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MODELS ARE STUPID, AND  
WE NEED MORE OF THEM

Paul E. Smaldino

All social science research must do some violence to reality in order to reveal 
simple truths.

(Lazer & Friedman, 2007)

Despite numerous efforts extolling the virtues of formal modeling (Epstein, 
2008; Schank, 2001; Smith & Conrey, 2007; Marewski & Olsson, 2009; Farrell &  
Lewandowsky, 2010; Weinhardt & Vancouver, 2012; Smaldino, Calanchini, & 
Pickett, 2015), there remains widespread resistance among social and behavioral 
scientists to adopt formal modeling in their general research approach. In addi-
tion to the technical challenge posed by the mathematical and programming skills 
required to understand and develop models, a common point of resistance appears 
to stem from the perception of models as crude, overly simplistic, and unrealistic. 
The conclusion is that models are largely useless as anything but a formal exercise, 
and unnecessary for most scientists to engage with.

Rather than argue against this perception, I enthusiastically embrace the per-
spective of the resistance, at least in part. Models are, by and large, stupid. My point 
of contention is with the conclusion that stupid models are not useful. Quite the 
contrary. Stupid models are extremely useful. They are useful because humans are 
boundedly rational and because language is imprecise. It is often only by formal-
izing a complex system that we can make progress in understanding it. Formal 
models should be a necessary component of the behavioral scientist’s toolkit. 
Models are stupid, and we need more of them.

We Are Stupid

Down to the very name of our species, Homo sapiens, we humans love to empha-
size our intelligence relative to other species. We can certainly solve many 
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312 Paul E. Smaldino

complicated problems. And yet we are often very stupid animals who make 
foolish choices. This isn’t a raw failing on our part. We are limited beings, 
with finite resources with which to compute a coarse model of our world and 
with which to invent options and evaluate their consequences. Moreover, our 
world, and the ecological and social environments in which we find ourselves, 
are changing rapidly, far too rapidly for our brains to possibly adapt via genetic 
evolution. We do the best we can.

Humans appear to have particular difficulty understanding complex sys-
tems. Mitch Resnick, in his book Turtles, Termites, and Traffic Jams, details his 
experiences teaching gifted high school students about the dynamics of com-
plex systems using artificial life models (Resnick, 1994). He showed them how 
organized behavior could emerge when individuals responded only to local 
stimuli using simple rules, without the need for a central coordinating authority.  
Resnick reports that even after weeks spent demonstrating the principles of 
emergence, using computer simulations that the students programmed them-
selves, many students still refused to believe that what they were seeing could 
really work without central leadership.

We who study complex systems for a living may feel a certain smugness 
here. The average person may have difficulty understanding the forces that drive 
behavior, we think, but through our powerful intellects, our education, and our 
hefty experience pondering the deep mysteries, we can trust our intuition when 
it comes to understanding the psychological and social forces that make people 
do what they do. Unfortunately, my own experience working with complex 
systems and working among complexity scientists suggests that we are hardly 
immune to such stupidity. Indeed, even seemingly simple puzzles can pose a 
challenge.

Consider the case of Marilyn Vos Savant and the Monty Hall problem. Vos 
Savant, famous for her record high score on standard IQ tests, has written a 
weekly puzzle column in Parade Magazine since 1986. In 1990, she wrote about 
a puzzle commonly known as the Monty Hall problem. The problem goes as  
follows. You are on a game show and given the choice to open one of three 
doors. Behind one of the doors is a fabulous cash prize, and behind the others, 
goats (the assumption is that no one would prefer the goats to the cash). You 
choose a door, say Door #1. The host, who knows where the cash really is, 
opens one of the other two doors, say #3, and shows you a goat behind it. The 
host now offers you the option to switch to Door #2. The question is whether 
it is to your advantage to do so.

The answer is that, although you are never guaranteed to be correct, you 
should probably switch. The cash is twice as likely to be behind Door #2 instead 
of Door #1. This is not an easy result for most people to wrap their heads around, 
though it follows quite definitively from the assumptions of probability theory (if 
you are in doubt of the problem’s trickiness, I suggest that you pose it the next 
time you are at a dinner party). Strikingly, Vos Savant’s answer was challenged 
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Models Are Stupid, and We Need More of Them 313

not only by lay readers, but also by many with advanced mathematical training. 
Indeed, she received many letters from professional mathematicians insisting that 
she was mistaken, even after she published a follow-up column with a detailed 
proof. The letters were often written in a smug, knowing tone; Vos Savant details 
many of these in an article posted to her website (http://marilynvossavant.com/
game-show-problem/). One, written after the publication of the follow-up column 
and signed by a Georgetown University professor, reads:

You are utterly incorrect about the game show question, and I hope this 
controversy will call some public attention to the serious national crisis in 
mathematical education. If you can admit your error, you will have con-
tributed constructively towards the solution of a deplorable situation. How 
many irate mathematicians are needed to get you to change your mind?

It is my belief that the widespread inability to grasp the solution to the Monty 
Hall problem stems from a failure to properly model the scenario. You should 
switch doors because regardless of which door you picked initially, the host can 
always show you one with a goat. Being shown a goat therefore has no bearing on 
the probability that your initial choice was correct. Since that probability is 1/3, 
there is a 2/3 chance that you were wrong and the cash is behind the remaining 
door. Thus, two out of three times, switching is the right move. The common 
intuition that the choice is instead a 50/50 split between two options is erroneous.

Readers of this chapter are likely to be interested in social behaviors and their 
underlying psychological mechanisms. These systems tend to be quite a bit more 
complicated than a simple game show problem. This should concern us. Being an 
expert does not inoculate us from the failure of our limited imaginations, which 
evolved to solve problems quite different from those of interest to behavioral 
scientists. We could use some help.

Models to the Rescue?

I am, of course, going to argue that we should turn to models, and particularly 
formal models, for help. Specification of a formal model delineates the parts of a 
system and the relationships between those parts, allows us to examine the logical 
conclusions of our assumptions, and as a byproduct, examine the appropriateness 
of those assumptions in the first place. But first, I need to take a brief detour, 
because when it comes to explaining any behavior, the first question we need to 
ask is: What are we talking about?

Articulating a System and Its Parts

As behavioral and social scientists, we want to understand some system related 
to individual or social behavior. Maybe we are interested in how social identity 
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manifests when individuals feel threatened, or how individuals coordinate in joint 
activities, or how racially charged language is interpreted by individuals of differ-
ent racial and socioeconomic backgrounds. These examples obviously represent 
a miniscule selection from among the questions we might ask. The important 
thing to note is how each question is subject to myriad interpretations. What 
aspect of the behavior are we interested in, specifically? Are we interested in the 
neurophysiology of joint attention, down to the way neural spike trains inform 
action programs? Or are we more interested in a “higher” level of organization, 
perhaps one in which we can ignore physiology and instead simply consider the 
temporal relationships between individually designated behavioral units? These 
are not trivial questions. For any given behavior, there are many questions we can 
ask related to its development, mechanism, and adaptive function, none of which 
are obviously favored from a scientific perspective (Tinbergen, 1963).

Once we specify the level of organization and the kind of explanation we 
are looking for, we still need to do additional work to specify the exact question 
under investigation. Human beings are complex beings. It’s not just that we exist 
at many levels of organization. Of course, we are made of organs, which are made 
of tissues, which are made of cells, which communicate using molecules and 
ions; above the level of the individual, we are enmeshed in local social networks, 
communities both corporate and categorical, economies, and nations. A further 
problem arises when we consider that these levels interact—the causal arrows flow 
both ways (Campbell, 1974; Wimsatt, 1974). The problem is not insurmountable, 
but needs to be acknowledged. Any explanation of individual and social behavior 
must necessarily ignore important causal relationships both within and between 
levels of organization. We must become comfortable with ignoring those relation-
ships, and this comfort is achieved partly through acknowledging their existence.

Part of specifying our research question involves the articulation of the parts 
of the system of inquiry. Kauffman’s 1971 essay still provides the best discussion 
of this important but overlooked issue. Notice that I do not say that we should 
specify our question and then articulate the parts of the system. The two are 
parts of a single process. What is our question? To understand joint attention 
in coordinated behavior, perhaps. But what is our question right now? We must 
decompose the system into explicit parts. We must postulate properties of those 
parts and the relationships between them. In some sense, this is the essence of 
all scientific inquiry into behavior. All well-formed scientific research questions 
concern the properties of parts, the relationships between them, and the con-
sequences of those relationships. The articulation of parts and relationships will 
necessarily be overly simplified and ignore details of physical reality. But much 
like a map is only useful because it ignores irrelevant detail, so is a well-formed 
scientific question useful when it captures only those features of reality most rel-
evant to a useful answer.

To make myself perfectly clear: To ask a scientific question about individual 
or social behavior, we must specify the parts of a system and the relationships 
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between them. The question at hand may be about the nature of these parts or 
their relationships, and so we may designate a distribution of parts or relationships 
from which to sample, but it amounts to the same thing. The precise specifica-
tion of parts and relationships is what defines a scientific question and separates 
it from wishy-washy pseudotheory that is unfalsifiable and distracting (Popper, 
1963; Gigerenzer, 1998; Smaldino, 2016).

Building Models, Formal and Otherwise

Let us assume that we have articulated, in words, the parts of our system and the 
relationships between them. Perhaps we say, as do the adherents of optimal dis-
tinctiveness theory (Brewer, 1991; Leonardelli, Pickett, & Brewer, 2010), that 
individuals have social identities that correspond to different contexts and different 
levels of inclusivity, and that they express these identities in order to balance internal 
drives for assimilation and differentiation. The parts are obviously the individuals, 
each of whom has the property of possessing an array of identities and the ability to 
express one of these at any given time. The relationships between the parts manifest 
as perceptions of others’ identities, which dictate how individuals update their own 
expression. The theory suggests how this updating might occur: individuals should 
express more exclusive identities when their currently expressed identity is very 
inclusive, and vice versa.

I have just described what is often called a “verbal model.” As Epstein (2008, 
para. 1.2) phrases it, “Anyone who ventures a projection, or imagines how a social 
dynamic . . . would unfold is running some model.” Most behavioral and social  
scientists are quite comfortable with this sort of model. However, look closer. 
You’ll see that the parts of the system are not particularly well articulated, and  
neither are their relationships. What does it mean to possess an identity, let alone 
an array of them? How do individuals choose between their identities when it 
comes time to express them? Is the expression of a new identity costly, perhaps 
in terms of time or social capital? How do individuals take stock of the identities 
of their fellows? Are their perceptions accurate? Are all identities equally easy to 
perceive? There are additional related questions as well, concerning the nature of 
system. Where do identities come from, and how might an individual gain a new 
identity or lose an existing one? What is the adaptive function of expressing an 
identity in the first place, since, to be preserved, identities must serve some purpose 
other than internal contentment?

This is not to pick on optimal distinctiveness theorists. Social psychology, 
and the social and behavioral sciences more generally, are replete with similar 
cases. This is the limitation of verbal models. They are often a good way to 
begin an inquiry when the available evidence suggests only some broad type of 
relationship that might be further refined. The danger with most verbal models 
is that there are many ways to specify the parts and relationships of a system that 
are consistent with such a model. Scientific inquiry stalls when data is used to 
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316 Paul E. Smaldino

simply support rather than refine a verbal model. Because many different data 
sets are consistent with a vague verbal model, researchers using such techniques 
risk lapsing into positing theories that are, by and large, unfalsifiable (Popper, 
1963; Gigerenzer, 1998).

The articulation of the parts of a system and the relationships between them 
always involves incurring some violence upon reality. Science is an iterative 
process, and pragmatically, we must ignore some details about complexity and 
organization to make any headway. That said, it’s not a terrible goal to try and 
be a bit more precise. This is where formal modeling comes in. A formal model 
instantiates the verbal model as a collection of mathematical relationships and/
or algorithmic processes. Rather than saying an individual has something like an 
array of social identities, we can model an individual as a computation object 
that has precisely an array of social identities, which in turn might be modeled 
as simple numerical values for the sake of comparisons between individuals. My 
colleagues and I have made models of this type (Smaldino, Pickett, Sherman, & 
Schank, 2012; Smaldino & Epstein, 2015). More than anything, we have learned 
that we have a long way to go in understanding the nature and social significance 
of social identity.

To paraphrase Gunawardena (2014), a model is a logical engine for turn-
ing assumptions into conclusions. By making our assumptions explicit, we can 
clearly assess their implied conclusions. These conclusions will inevitably be 
flawed, because the assumptions are ultimately incorrect, or at least incomplete. 
By examining how they differ from reality, we can refine our models, and thereby 
refine our theories, and so gradually we might become less wrong (Wimsatt, 
1987; Schank, May, & Joshi, 2014; Smaldino et al., 2015). Making formal models 
of the systems we study is the only way to make this possible.

A Brief Note on Statistical Models

When I talk about formal models, I am primarily talking about models whose 
purpose is to elucidate the mechanisms underlying psychological and behavioral 
phenomena. Another category of formal model, more familiar to many readers,  
I’m sure, is the type of model often used in statistical analysis, such as a path 
model or a linear model. Statistical models are both important and limited, and 
therefore worth commenting upon, but as they are not my focus here, I will keep 
my discussion of them brief.

Statistical analyses are necessary and often well-motivated, but we should never 
forget that they too have models at their core. The generalized linear model, 
the work horse of the social sciences, models data as being randomly drawn 
from a distribution whose mean varies according to some parameter. The linear 
model is so obviously wrong yet so useful that the mathematical anthropologist 
Richard McElreath has dubbed it “the geocentric model of applied statistics,” 
in reference to the Ptolemaic model of the solar system that erroneously placed 
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the Earth rather than the Sun at the center, but nevertheless produced accurate 
predictions of planetary motion as they appeared in the night sky (McElreath, 
2015). Such models usually assume that one’s data are generated by randomly 
sampling from some distribution—perhaps a Gaussian distribution whose mean 
tracks some conditional variable. These models are terrifically important in estab-
lishing relationships between variables in empirical data sets, and thus for guiding 
the development of increasingly strong theories. However, many of these models 
say little about the processes that actually generated the data, or about the mecha-
nistic nature of relationships between variables. This is the domain of the kinds of 
formal models I am principally discussing in this chapter. Such models, if suffi-
ciently precise, may utilize data for validation and calibration (e.g., Schank, 2008; 
Moussaïd, Helbing, & Theraulaz, 2011; Hills, Jones, & Todd, 2012), but this is 
not strictly necessary for such models to be useful (Wimsatt, 1987; Bedau, 1999; 
Epstein, 2008; Gunawardena, 2014).

Models Are Stupid

A common objection to formal modeling in the behavioral and social sciences is 
that they are grossly unrealistic. This is, in general, quite correct. Formal models 
are often fantastically unrealistic. They ignore huge swaths of reality, including 
details of individual behavior and environmental complexity. However, framing 
this fact as a downside is a serious error, particularly if the alternative is to rely 
instead on verbal models. Verbal models can appear superior to formal models 
only by employing strategic ambiguity (sensu Eisenberg, 1984), giving the illu-
sion of understanding at the cost of actual understanding. That is, by being vague, 
verbal models simultaneously afford many interpretations from among which any 
reader can implicitly, perhaps even unconsciously, choose his or her favorite.  
I will illustrate this point with a simple parable.

The Parable of the Cubist Chicken

One evening long ago, when I was an undergraduate student, a friend and I found 
ourselves waiting in the basement of a theater for a third friend, an actor about 
to finish his play rehearsal. There was a large collection of LEGOs in the room, 
and being of a jaunty disposition and not entirely sober, we amused ourselves by 
playing with the blocks. One of us—precisely who has been lost to memory—
constructed an assembly of red, white, black, and yellow blocks and declared, 
“Look! It’s a Cubist chicken!” The other one of us laughed and heartily agreed 
that it most definitely looked like a Cubist chicken. We were extremely satisfied 
with ourselves, not only because it was very silly, but because if in fact we both 
understood the design to be a Cubist chicken, then it surely was one. We had 
identified something true about our little masterpiece, and had therefore, inad-
vertently perhaps, created art. This is how liberal arts students amuse themselves.
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318 Paul E. Smaldino

Our conversation moved on to other topics, but we continued to occasionally 
comment on the Cubist chicken. After some time had passed, our actor friend 
entered the room. “Check it out,” we said, “a Cubist chicken!” Our friend smiled 
bemusedly and asked us to explain exactly how the seemingly random constel-
lation of LEGOs represented a chicken. “Well,” I said, pointing to various parts 
of the assemblage, “Here is the head. And here is the body and the legs, and here is 
the tail.” “No!” cried my co-conspirator. “That’s all wrong. The whole thing is just 
the head. Here are the eyes, and the beak, and here is the crest,” for my friend had 
envisioned our chicken as a rooster. And thus the illusion of our shared reality was 
shattered. We thought we had been talking about the same thing. But when more 
precision was demanded, we discovered we had not.

Stupidity Is a Feature, Not a Bug

As many a late-night dorm room conversation can attest, humans are capable of 
very elaborate theories about the nature of reality. The problem is that, as sci-
entists, we need to clearly communicate those theories so that we can use them 
to make testable predictions. In the social and behavioral sciences, the search 
for clarity can present a problem for verbal models, and can lead to a depressing 
recursive avalanche of definitions. What is a preference? A preference is a ten-
dency for certain behaviors. What are those behaviors? It depends on the context. 
What is a context? This can go on for a while.

Formal models provide a means of escape from the recursive abyss. By restrict-
ing our discussion to the model system, we can clearly articulate all the parts 
of that system and the relationships between those parts, leaving nothing out. 
This generally leaves us with something that, on the surface, often appears to be 
pretty stupid. What I mean is that not only are all models wrong, as George Box 
famously noted; they are obviously wrong. However, the stupidity of a model is 
often its strength. By focusing on some key aspects of a real-world system (i.e., 
those aspects instantiated in the model), we can investigate how such a system 
would work if, in principle, we really could ignore everything we are ignoring. 
This only sounds absurd until one recognizes that, in our theorizing about the 
nature of reality—both as scientists and as quotidian humans hopelessly entangled 
in myriad webs of connection and conflict—we ignore things all the time. We can’t 
function without ignoring most of the facts of the world. Our selective atten-
tion ignores most of the sensory input that nevertheless innervates our neurons 
(as indicated by the well-known “cocktail party effect”). This ignorance is fun-
damentally adaptive; the bounds to our rationality are severe, and dedication of 
cognitive resources entails balancing benefits and costs. Causal explanations work 
in much the same way. By ignoring all but the most relevant information, we are 
able to impose some modicum of order upon the world. Problems arise when 
we try to communicate our systems for ordering the world, as each of us has 
decomposed the world into a somewhat different set of parts and relationships.  
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Formal models solve this problem by systematizing our stupidity, and ensuring 
that we are all talking about the same thing.

In the following section, I will provide several concrete examples of how 
seemingly stupid models help scientists do their science. Before doing that, 
however, it is worth taking a moment to discuss some general ways in which 
models that are obviously wrong can nevertheless inform our thought. For 
example, studying computational models of complex systems can help us to 
build mental models of some emergent phenomena whose dynamics are oth-
erwise difficult to visualize (Nowak, Rychwalska, & Borkowski, 2013), and 
the process of model construction can illuminate core uncertainties in one’s 
knowledge of a system (Epstein, 2008). The clearest delineation I have found is 
William Wimsatt’s (1987) list of 12 “functions served by false models,” with the 
understanding that all models are false. I therefore reproduce this list, with only 
light editing, in Table 14.1.

TABLE 14.1  Twelve functions served by false models. Adapted with permission from 
Wimsatt (1987).

 (1) An oversimplified model may act as a starting point in a series of models of 
increasing complexity and realism.

 (2) A known incorrect but otherwise suggestive model may undercut the too ready 
acceptance of a preferred hypothesis by suggesting new alternative lines for the 
explanation of the phenomena.

 (3) An incorrect model may suggest new predictive tests or new refinements of an 
established model, or highlight specific features of it as particularly important.

 (4) An incomplete model may be used as a template, which captures larger or otherwise 
more obvious effects that can then be “factored out” to detect phenomena that 
would otherwise be masked or be too small to be seen.

 (5) A model that is incomplete may be used as a template for estimating the magnitude 
of parameters that are not included in the model.

 (6) An oversimplified model may provide a simpler arena for answering questions about 
properties of more complex models, which also appear in this simpler case, and 
answers derived here can sometimes be extended to cover the more complex models.

 (7) An incorrect simpler model can be used as a reference standard to evaluate causal 
claims about the effects of variables left out of it but included in more complete 
models, or in different competing models to determine how these models fare if 
these variables are left out.

 (8) Two false models may be used to define the extremes of a continuum of cases in 
which the real case is presumed to lie, but for which the more realistic intermediate 
models are too complex to analyze or the information available is too incomplete to 
guide their construction or to determine a choice between them. In defining these 
extremes, the “limiting” models specify a property of which the real case is supposed 
to have an intermediate value.

(continued)
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Some (Not So) Stupid Models

Compiling a list of all the interesting and useful models in the sciences is a fool’s 
errand. Let it suffice to say that such a list would be vast. Instead, I want to merely 
illustrate via a few pointed examples how simple, stupid models can be not only 
useful, but fundamental to good science. I will start with four well-known exam-
ples of models that changed our understanding of basic concepts in the physical, 
biological, and social sciences. I will then give two examples of how I have used 
formal models in my own work, focusing on topics that should be of interest to 
social psychologists: (1) social identity and distinctiveness and (2) hypothesis testing 
and replication.

Newton’s Model of Universal Gravitation

In 17th-century Europe, the field of astronomy faced a great challenge. Following 
the pioneering work of Copernicus and building on the meticulously collected 
data of Tycho Brahe, Johannes Kepler had definitively showed that not only do  
the Earth and the other planets revolve around the Sun, their orbital paths describe 
ellipses rather than perfect circles. It was a great mystery why this should be. Enter 
Isaac Newton. Newton was not the first person to propose that the heavenly 
bodies might be attracted to one another with a force that varied with the inverse 
square of the distance between them, but he was the first to build a model based 
on that proposition (Gleick, 2004). His model was startlingly simple, consisting of 

 (9) A false model may suggest the form of a phenomenological relationship between the 
variables (a specific mathematical functional relationship that gives a “best fit” to the data, 
but is not derived from an underlying mechanical model). This “phenomenological law” 
gives a way of describing the data, and (through interpolation or extrapolation) making 
new predictions, but also, because its form is conditioned by an underlying model, may 
suggest a related mechanical model capable of explaining it.

(10) A family of models of the same phenomenon, each of which makes various false 
assumptions, has several distinctive uses: (a) One may look for results which are true 
in all of the models, and therefore presumably independent of different specific 
assumptions which vary across models. These invariant results are thus more likely 
trustworthy or “true.” (b) One may similarly determine assumptions that are irrelevant 
to a given conclusion. (c) Where a result is true in some models and false in others, 
one may determine which assumptions or conditions a given result depends upon.

(11) A model that is incorrect by being incomplete may serve as a limiting case to test 
the adequacy of new, more complex models.

(12) Where optimization or adaptive design arguments are involved, an evaluation of 
systems or behaviors which are not found in nature, but which are conceivable 
alternatives to existing systems, can provide explanations for the features of those 
systems that are found.

TABLE 14.1  (continued)
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only two objects—the Sun and the Earth (Figure 14.1). The model ignored the 
Moon as well as the five other known solar planets, not to mention all the celestial 
bodies that were unknown in Newton’s time. The size and topology of the Sun 
and Earth were also ignored; they were modeled as points identified only by their 
mass, position, and velocity. Nevertheless, the model’s strength lies in its simplic-
ity. By restricting the analysis to only two bodies, the resulting planetary orbit was 
mathematically tractable. Using a simple rule stating that the force of gravitation 
was proportional to the product of the objects’ masses and inversely propor-
tional to the square of the distance between them, Newton was able to show that 
the resulting orbits would always take the form of conic sections, including the 
elliptical orbits observed by Kepler. And because he could show that the same 
law explained the motion of falling objects on Earth, Newton provided the first 
scientific unification of the Terrestrial with the Celestial. Newton’s theory of 
Universal Gravitation rested on a model that, to naïve eyes, can easily appear 
quite stupid. Ultimately, the theory has been shown to be incorrect, and has been 
epistemically replaced by the theory of General Relativity. Nevertheless, the the-
ory is able to make exceptionally good approximations of gravitational forces—so 
good that NASA’s Moon missions have relied upon them.

FIGURE 14.1  A graphical representation of Newton’s model of planetary gravitation. 
The Earth has a forward velocity v, which is continuously altered by the 
gravitational attraction of the Sun, F

g
, resulting in an elliptical orbit. In 

reality, the model is even simpler than implied here, because the Sun 
and Earth were represented as point masses rather than spheres.

Computational Social Psychology, edited by Robin R. Vallacher, et al., Taylor and Francis, 2017. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ucm/detail.action?docID=4865741.
Created from ucm on 2018-01-18 15:52:03.

C
op

yr
ig

ht
 ©

 2
01

7.
 T

ay
lo

r 
an

d 
F

ra
nc

is
. A

ll 
rig

ht
s 

re
se

rv
ed

.



322 Paul E. Smaldino

The Lotka-Volterra Model of Predator–Prey Relations

For many years, fur trapping organizations like the Hudson’s Bay Company in 
Canada kept meticulous records on the pelt-producing animals in the regions 
where they trapped. These records illustrated that linked predator and prey species, 
like the Canada lynx and the snowshoe hare, tended to have cyclical population 
levels whose dynamics were tightly correlated. How to explain this? In the early 
20th century, Alfred Lotka and Vito Volterra, working independently, applied ideas 
from the chemistry of autocatalytic reactions to generate a simple model of two 
interrelated populations, which can be instantiated as a pair of coupled differential 
equations. This model specifies two animal species: a prey species with a positive 
rate of growth in the absence of predators, and a predator species with a negative 
growth rate in the absence of prey. The number of predators negatively influences 
the number of prey, and the number of prey animals positively influences the 
number of predators. The model can produce correlated oscillations in the two 
populations that bear a striking resemblance to data on many predator–prey systems.  
The model also identifies conditions under which the two growth rates can give 
rise instead to more stable equilibria as well as yielding complete population 
collapse—predictions that have since been borne out empirically. However, the 
model is extremely simplistic. It assumes perfect mixing, so that the probability of 
a prey animal encountering a predator is simply the relative frequency of preda-
tors in the population. It ignores seasonality, circadian cycles, migration, density 
dependence in the growth rate of the prey species, development, and interactions 
with other species. Thus, when these features matter, the model may fail to align 
with empirical fact (Luckinbill, 1973; Berryman, 1992). Nevertheless, the core 
assumptions of the model often hold. This provides opportunities for extensions 
and refinements of the model when additional features cannot be ignored. By pro-
viding a foundational structure, the Lotka-Volterra model remains one of the core 
tools for understanding the relationship between predator and prey populations.

Hopfield’s Model of Content-Addressable Memory

Memory—the ability to store information for later recall—is a wondrous prop-
erty of neural networks that makes possible all but the most rudimentary forms 
of cognition. By the early 1980s, long-term potentiation—the process by which 
Donald Hebb’s theory that “neurons that fire together wire together” occurs—was 
relatively well described. It was believed that the formation of such associations 
was intrinsic to more complex forms of memory, such as that by which a person’s 
face is encoded and then later recognized, but the mechanism was unclear. How 
could a brain possibly use partial information, like an occluded face, to reconstruct 
information encoded in memory? To begin to answer this question, the biophysi-
cist John Hopfield (1982) constructed a simple model of two-state neurons in a 
fully connected network. Edge weights were determined by a process of Hebbian 
learning assumed to have already occurred, so that a number of configurations 
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(or states) of “on” and “off” neurons were encoded in the network, with edges 
assumed to be bidirectionally symmetrical (i.e., undirected). Using mathematics 
derived from statistical physics, Hopfield showed firstly that in such a system, 
encoded states would be stable, and secondly that if initialized in a non-encoded 
state, the network would self-organize into the encoded state that most closely 
matched the initialized state. In other words, he had a model for how memory 
retrieval could emerge spontaneously in a simple neural network. This model is 
almost absurdly simplistic, even stupid in its assumptions. Neurons are either on 
or off, ignoring subtleties of firing rates or even graded activation. Directionality 
is also ignored; links between neurons are equally strong in each direction. Exactly 
how the network is presumed to first arrive in its initial state is left a mystery. 
Yet analysis of the model showed that something like biological neural networks 
could produce content-addressable memory. Hopfield himself later showed that 
the model’s functioning was robust to the relaxation of some of his strict assump-
tions (Hopfield, 1984), and the work has laid the foundation for much subsequent 
work in understanding the neurobiology of memory.

Bass’s Model of the Diffusion of Innovations

How do new products diffuse in a population? In the early 1960s, Everett 
Rogers (1962) provided a near-exhaustive study of this question. He showed 
that cumulative adoption very often corresponds to an S-shaped curve in which 
adoption starts slowly, accelerates, and then plateaus. Although Rogers showed 
that this pattern of product diffusion is common to a startlingly wide variety of 
domains, he could not explain it. Instead, he merely identified five tautological 
categories of adopters, defined in terms of their timing of adoption. This expla-
nation is rather unsatisfying and raises many additional questions, including why 
individuals would fall into a particular category of adopter and how robust the 
adoption curves are to different proportions of each of those categories. Shortly 
after Rogers’ book was published, Bass (1969) introduced a simple model that 
provided a strikingly parsimonious explanation of Rogers’ data. Suppose, said 
Bass, that instead of five discrete types, there is only a single type of individual, 
who with some small probability spontaneously adopts the new innovation (i.e., 
becomes an innovator) and otherwise adopts with a probability proportional to 
the number of other adopters he or she encounters. In other words, suppose that 
innovations spread like diseases. Bass constructed a mathematical model based 
on these assumptions, and showed not only that they resulted in S-shaped adop-
tion curves, but that by fitting the model to empirical data on the diffusion of 
different products, characteristics of a given population concerning the rate of 
observation and the propensity to adopt could be inferred. The Bass model is still 
the core model for studying the diffusion of products used in communication, 
technology, and marketing research today (Bass 2004). The Bass model is, of 
course, extremely simplistic. It ignores real differences between individuals, such 
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as network position (Valente, 1996) or the propensity to adopt based on social 
group membership (Berger & Heath, 2008), which may influence the dynamics 
of diffusion. Nevertheless, the Bass model provides critical structure for developing 
theory and guiding data collection related to the diffusion of innovations.

The Dynamics of Distinctiveness

Some of my own work has concerned the population dynamics resulting from 
individual preferences for distinctiveness. Though much of human social behav-
ior stems from conformity—that perfectly reasonable heuristic to copy others 
“when in Rome”—it is also quite common to actively differentiate ourselves 
from others (at least in the large, complex societies in which most of us find 
ourselves; see Smaldino in press). I first became involved in this research in grad-
uate school, when I was approached by two social psychologists working within 
the domain of optimal distinctiveness theory (ODT; Brewer, 1991; Leonardelli 
et al., 2010). This theory has long had at its core the sort of vague verbal model 
I discussed in the subsection “Building Models, Formal and Otherwise.” The 
presumption is that individuals have traits called social identities, and that, all else 
being equal, they will “identify” with whichever identity optimally balances the 
opposing needs for assimilation (to be similar to others) and differentiation (to be 
different from others). It is never stated exactly what does or does not constitute a 
social identity, what it means to identify as one thing, how the needs for assimila-
tion and differentiation are calibrated, or how one optimizes a balance between 
them. Empirical tests have shown that US college students do prefer to express, 
at least on paper, a more exclusive part of their social identity when the initially 
proposed identity (e.g., being a student of their college) is described as being 
non-noteworthy (Brewer & Pickett, 2002). However, many questions remain, 
and the theory remains largely lacking in precision.

One assumption of the ODT is that deviations from optimality will be cor-
rected as individuals change their expressed identities to ones that more optimally 
balance their opposing needs, and that this will result in a stable equilibrium in 
which individuals are satisfied in their relative distinctiveness (Leonardelli et al., 
2010). To test this, my colleagues and I decided to model a simple scenario based 
on one possible interpretation of ODT (Smaldino et al., 2012). We assumed a 
population of individuals who could each express one of some number of discrete 
identities at any given time. We also assumed that each individual had a preference 
for some optimal level of distinctiveness, where an individual’s distinctiveness 
was defined as the proportion of neighbors also expressing the same identity. One 
at a time, agents would consider the distinctiveness of their currently expressed 
identity, and if a better option was available, switch to that identity (agents were 
updated one at a time because synchronous updating is unrealistic, eliminates 
the possibility of behavioral cascades, and can generate peculiar model artifacts; 
see Huberman & Glance, 1993). The result was that individuals always ended 
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up expressing identities that were far too popular to satisfy their preferences for 
differentiation. I later learned that this result echoed earlier work by ecologists 
considering animals joining groups of varying size, who had reached similar  
conclusions (Sibly, 1983).

Our model makes extremely simplistic assumptions about individuals’ abilities 
to observe, express, and change identities. Nevertheless, the model accomplishes 
something that no previous work on ODT had: it defined all of the parts of 
the system and their relationships explicitly. Based on a set of assumptions that is 
entirely consistent with the verbal model, we produced a model that provided 
several initial conclusions and prompted two broad questions. First, is it true 
that individuals are perpetually more similar to others than they would prefer? 
This could, in fact, be the case. Several other models have recently shown that 
even explicit preferences for anti-conformity or distinctiveness can nevertheless 
result in local conformity (Muldoon, Smith, & Weisberg, 2012; Touboul, 2014; 
Smaldino & Epstein, 2015). Second, if it is instead the case that individuals are 
generally satisfied with the distinctiveness of their expressed identity, then what 
key factors related to the dynamics of identity expression were missing from our 
model? Several possibilities present themselves, including factors such as network 
structure, interdependence between identities, behavioral inertia, and transaction 
costs to switching identities. We examined the first of these, network structure, 
by situating individuals on a square lattice and having them only respond to 
nearby neighbors. We found that for a wide range of conditions, this kind of 
network structure solved the problem: individuals could maintain identities that 
maximized their preferences for distinctiveness. Our implementation of network 
structure was itself quite unrealistic—real social networks rarely approximate 
square lattices. Nevertheless, the model represents a step, if only a small one, 
toward a more precise theory linking individual preferences for distinctiveness 
with the social organization that results from those preferences.

Turning the Modeling Lens on the Scientific Process

As a final example, I want to explore how formal models can help us better 
understand the larger endeavor in which we are engaged: science. Recently, con-
troversy has raged over the roles of replication and publication policy in improving 
the reliability of research (Open Science Collaboration, 2015). Some propose that 
all results should be published, to ensure that a “file drawer effect” doesn’t lead to 
over-representation of positive results (Franco, Malhotra, & Simonovits, 2014), 
while others are skeptical of the value of failed replications because replication 
studies may have diminished power (Kahneman, 2011; Bissell, 2013; Schnall, 
2014). All acknowledge the importance of replication, but opinions vary widely 
on how much is needed and what its evidential value might be. Until now, each 
view has been based on intuition and lacked concrete rationale. And empirical 
analysis is inherently limited, both by the incompleteness of the published record 
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and by the lack of internally consistent models of the scientific process that would 
allow us to usefully interpret extant data.

To remedy this dearth, Richard McElreath and I developed an analytical 
model of the population dynamics of science (McElreath & Smaldino, 2015). 
The model represents a population of scientists who, with regularity, select a 
hypothesis for investigation, investigate it using the standard methods of their 
field, and then attempt to communicate their results to the scientific community. 
We built on previous work by Ioannidis (2005), who introduced a simple model 
of scientific investigation that highlights the importance of the base rate—that is, 
the a priori probability that a novel hypothesis is true. When the base rate is low, 
even the most stringent experimental methods may produce more false positives 
than true positives. Our model extends this discussion to consider the fact that 
scientists may replicate their own and each other’s work, but also that results must 
also run the gauntlet of peer review, with negative results being less likely to be 
published than positive ones. We conclude that regardless of how much replica-
tion is done, the biggest impediments to the effectiveness of science are low base 
rate and high false positive rate. I know of no better way to improve the base 
rate than to make sure that hypotheses stem from well-validated, precise theories. 
Such theories, in turn, are often developed at least partly through the extensive 
use of formal modeling. The model also speaks directly to the debate over the 
meaning of failed replications. We show that replications are informative even 
when they have substantially lower power than the initial investigations. Perhaps 
counterintuitively, we also find that suppression of negative findings may be ben-
eficial, at least when such findings are tests of novel hypotheses and the base rate 
is low. Under those conditions, most novel results will be correct rejections of 
incorrect hypotheses. As these will not be surprising, we may want to avoid fill-
ing our journals with such results, or at least delegate them to a distinct location.

Our model of science is extremely simple. It frames hypothesis testing in a 
standard but unsatisfying true/false classification, rather than considering practical 
significance and effect size estimation. It ignores researcher bias, multiple test-
ing, and data snooping. It ignores the incentives that drive scientists in choosing 
and publishing results, as well as differences in exclusivity and impact between 
journals. Nevertheless, our model provides, for the first time, specific quantitative 
evaluations of many verbal arguments. As I have noted throughout this chapter, 
all models, whether formal or verbal, ignore some factors. The difference is that, 
with a formal model, it is precisely clear which factors are being considered and 
which are being excluded.

Modelers Are Stupid (Sometimes)

Models can help us to specify theories of how a complex system works, and 
to assess the conclusions of our assumptions when they are made precisely. 
However, I want to be careful not to elevate modelers above those scientists 
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who employ other methods. This is important for at least two reasons, the first 
and foremost of which is that science absolutely requires empirical data. Those 
data are often painstaking to collect, requiring clever, meticulous, and occasion-
ally tedious labor. There is a certain kind of laziness inherent in the professional 
modeler, who builds entire worlds from his or her desk using only pen, paper, 
and computer. Relatedly, many scientists are truly fantastic communicators, and 
present extremely clear theories that advance scientific understanding without a 
formal model in sight. Charles Darwin, to give an extreme example, laid almost 
all the foundations of modern evolutionary biology without writing down a 
single equation. That said, evolutionary biology would surely have stagnated 
without the help of formal modeling. Consider that Darwinism was presumed to 
be in opposition with Mendelian genetics until modelers such as R. A. Fisher and 
Sewall Wright showed that the two theories were actually compatible.

The second reason is that having a model is not the same thing as having a 
good model, or a model that is well presented, well analyzed, or well situated in 
its field. I want to focus on presentation and analysis. A model’s strength stems 
from its precision. I have come across too many modeling papers in which the 
model—that is, the parts, all their components, the relationships between them, 
and mechanisms for change—is not clearly expressed. This is most common with 
computational models (such as agent-based models), which can be quite compli-
cated, but also exists in cases of purely mathematical models. I am not a big fan 
of standardized protocols for model descriptions, as the population of all models 
is too varied and idiosyncratic to fit into a one-size-fits-all box. I will simply ask 
modelers to make an effort in their reporting. Make sure your model description 
is clear. The broad strokes, which may stem from verbal theory, should come 
first, followed by a filling in of details. When possible, make code available as 
soon as your paper is published, if not before. Clarity reveals how well the model 
really represents the system it purports to represent. Obfuscation is the refuge of 
the poor or insecure modeler.

This is not the place to go into great detail about the best practices for model 
analysis. I will only say that a major benefit of a model is the ability to ask all 
manner of “what if” questions. The assumptions of a model, including but not 
limited to its parameter values, should be explored extensively. After all, obtain-
ing the conclusions that follow from those assumptions is the entire purpose of 
modeling. If you forgive the indulgence, I’ll pick one small nit here concerning 
methods for analyzing computational models. Where differences between condi-
tions are indicated, avoid the mistake of running statistical analyses as if you were 
sampling from a larger population. You already have a generating model for your 
data—it’s your model. Statistical analyses on model data often involve modeling 
your model with a stupider model. Don’t do this. Instead, run enough simulations 
to obtain limiting distributions.

Finally, it is important to always evaluate whether the conclusions of our 
model rely on reasonable assumptions. For example, it has been claimed that 
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some economists have fallen prey to a sort of theory-induced blindness, giving 
too much credence to their models—which are generally based on the theory 
of the rational actor—and ignoring the fact that the core assumptions of the 
model are based on severe distortions of human psychology (Thaler, 2015). 
Microeconomic models based on rational choice theory are useful for developing 
intuition, and may even approximate reality in a few special cases, but the history 
of behavioral economics shows that standard economic theory has also provided 
a smorgasbord of null hypotheses to be struck down by empirical observation.

Conclusion

Humans, scientists included, are limited beings who are bad at forming intuitions 
about the organization and behavior of complex systems. Verbal models, while 
critical first steps in scientific reasoning, are necessarily imprecise. Overreliance 
on verbal models can impede precision and, by extension, impede progress in our 
understanding of complex systems. Formal models are explicit in the assumptions 
they make about how the parts of a system work and interact, and moreover are 
explicit in the aspects of reality they omit. This has the potential disadvantage 
of making formal models appear stupid. And of course, they are stupid, because 
we are limited beings and stupid models are the best we can do. As Braitenberg 
writes, fiction will always be part of science “as long as our brains are only minis-
cule fragments of the universe, much too small to hold all the facts of the world 
but not too idle to speculate about them” (Braitenberg, 1984, p. 1).

An old adage holds that it is better to stay silent and be thought a fool than 
to speak and remove all doubt. As scientists, our goal is not to save face, but in 
fact to remove as much doubt as possible. Formal models make their assumptions 
explicit, and in doing so, we risk exposing our foolishness to the world. This 
appears to be the price of seeking knowledge. Models are stupid, but perhaps 
they can help us to become smarter. We need more of them.
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