second hypothesis, Y
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on historical accidents such as when a theorist first
learned about an empirical finding relative to when she
first thought of a theory that predicts or explains that
finding. The notion that the history of the researcher’s
state of mind should determine to what degree some piece
of empirical evidence supports a given theory is generally
regarded as unacceptable in the philosophy of science. To
appreciate why, consider the following scenarios:

Scenario A: Researcher A designs the following test of the
embodiment priming theory (EPT) sketched above: A sample
of participants is divided randomly into two groups. Upon
entering the laboratory, members of the experimental group
are asked to leap over a gap in the floor; members of the
control group are tested in a second lab that is identical to

the first, except that there is no gap to cross. Researcher A
reasons that the activity of the experimental group primes the
concept of a “leap of faith,” and therefore this group should,
on average, score higher on a subsequent religiosity question-
naire than the control group. Researcher A preregisters this
prediction, together with a straightforward t test as analysis
plan, then runs the experiment and finds a significant effect
in the expected direction.

Scenario B: Researcher B runs an experiment on paired-
associates memory: Participants encode lists of four to 12
word pairs; after each list, their memory is tested by presenting
one word from each pair, and they are asked to reproduce the
other element. Upon exploring the data, Researcher B notices
an unanticipated pattern: When participants confuse the

Fig. 5 Advantage of replication, defined as P(T|“x1” & x2”) – P(T|“x1”
& “y”). Each line represents one level of P(X|T), and the x-axis represents
the log of the confirmatory diagnosticity of the tested hypothesis.

Confirmatory diagnosticity, defined as P(X|T)/P(X|¬T), was varied over
values [1, 2, 3, 5, 10, 20 50]. We set the diagnosticity equal for both X and
Y, so the x-axis represents log(P(X|T) / P(X|¬T)) = log(P(Y|T) / P(Y|¬T))
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correct word with a word from another pair in the memory list,
it is more likely to be a pair close to the correct one in the
presentation order than one further away. After some reading
and discussion with colleagues, Researcher B finds out that
this regularity is predicted by a class of episodic-memory
models in which the temporal context of events acts as an
important retrieval cue for the events, such as SIMPLE
(Brown et al., 2007) and TCM (Sederberg, Howard, &
Kahana, 2008).

Researcher A did everything by the books to claim that she
did confirmatory research. In contrast, Researcher B made his
discovery through exploratory research, and could be accused
of HARKing when claiming to have obtained empirical sup-
port for temporal-context theories of memory. Yet we argue
that the evidence supports the theory in question more strong-
ly in Scenario B than in Scenario A.

We designed Scenario A to fit the blueprint of discovery-
oriented research: The inferential link between the theory and
the expected effect is weak; it requires a number of question-
able auxiliary assumption to be turned into a deductive link:
“If EPT is true, and if the concept of a ‘leap of faith’ is em-
bodied in the physical action of jumping over a gap, and if
jumping over a gap once primes that concept for at least a few
minutes, and if priming that concept shifts people’s responses
on a questionnaire toward higher religiosity scores, then the
experimental group will show higher religiosity scores (Xa).”
Each of the auxiliary assumptions could fail, so that failure to
observe “xa” (i.e., obtaining a nonsignificant group difference
in religiosity scores, or even a Bayes factor strongly in favor of
the null hypothesis) does not count as evidence against EPT,
whereas observing “xa” counts as evidence not only for EPT
but also for all auxiliary assumptions. For the same reason,
P(X|EPT) is arguably low, and as we have shown above, that
implies that P(Xa|“xa”) is not very high, either.

In contrast, we regard Scenario B as a typical case of
theory-testing research: The class of temporal-context theories
of episodic memory (TCTs) logically entails the hypothesis
that events closer together in time are more likely to be con-
fused with each other than events more separated in time (Xb).
No auxiliary assumptions are needed to arrive at that implica-
tion. Therefore, P(Xb|TCT) = 1. Moreover, TCTs have re-
ceived substantial empirical support so far, so that their current
prior, P(TCT), is reasonably high. Together, these two proba-
bilities imply that the posterior probability P(Xb|“xb”) is high,
too: The finding “xb” is unlikely to be a false positive.
Therefore, observing “xb” provides strong evidence for Xb,
and by implication for TCTs. Conversely, failure to observe
“xb” (assuming strong statistical power, or a convincing Bayes
factor in favor of the null) counts as evidence against TCT.
This is so whether or not Researcher B carried out the exper-
iment with the purpose of testing TCTs. The intention and
insight of Researcher B does not matter—it could be that
Researcher B is so dense that he never realizes the connection

between his finding and TCTs, but a smarter colleague notices
it, reanalyzes Researcher B’s data, and publishes the result.
The scientific community does not need to know about the
history of mind of Researcher B and his colleague to appreci-
ate that the data support TCTs.

Philosophers have proposed several solutions to the para-
dox of predictivism, which have in common that they assign
no evidential value to temporal order per se. Rather, they re-
gard temporal order as a proxy for something else that distin-
guishes impressive cases of successful a priori predictions of
as yet unknown empirical generalizations from unimpressive
successful post hoc explanations of known empirical general-
izations (Barnes, 2008; Snyder, 1994). What is this “some-
thing else”? A post hoc explanation is vulnerable to the sus-
picion that the theorist designed the theory so that it explains
the known phenomena, cobbling together just the right as-
sumptions that are needed to arrive at the correct set of hy-
potheses. An a priori prediction does not attract that suspicion
because the theorist, not knowing which prediction will turn
out to be true, could not design the theory to fit the findings.
Another way to put the difference—first proposed by Keynes
(Barnes, 2008)—is this: When a theorist develops a theory T,
and that theory successfully predicts a novel finding X, then
the theorist must have good reasons to propose T that do not
involve knowing X. These reasons could be other, already
known empirical phenomena Y1, Y2, … Yk that the theory
explains, and/or theoretical reasons R1, R2,… Rm such as the
plausibility of the theory’s assumptions in light of what we
know, or the theory’s simplicity and elegance. Hence, when X
is later confirmed by observation, theory T is supported not
only by X but also by all Y and/or all R. In contrast, when a
theorist designs a theory T that explains a known phenomenon
X, then it is possible that knowledge of X is the only good
reason for the theorist to propose T, and hence X is the only
support for T.

These considerations narrow down the “something else”
underlying our intuition that a priori predictions are preferable
to post hoc explanations: When a theory T implies a hypoth-
esis X, and evidence establishes X credibly, then this provides
more support to T the more strongly T is justified indepen-
dently of X. Independent justification means that there is a
rational argument toward T that does not involve X as a
premise—whether or not that argument accurately reflects
the theorist’s thought process (Ladyman, 2002). That is, even
if a theorist had knowledge of X while constructing T, if that
construction is based on good reasons without using knowl-
edge of X, then Xmay strongly support T notwithstanding the
reversed temporal contiguity.

The degree of independent justification arguably correlates
with the distinction between a priori and post hoc, but, cru-
cially, it is not necessarily tied to it. We can think of extreme
cases of trivial post hoc explanations, in which a theorist de-
signs a new theory such that it explains a single known
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phenomenon X, and the theory has no other justification than
its ability to explain X. But then, the history of science offers
numerous counterexamples to the correlation: Cases in which
a theory provides a first explanation for a long-known phe-
nomenon, although the theory was not designed for that pur-
pose at all.5

For the complementary counterexample to the correlation,
we can think of cases in which a theory, designed arbitrarily
without any justification, successfully predicts X a priori by
sheer luck. This is arguably very unlikely—but a much more
likely case is this: A theory motivates a large, perhaps infinite,
number of predictions in the manner we delineated as charac-
terizing discovery-oriented research (for instance, all the dif-
ferent ways of testing embodiment priming). Most of these
predictions will fail, but a few of them might turn out to be
true, and these successes would receive the credit of success-
ful a priori predictions (perhaps formally established through
preregistration). We argue that such credit would be unjusti-
fied, because the predictions receive only weak justification
from the theory: For each of these predictions, the theory does
not imply that they will be true, but only that they can be true,
and P(X|T) is fairly low for each individual prediction. In
other words, the rare prediction successes must be seen in
the context of the many prediction failures, where the exper-
iments “did not work.” The a priori nature of a successful
prediction is only a proxy for the prediction having a strong
independent justification, or for some inherent quality that
empowers the theory to make successful predictions. But if
there is no strong justification, and if the predictive power of a
theory is quite modest in light of its many predictive failures
that accompany the few successes, then that proxy is invalid.
Even preregistration does not make it more valid.6

Preregistration and “researcher degrees of freedom”

So what is the point of preregistration? Preregistration serves
to reduce “researcher degrees of freedom” (Simmons et al.,
2011)—that is, researchers’ choices among large sets of equal-
ly defensible hypotheses to test, and analysis plans to test
them. Within the classical framework of null-hypothesis
testing—still the dominant statistical approach in
psychology—uncontrolled researcher degrees of freedom
have been argued to entail an uncontrolled inflation of Type
I error rate due to multiple testing (de Groot, 1956/2014).
Independent of the statistical framework chosen—classical
null-hypothesis testing or Bayesian statistical inference—
researcher degrees of freedom open the door to inadvertent
biases when researchers choose hypotheses or analysis paths

(e.g., choices about data preprocessing and statistical model)
that lead to a desired result (Wagenmakers et al., 2012).

We have no doubts that preregistration does curtail re-
searcher degrees of freedom, and as such it serves an impor-
tant purpose in preventing a number of fallacies in scientific
inference. At the same time, we think that preregistration,
when applied mechanically—preregistering hypotheses and
analysis plans chosen with little concern about their
justification—remains a cure of the symptoms rather than a
solution addressing the roots of the problem. Therefore, we
want to ask: Where do the excessive researcher degrees of
freedom come from, and can we do something to reduce them
systematically rather than through an arbitrary decision that
we privilege by uploading it on a preregistration repository?

Researcher degrees of freedom arise on both levels of sci-
entific inference (see Fig. 1). On the empirical level they arise
because we have a multitude of data transformations and data
analytical tools at our disposal that are often equally justifi-
able. On the theory level they arise when theories can be used
to motivate a large number of hypotheses—perhaps even con-
tradictory hypotheses—equally well. We argue that on both
levels there are more principled solutions than preregistration
of an arbitrary choice, but the solutions for the two levels
differ, so we will discuss them separately. We begin with a
consideration of the problem of Type I error inflation through
multiple comparisons in null-hypothesis testing. After that we
will address the more general problem arising from researcher
degrees of freedom—namely, the room they create for inad-
vertent bias. We will first discuss solutions to this problem on
the empirical level, concerning the selection of data-analysis
paths, and then on the theory level, concerning selection of
hypotheses to test.

Preregistration and the problem of multiple comparisons
When researchers do not determine their hypotheses and their
analysis plans before looking at the data, they will usually test
multiple possible hypotheses (e.g., every possible pairwise
correlation between n variables), and test each hypothesis
through multiple possible analysis paths, thereby carrying
out multiple tests (de Groot, 1956/2014). This is problematic
in the context of null-hypothesis significance testing: When
the Type I error for each test is set to α, the chance of com-
mitting at least one Type I error—erroneously rejecting a true
null hypothesis—increases beyond α with multiple tests. As
the number of tests researchers choose from is usually un-
known, there is no way to correct for this error inflation.

It is useful to distinguish two cases of multiple testing
(Rubin, 2017a), which correspond to our distinction between
inferences on the empirical level and the theoretical level.
Case 1 is the situation where a researcher tests the same hy-
pothesis through multiple analysis paths and is willing to re-
ject the null hypothesis if at least one analysis path results in a
significant outcome. This case concerns the exploitation of

5 A famous example is the explanation of a known anomaly in the orbit of
Mercury by Einstein’s general theory of relativity.
6 If the preregistrations are automatically and obligatorily made public, then at
least the research community gets to know about the context of prediction
failures.
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researcher degrees of freedom on the empirical level. It leads
to an inflation of the Type I error rate for the hypothesis under
investigation—this has become known as “p-hacking.”
Replacing null hypothesis testing by Bayesian statistics does
not circumvent this problem: Running multiple analyses test-
ing the same hypothesis, and selecting the one yielding the
highest Bayes factor for one’s preferred hypothesis, inevitably
biases the conclusion. Under both statistical approaches, pre-
registration of analysis plans can avoid this bias because it
reduces the number of tests to one.

Case 2 is the situation where a researcher tests multiple
hypotheses, testing each of them with only one analytical
approach (e.g., running a standard significance test on
each of 100 correlation coefficients). This scenario does
not lead to an inflated Type I error rate for each individual
hypothesis. It does increase the chance of committing at
least one Type I error among all hypotheses tested, and as
such it increases the Type I error rate for the “joint null
hypothesis” (de Groot, 1956/2014), which states that all
individual hypotheses tested are false. But the joint null
hypothesis—or its negation, the claim that “at least one of
the n alternative hypotheses tested is true”—is rarely of
scientific interest.

Testing a large, unconstrained number of hypotheses, as in
Case 2, can still be problematic, but the problem does not arise
from an inflated Type I error rate on the hypotheses tested. The
problem arises if the researcher goes on a “fishing expedi-
tion,” searching through a large hypothesis space with few
constraints from theory or prior findings. This is the scenario
arising from discovery-oriented research: In the absence of
strong predictions from a theory, researchers have large de-
grees of freedom on the theory level, that is, freedom to
choose from a large set of hypotheses through HARKing.
The problem with HARKing is that the hypotheses usually
have a low prior, P(X|T) (Dienes, 2011).

The distinction between the two cases is made transparent
within a Bayesian approach to inference, which distinguishes
between the prior of a hypothesis and the evidence in the data
for that hypothesis (as expressed, for instance, in the Bayes
factor). Case 1—the exploitation of researcher degrees of free-
dom in data analysis—compromises the assessment of the
evidence. Case 2—exploiting degrees of freedom in hypoth-
esis selection—implies low priors of the hypotheses. Classical
null hypothesis testing has no place for priors and therefore
tends to obscure the difference. A significant p value arising
from HARKing in a discovery-oriented context can easily be
misinterpreted as providing as much credibility (i.e., posterior
probability) to a hypothesis as a significant test supporting a
hypothesis derived from a theory in theory-testing research,
when in fact the former should be far less convincing than the
latter. To address that problem, classical statisticians often
recommend treating Case 2 in the same way as Case 1 and
correct for multiple testing (with paradoxical consequences

pointed out by O’Keefe, 2003). Preregistration of hypotheses
can then be seen as a way to limit the number of tests. From a
Bayesian perspective, Case 2 should be addressed by
assigning low priors to hypotheses.

To bring the difference between the two approaches to Case
2 into focus, consider Scenario C: Researcher C1 runs an EEG
study to find out how the brains of researchers react differently
to significant versus not-significant p values. She determines
that the effect of p-value significance on 10 dependent vari-
ables obtained from the EEG data is of interest (e.g., the N200,
the P300, the posterior alpha power) and preregisters these 10
hypotheses. Therefore, she needs to correct her alpha level for
multiple testing. Researcher C2 is interested in the same hy-
potheses, but takes a more wasteful (though smarter) ap-
proach: He runs the same experiment 10 times, each time
preregistering only one of the 10 hypotheses, and thereby
evades the correction for multiple testing. The same data that
lead to a significant result in favor of, say, an effect of p-value
significance on the P300 for C2 could fall short of being sig-
nificant for C1, thereby influencing how credible we find this
hypothesis after considering the data. A Bayesian approach
would treat both researchers’ experiments in the same way,
considering the priors for each hypothesis. These priors
should depend on how strongly each hypothesis follows from
a theory, and not on how many hypotheses a researcher plans
to test in the same data set (Dienes, 2011). The role of prereg-
istration in the Bayesian approach is to make researchers think
about their priors without being biased by the data, but the act
of preregistering a hypothesis does not increase its prior, and
therefore has no impact on its posterior.

We next consider alternatives to preregistration as tools to
manage researcher degrees of freedom, first for the empirical
level, and subsequently for the theory level.

From data to empirical generalizations: Degrees of freedom
in analysis plans There are plenty of sources of researcher
degrees of freedom on the empirical level of scientific
inference—from data to empirical generalizations—and much
has been written about them. The “garden of forking paths”
(Gelman & Loken, 2014) includes decisions about data selec-
tion (e.g., which variables, or which observational units, to
include in the analysis), data preprocessing (e.g., whether or
not to transform response times logarithmically), and about
which statistical analysis procedure to use. Because our meth-
odological toolbox for most research problems is already
large, with a tendency to grow fast, researchers often face a
situation where several alternatives at each forking point are
equally justifiable (for an example, see Silberzahn et al.,
2018). Choosing among these options depending on their out-
comes invites biases in favor of choosing an analysis path that
yields the researchers’ preferred conclusion, or an outcome
likely to be publishable.
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If there are multiple analysis paths that are equally justifi-
able for achieving a goal of statistical inference (e.g., testing a
given hypothesis), then the optimal solution is to run all equal-
ly justifiable analyses and record to what extent they converge
on the same results. When the number of options is too large
to run them all, one can still run a sample of different analysis
plans (similar to a sensitivity analysis; Thabane et al., 2013).
The degree of convergence provides information about the
robustness of the results against variation of analytic choices
that should not matter. This approach is nicely illustrated by
the “multiverse” analysis of Steegen, Tuerlinckx, Gelman, and
Vanpaemel (2016), who investigated the robustness of infer-
ences from a data set across a multitude of data preprocessing
decisions. Our proposal is to generalize this approach to other
decisions in the analysis pipeline (e.g., concerning outlier
treatment, statistical model to be tested, inclusion of indepen-
dent variables and covariates). This multiverse analysis cir-
cumvents the problem of Type I error inflation because the
researcher no longer draws conclusions from a single test cho-
sen according to its outcome, but from all tests run.

Compare that gold standard to preregistering one analysis
plan, and regarding that plan only as providing strong, “con-
firmatory” evidence (Nosek, Ebersole, DeHaven, & Mellor,
2018). If there truly are, before looking at the data, several
equally justifiable analysis plans, then choosing one of them
for preregistration is arbitrary. It engenders the risk that this
one way of analyzing the data happens to miss an interesting
pattern that would be revealed by, say, 90% of all other equally
justifiable analysis plans. By sticking to the preregistered plan,
we will never find out. Departing from that plan, however,
would mean that we officially enter “exploratory” territory,
and the outcomes would carry less weight in the minds of
researchers who focus on preregistration as a sign of
quality—in fact, within the framework of null-hypothesis test-
ing, the exploratory analyses have no evidential value
concerning the hypothesis under investigation at all (de
Groot, 1956/2014).

To illustrate, consider Scenario D in which Researcher D
anticipates that for her experiment there are 50 a priori equally
defensible data analysis paths, and she decides to preregister
one of them, chosen by a random draw. After analyzing the
data according to the preregistered procedure, she continues to
run the remaining 49 analysis plans as “exploratory.” Assume
that the preregistered analysis yields evidence in favor of X,
and of the 49 exploratory analyses, a percentage ε yields ev-
idence against X. What percentage ε would convince you to
trust the exploratory analyses more than the “confirmatory”
preregistered one? Should the preregistered analysis really
carry more weight in the balance of evidence than each of
the other 49? Readers who think yes might consider the fol-
lowing variant of this scenario: A team of 10 researchers D1 to
D10 plan a large study together. They each independently pre-
register an analysis plan that they choose at random from the

50 equally justifiable options. When the data are in, each of
them runs all 50 analyses on the same data, and—necessari-
ly—arrives at the same mixture of results: Some analyses
support X, others support the null hypothesis. Because for
each team member a different analysis plan counts as confir-
matory, and thereby receives higher weight, they are likely to
come to different conclusions about what the data imply for
hypothesis X. The only reason for their discrepant conclusions
is a series of coin tosses.

To conclude, preregistering analysis plans curtails re-
searcher degrees of freedom, and this is an important safe-
guard against bias. However, preregistration of one analysis
plan chosen arbitrarily from a set of equally justifiable alter-
natives remains an arbitrary choice, and does not receive a
privileged status of evidential force through preregistration
per se. Preregistration is a public record of the mental history
of the researcher, and the history of the researcher’s reasoning
process has no bearing on the rationality of their decisions (see
our earlier discussion of the “paradox of predictivism”). If a
researcher chooses an analysis method that is inappropriate, or
biased in favor or against one hypothesis, then preregistering
this method does nothing to mitigate these deficiencies.
Therefore, giving the results of preregistered analyses more
weight in evaluating a hypothesis than the results of equally
reasonable but not preregistered analyses would be a mistake.

We believe that the following alternative is more defensi-
ble: When faced with a garden of equally justifiable forking
paths, walk down a sample of them that covers the garden
with reasonable breadth, and report how consistent the find-
ings are. In addition, make the raw data publicly available so
that other researchers who doubt your conclusions can run any
alternative analysis plan to check the robustness further. One
could, of course, preregister the entire intended multiverse of
analyses, but if the multiverse spans the space of reasonable
options—as it should—then preregistration adds nothing. In
summary, preregistration of one analysis path negates the ad-
vantage of a multiverse analysis by privileging one arbitrarily
chosen approach; preregistering the entire multiverse adds
nothing because, by design, a multiverse analysis is dealing
with researcher degrees of freedom already.

We say this not to discourage our colleagues from
preregistering analysis plans. To the contrary, we believe that
preregistration is useful as an explicit stage in the research
process, dedicated to considering which data preprocessing
and analysis paths are reasonable and justifiable. It is also a
very useful exercise to keep one’s own hindsight bias under
control, because what appears reasonable and justifiable to us
after analyzing the data tends to be biased by the results.
Preregistration thus serves as a tool to overcome our psycho-
logical shortcomings, and we should embrace this protective
function. Following a single preregistered analysis plan is
clearly more reasonable and rigorous than running an analysis
in multiple ways and cherry-picking the one that works in
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one’s favor for publication. But like all useful tools, preregis-
tration is not without limitations, and it is crucial that re-
searchers are aware of those limitations. An important limita-
tion to recognize is that preregistration of an analysis path
does not change the logical status of the results arising from
that analysis path. Limiting ourselves to one single way of
looking at the data as the one that counts for making infer-
ences, and downgrading all other analyses as “exploratory,”
risks replacing a self-serving bias by a blind bias. Giving
equally justifiable analysis approaches equal weight, as in a
multiverse analysis, overcomes that limitation.

From theories to hypotheses: Degrees of freedom in hypoth-
esis selection Large degrees of freedom for HARKing arise
naturally from discovery-oriented research. Much of psychol-
ogy is characterized by theories that are so vague that they do
not strongly imply any hypothesis without a host of auxiliary
assumptions. These auxiliary assumptions are not constrained
by the theory and can therefore be chosen in any way that suits
the researcher. When hypothesizing after the results are
known, researchers can choose the auxiliary assumptions in
such a way that the hypothesis matches the result. To illustrate,
we noted earlier in our example involving embodiment prim-
ing that the prediction for an experiment involving religiosity
might involve a deductive chain such as “If EPT is true, and if
the concept of a ‘leap of faith’ is embodied in the physical
action of jumping over a gap, and if jumping over a gap once
primes that concept for at least a few minutes, and if priming
that concept shifts people’s responses on a questionnaire to-
wards higher religiosity scores, then the experimental group
will show higher religiosity scores (Xa).” Upon finding no
significant effect on religiosity, the researcher could freely
hypothesize that any of the auxiliary assumptions might be
in need of revision: For example, the gap may have primed
the idea of a “leap of faith,” as postulated, but that type of faith
may be unrelated to the arguably more fundamental faith in a
supreme being, and rather pertain to the more mundane faith
in other people. The researcher could then proceed to test the
new hypothesis that participants in the experimental group
had more faith in the trustworthiness of the experimenter,
and therefore were more likely to sign a postexperimental
consent form agreeing that a video recording of their behavior
could be used for further research.

These degrees of freedom are much curtailed in theory-
testing research. Take, for instance, theories of recognition
memory. There is a long-running debate between proponents
of two families of theories: On the one side there are theories
assuming that recognition decisions are made by evaluating
whether a signal from memory that varies on a continuum of
strength exceeds a criterion, as formalized in signal-detection
theory (Wixted, 2007). On the other side are theories assum-
ing that recognition decisions arise from two or three discrete
mental states: A detect state (remembering that the probe has

been experienced as part of the relevant memory set) resulting
in an “old” response, a guessing state (not remembering any-
thing about the probe) resulting in an uninformed guess of
“old” or “new,” and (in some theories) a second detect state
(remembering that the probe was not in the memory set)
resulting in a “new” response (Bröder & Schütz, 2009).
Recently, Kellen and Klauer (2014, 2015) have derived hy-
potheses from the two classes of theories by which they can be
distinguished, and these hypotheses follow from the core as-
sumptions of the theories alone, without auxiliary assump-
tions. In this way, Kellen and Klauer reduced the degrees of
freedom for hypothesizing to zero.

To conclude, researcher degrees of freedom in formulating
hypotheses can be more or less constrained by the theories
from which they are derived. On one end of the continuum,
which we described as theory-testing research, hypotheses are
strongly implied by theories with little, if any, flexibility aris-
ing from varying auxiliary assumptions or parameter values.
Preregistering these hypotheses makes their a-priori character
explicit but does not add anything substantive, because the
hypotheses follow from the theories no matter when, or
whether, a researcher thinks of them. In other cases, which
we described as discovery-oriented, hypotheses are merely
motivated—rather than strongly entailed—by theories, and
therefore researchers have many degrees of freedom to vary
them. An evenmore extreme case at that end of the continuum
is a search for empirical effects not guided by any theory,
motivated perhaps by practical questions (e.g., asking whether
students learn better when lecturers make jokes), or just as a
fishing expedition (e.g., asking whether any of 37 personality
scales that happen to be available for a large sample predicts a
person’s sexual orientation, or asking which of >100 cortical
areas’ BOLD signal correlates with people’s report of subjec-
tive awareness of a stimulus). These are the cases that give
researchers huge leeway for HARKing, and that have given
HARKing its bad reputation: When the results are known,
inventive researchers can always come up with a plausible
story explaining why the results had to come out exactly as
they did.7 Preregistration of hypotheses can curtail that
practice—but then, which hypotheses could a researcher pre-
register when no hypothesis is strongly implied by any theo-
ry? A researcher engaged in discovery-oriented research or a
fishing expedition would have to place a blind bet on a pre-
diction to preregister. If that prediction turns out to be true, it
would still be nothing but a lucky guess—it looks like strong
support for the researcher’s theoretical claim, but it is not.
There is no reason to expect future predictive success from a
theory supported by lucky guesses—just as there is no reason
to expect that a stock broker who was lucky on the stock

7 Of course jokes improve learning: They increase alertness. Of course, jokes
impair learning: They distract from the material to be learned. Of course jokes
have no effect: Students don’t listen to instructors, period.
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market five times in a row is a financial genius who can out-
smart the market.

So what is the value of preregistering hypotheses? Like
with preregistration of analysis plans, we see its main benefit
in controlling our biases. It motivates researchers to think
about what they predict for a study, and about how, and how
strongly, their prediction is actually justified by the theory that
motivates it. When the argument from theory to prediction is
thought through before seeing the data it cannot be biased by
the data. Preregistration of hypotheses therefore reassures us
and our colleagues that our reasoning is unbiased—it does
not, however, replace such reasoning. Preregistering a hypoth-
esis without providing a reason for it is pointless, and does
nothing to increase the credibility of the hypothesis even if it
happens to be supported by a study’s finding.

Toward stronger theories: Formalization
and computational modeling

We have argued throughout this article that the development
of strong theories – with a tight logical link between theoret-
ical assumptions and hypotheses derived from them – goes a
long way towards addressing the replication crisis. We now
consider in more detail what it means to develop strong
theories.

As the example of recognition theories mentioned above
(Kellen & Klauer, 2014, 2015) illustrates, deductive deriva-
tion of a hypothesis is greatly facilitated when theories are
formalized as a set of equations or propositions. We can then
use mathematical analysis or formal logic to determine what
hypothesis does or does not follow from the theory, and where
that is too difficult, we can use simulation to derive hypotheses
unambiguously. Sometimes, formalizing a theory and investi-
gating it through simulation can help uncover that a hypothe-
sis a theorist had thought to derive from their theory actually
does not follow from the assumptions of the theory; occasion-
ally even the negation of the original hypothesis follows (for
examples, see Lewandowsky & Oberauer, 2015; Oberauer &
Lewandowsky, 2014). This possibility gives rise to a further
illuminating scenario, Scenario E: Researcher E develops a
well-spelled-out theory T and argues that the theory entails a
novel prediction X. After preregistering that prediction (and
the analysis plan), Researcher E carries out an empirical study
that provides strong evidence for X. Subsequently, another
researcher formalizes the assumptions of T, and demonstrates
through simulation that T cannot generate the effect pattern X.
The conclusion must be that the successful prediction of X
(whether or not it was preregistered) counts as evidence
against T.

Free parameters and arbitrary assumptions Formal modeling
helps to determine what hypotheses are entailed by a theory,

but it does not by itself solve the problem of degrees of free-
dom about hypotheses. Many formal models have consider-
able flexibility in what data patterns they generate. This flex-
ibility has two sources. One source is the flexibility inherent in
any formal model, arising from the model’s free parameters in
conjunction with its functional form. This source of flexibility
is being intensely studied in the field of statistics concerned
with model selection (Pitt, Myung, & Zhang, 2002), and in-
creasingly sophisticated methods are being developed to take
model flexibility into account when determining which model
gives a better account of some data (Shiffrin, Lee, Kim, &
Wagenmakers, 2008).

One way to keep this first source of model flexibility in
check is to constrain the values of free parameters, either by
making theoretical assumptions about plausible parameter
values or by drawing on prior empirical knowledge. In classi-
cal statistical methods of model fitting (e.g., maximum-
likelihood methods), such constraints can only be set in a hard
way by placing upper and lower bounds on parameter values,
or fixing parameters to a single value. For instance, modelers
often require some parameters to remain invariant across ap-
plications of the model to different data sets (so-called “uni-
versal free parameters” according to Wills & Pothos, 2012).
Within a Bayesian framework, constraints on parameter
values can be incorporated in informative priors on parameters
(Lee & Vanpaemel, 2018). Informative prior distributions can
implement soft constraints by concentrating probability mass
on the most plausible parameter values while still assigning
some prior probability to a broad range of less plausible
values. A principled empirical way of determining priors is
to use the posteriors of parameter values from one data set as
the priors on these parameters for the next data set (Kary,
Taylor, & Donkin, 2016). Doing this successively is likely to
progressively narrow the priors, thereby reducing the param-
eters’ freedom to vary. In this way, empirical certainty is ac-
cumulated over a series of studies, but they don’t need to be
direct replications of each other, they just need to reuse (in
part) the same free parameters. We can think of the parameter
estimates carrying over from previous model applications as a
form of preregistration of parameter values—but one that con-
strains parameters in a principled way informed by data.

A second source of flexibility lies with the decisions that
researchers make when building a formal model. Once these
decisions are made, they are hard-wired into the model—we
can think of them as preregistered in the model equations
(Muthukrishna & Henrich, 2019). Yet they are degrees of
freedom at the model-development stage (Farrell &
Lewandowsky, 2018, Chapter 2). Assumptions built into a
formal model vary in the degree to which they are justified
by theoretical considerations independent of the empirical
generalizations the model is built to explain.

Take, for example, resource models of visual working
memory. Several models in this class are built on the basic
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idea of a sample-size model (Palmer, 1990). The core assump-
tion is that visual working memory has a limited number of
units for coding visual features (e.g., colors, line orientations);
each unit codes a visual feature with a limited degree of pre-
cision, and when multiple units redundantly code the same
feature, the information from these units is averagedwhen that
feature needs to be retrieved. These assumptions mathemati-
cally imply that the precision of the retrieved feature
(expressed as the standard deviation of report, σ, or sensitivity,
d′, in recognition tests) increases with the square root of the
number of units redundantly coding it—in the same way as
the standard error of an estimated mean decreases with the
square root of the sample size of a study. With the additional
assumption that, when multiple visual objects are held in
working memory, they share the available feature-coding
units, this class of resource models makes a precise prediction
for how memory precision σ declines as memory set size n
increases (Bays & Husain, 2008; Sewell, Lilburn, & Smith,
2014; Smith, Lilburn, Corbett, Sewell, & Kyllingsbæk, 2016).
This prediction is expressed by a power function:

σn ¼ σ1

n0:5
:

At this point, somemodels in this class include the assump-
tion that the exponent can differ from 0.5, and therefore the
constant is replaced by a free parameter (Bays & Husain,
2008; van den Berg, Shin, Chou, George, & Ma, 2012).
This free parameter gives the model extra flexibility and en-
ables a better account of the data. However, it turns the power
function from something that follows from the theory’s core
assumptions into a convenient choice of a mathematical func-
tion for describing the effect of set size on memory precision
(Oberauer & Lin, 2017).8

Our argument is this: Researchers are free to make deci-
sions when building a formal model, but not all such decisions
are equally justifiable. If we carefully scrutinize how well
model assumptions are justified—by the theoretical ideas they
intend to formalize, by their degree of coherence and integra-
tion with the rest of the model, by their convergence with
assumptions in other empirically successful models, or by
empirical knowledge outside the set of phenomena that the
model is built to explain (e.g., knowledge about how individ-
ual neurons work constraining neural-network models of be-
havior; see O’Reilly & Munakata, 2000)—we can reduce the
researcher degrees of freedom for building models.

Does formal modelling exaggerate the replication problem?
Whereas we believe that formal models of psychological pro-
cesses are part of the solution to curtail researcher degrees of
freedom in hypothesizing, Fiedler (2017) argues that they are
part of the problem. Fiedler points out two weaknesses of
formal models. First, models consist of a number of very spe-
cific assumptions about psychological mechanisms and pro-
cesses. This degree of specificity—precisely the characteristic
that licenses strong inferences to hypotheses—entails that the
prior probability of a model being true is low: For the model to
be true, each of its assumptions needs to be true, and the more
specific each assumption is formulated, the more alternatives
it excludes, which reduces its prior probability of being true. If
the prior of a model is low, then the prior of every hypothesis
deduced from it is low, too. Therefore, Fiedler argues, formal
process models are ill suited to lead the way to highly repli-
cable findings. The second weakness Fiedler points out is that
the confirmation of hypotheses derived from models is often
not diagnostic—other models incorporating entirely different
assumptions may entail the same hypotheses.

Fiedler’s second argument partially neutralizes his first: If a
hypothesis X is necessarily implied not only by a model T1 but
also by at least one other model T2, then the prior of the
hypothesis, P(X), is already larger than the prior of that model,
P(T1). For instance, consider two mutually exclusive models
T1 and T2, each of which imply the same hypothesis X. In this
case, P(X) is the sum of P(X|T1) × P(T1) and P(X|T2) × P(T2);
if the hypothesis follows deductively from each theory, the
two conditional probabilities are both one, and P(X) is the
sum of the two model priors, P(T1) + P(T2). More generally,
the hypotheses implied by a model are often not unique to that
model—they are usually also implied by other, similar
models, and often also by other models starting from entirely
different assumptions. Hence, even if the prior of each indi-
vidual model is, on average, very small, the priors of the
hypotheses entailed by them are not necessarily small. They
are small if the hypothesis is unique to the model under inves-
tigation, but larger to the extent that other models also imply
the same hypothesis. When other models imply the same hy-
pothesis, confirming the hypothesis as an empirical generali-
zation does not uniquely single out one model as the winner,
but it is still informative as it reduces the set of viable models.

The situation is different from discovery-oriented research,
where the link between theory and hypothesis is weak, mean-
ing that P(X|T) is low for each testable hypothesis X. If X is to
have confirmatory diagnosticity for T (i.e., confirming X is to
be counted as support for the theory), then P(X|¬T) has to be
substantially smaller still—in other words, the hypothesis has
to be bold, and evidence for it must be surprising. This is why
the prior of a hypothesis X is necessarily small in discovery-
oriented research. By contrast, in theory-testing research, and
in particular when testing formal models, P(X|T) is very
high—in the ideal case, when the hypothesis follows

8 Recently, resource theorists have addressed this conundrum in two ways.
Smith, Corbett, Lilburn, and Kyllingsbæk (2018) have shown that the freely
estimated exponent increases with more attention-demanding stimuli, and that
a resource model assigning resources unequally to stimuli predicts exponents
>0.5. Van den Berg and Ma (2018) abandon the notion of a constant resource
and instead propose that the resource amount assigned to memory representa-
tions follows a regime of rational cost–benefit analysis.
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deductively from the theory or model, it is unity—and there-
fore P(X|¬T) can be fairly high, too, without confirmation of
X losing its diagnostic value for T. In our numerical examples
we set P(X|¬T) to 0.2. In the context of testing competing
computational models against each other, we can interpret this
value as saying that, among those (known and not yet known)
models that are alternatives to T (our current model of inter-
est), there are some that also imply X, and the sum of their
priors is 0.2. This implies that the prior of the hypothesis,
P(X), is larger than 0.2. To conclude, Fiedler’s claim that the
prior probability of a hypothesis derived from a formal model
is necessarily low is disconfirmed by his own recognition that
multiple models may make the same prediction.

A second point, neglected in Fiedler’s critique, is that em-
pirical tests of formal models—and theory-testing empirical
research in general—afford symmetric evidence: Data
confirming a hypothesis X provide evidence in favor of any
theory or model that implies hypothesis X, but at the same
time, data disconfirming X provide evidence against these
theories or models (see Fig. 2), and provides more credibility
to those competing theories or models that imply the negation
of X. In other words, each test of X is also a test of ¬X, and
therefore we should care as much about the prior of ¬X as
about the prior of X. As noted above, to the extent that P(X) is
large, P(¬X) = 1 − P(X) is small. Therefore, Fiedler’s (2017)
recommendation tomaximize P(X)—for instance, by deriving
hypotheses from necessary statistical truths—although doubt-
lessly addressing the problem of nonreplicable findings, is not
the best way forward for gaining knowledge on the level of
theories. When taken to an extreme, it leads to tests of hypoth-
eses that are trivially true, and confirming them is largely
uninformative. Arguably, the ideal hypothesis is one that is
entailed by about half of the credible models in an area (i.e.,

those models with a nonnegligible prior), such that the hy-
pothesis’ prior is around 0.5. In this way, whichever outcome
of an empirical test is obtained—confirming or disconfirming
the hypothesis—the result cuts the set of remaining credible
models in half.

Conclusion: Remedies for the theory crisis
in psychology

We need to reduce researcher degrees of freedom on both
levels of scientific inference. On the empirical level, we pro-
pose that researchers check the robustness of their inferences
against variations of analysis decisions that are equally justi-
fiable, and that they make their raw data publicly available
whenever possible (see Lewandowsky & Bishop, 2016, for
boundary conditions) so that others can continue checking
their robustness. On the theory level—our primary concern
in this article—there are two paths toward reducing researcher
degrees of freedom. One is to do discovery-oriented research,
but do it right. Researchers on this path accept that the current
state of theorizing in their field does not license strong infer-
ences to hypotheses, and that as a consequence, their hypoth-
eses usually have a lower prior probability. The implication is
that large sample sizes and/or direct replications are needed to
establish a new empirical generalization with a satisfactory
level of credibility. The other path is to do theory-testing re-
search. Researchers on this path make an effort to formulate
their theories as precisely as possible, thereby strengthening
the inferential link from the theory to the hypotheses derived
from it. Expressing the theory formally is likely to help in this
endeavor. This path deemphasizes the need for direct replica-
tion and favors successive tests of different hypotheses.

We acknowledge that some subdisciplines of psychology
have a longer tradition of formal modeling to build on than
others, and therefore theory-testing research might appear to
be out of reach for many psychological scientists. We do not
want to downplay the difficulties of formulating a precise
theory that enables strong inferential links to hypotheses. At
the same time, we argue that researchers can always make
steps toward formulating their theoretical ideas more precise-
ly, and even formally. A formal theory does not need to spell
out mechanism and processes in much detail—formal models
exist on various levels of abstraction. A formal model could
simply consist of a path diagram making explicit the mono-
tonic causal links that are assumed between two or more con-
tinuous variables, or a Bayesian network (Glymour, 2003)
making explicit the probabilistic dependencies between dis-
crete variables. Developing such a model would involve iden-
tifying and explicitly incorporating assumed moderator vari-
ables, boundary conditions, and other auxiliary assumptions.
Often theorists hesitate making these additional assumptions
explicit because there is so much uncertainty about them that
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Fig. 6 Core causal structure of embodiment priming theory. A set of
bodily states or movements B1 to Bn is considered as plausible
manifestations of the embodied representation of concept C, such that
experimentally inducing Bx activates (primes) C. Each Bx has a
probability P1(x) of actually priming C. A set of observable behaviors is
considered as dependent variables DV1 to DVn. If C is primed, it
influences each DVx with probability P2(x). The linguistic expression
“C” activates C with probability P3. The figure includes plausible priors
for the probabilities P1, P2, and P3; the priors of P1 and P2 were chosen so
that the expected value of P(X|EPT) = P1 × P2 = 0.1, in agreement with
the numerical example for discovery-oriented research in Table 2 and the
text
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fixing them would come down to an arbitrary guess. The way
forward in these cases would be to incorporate uncertainty into
the model. The Bayesian modeling framework is ideally suited
for that purpose: Uncertainty is incorporated through priors.
Usually, priors are placed on quantitatively varying free param-
eters, expressing our degree of uncertainty about the quantity in
question. However, we can use priors also to express uncertain-
ty about qualitatively different choices in building amodel—for
instance, the choice between different functional forms for the
relation between two variables (i.e., the relation could be linear,
or exponential, or a power function). The prior would then be a
probability distribution over a set of discrete options in the
model. Uncertainty about model assumptions can be expressed
explicitly and formally, implying that uncertainty is not the
same as vagueness about model assumptions. The former is
no excuse for the latter.

We end by revisiting the embodiment priming theory that
we used as an example for the kind of theory that often moti-
vates discovery-oriented research, and ask what it would take
to transform this theory into one that guides a theory-testing
research program. Figure 6 presents a blueprint for the core
causal model of EPT. At its center is the assumed embodied
representation of a selected concept C. This concept is as-
sumed to be activated by an unknown subset of possible bodi-
ly states or movements. That subset is unknown because the
theory does not specify howC is embodied; there is arguably a
large set of possible embodiments of a concept, of which only
one is true for each person, so for each possible experimental-
ly induced bodily state or movement there is an unknown,
probably small, probability that it activates C. The concept
C, when activated, is expected to influence a subset of possi-
ble judgments, decisions, and actions that are semantically
related to C. Again, there is a vast set of such behaviors that
could be chosen as dependent variables, and the theory does
not specify which of them will be affected by activating C, so
the probability for each of them being activated is unknown,
and perhaps small. Finally, the concept can be expressed lin-
guistically. Assuming that researchers identify C linguistical-
ly, and that they come from the same linguistic community as
the population they investigate, the linguistic expression is
highly likely to be understood by the study participants as
referring to C, so we can assume a high probability that the
linguistic expression “C” activates C.

With this admittedly highly simplified formalization of
EPT in place, we can consider two research programs for
testing it. The first implements discovery-oriented research,
but is heeding our recommendations for this kind of pursuit.
For a given concept of interest (e.g., “faith”), the researchers
would select one experimentally induced bodily state or mo-
tion (e.g., leaping over a gap in the floor) and one dependent
variable that could be influenced by priming the concept (e.g.,
the score on a religiosity questionnaire) in an unprincipled
manner (e.g., by discussing in a lab meeting how an

experiment on the embodiment of a “leap of faith” could be
done in an inexpensive way). They run a first experiment with
acceptable power (1 − β = 0.8). If that experiment yields
evidence for the predicted effect, they follow it up by a direct
replication, perhaps with even more power. If things go well,
and if the experiments conform to the empirical recommenda-
tions made earlier (e.g., multiverse analyses), this endeavor
can establish an empirical generalization such as “Asking peo-
ple to jump over a gap in the floor increases their scores on a
religiosity test (taken within a certain time window).”

The second research program implements theory-testing
research. The researchers would recognize that EPT does not
offer a strong inferential link to a prediction for any individual
combination of an experimentally induced bodily state or
movement with a dependent variable. However, if the formal-
ization of EPT includes a commitment to at least moderately
informative priors about the probabilities P1 and P2, the theory
does license a strong prediction for a representative sample of
the population of bodily states and movements that could em-
body the concept, combined with a representative sample of
potentially affected outcome variables: The prediction is that
about P1 × P2 such combinations will produce a true effect.
Testing this prediction presents several challenges, the least of
which is the large number of necessary experiments (a collab-
orative effort across many labs could overcome that hurdle).
Researchers have to first clarify the population of possible
bodily states and movements that could, with some plausibil-
ity, embody the concept in question, and assign it a distribu-
tion of prior probability. The same would have to be done for
the population of behaviors plausibly affected by priming the
concept, which could be used as dependent variables. Then a
representative sample from both populations needs to be
drawn to arrive at a set of experiments. By representative we
mean representative for the population of experimental situa-
tions and behaviors we want to generalize the theory to.
Assuming that that is the population of situations and behav-
iors occurring in people’s everyday lives, our proposal con-
verges with what is known as Brunswikian experimental de-
sign (Freund & Isaacowitz, 2013; Gigerenzer, Hoffrage, &
Kleinbölting, 1991). The experiments need to be analyzed
jointly—the relevant statistical inference question is not
whether any individual experiment shows a true effect, but
whether the sample of measured effects supports a model as-
suming a proportion of P1 × P2 true effects in the population
over a model with zero true effects. Such a model comparison
could turn out either way, and therefore, this empirical test has
a chance to provide strong support in favor, but also against
the theory—as we demonstrated above, this symmetry of pos-
sible conclusions is a hallmark of theory-testing research that
distinguishes it from discovery-oriented research.

The theory-testing research program sketched above obvi-
ously far exceeds the discovery-oriented research program in
the amount of conceptual effort and data-collection resources

Psychon Bull Rev



it requires. But then, we get much more in return: If supported
by the evidence, EPT would be supported not merely by one
randomly chosen—albeit firmly established—empirical gen-
eralization, but by findings in a representative sample of pos-
sible experimental tests of the theory, which allows generaliz-
ing the theory to the population of situations and behaviors it
is meant to apply to. The positive findings in that sample could
be considered conceptual replications of each other with re-
spect to EPT. Because the result of our hypothetical mega-
study consists of the joint outcome of all experiments in the
sample, there is no leeway for selectively publishing the sub-
set of studies that “worked.” None of the positive findings in
the sample of experiments would be confirmed through direct
replication, so we will not know whether any individual effect
is true. Does it matter? That depends on what we ultimately
want to know: Whether leaping over a gap in the floor raises
scores on a religiosity test—or whether EPT captures some-
thing true about how the mind works? In other words: Is the
goal of our science to establish empirical generalizations, or to
work towards better theories?
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