
http://psr.sagepub.com

Personality and Social Psychology Review 

DOI: 10.1177/1088868306294789 
 2007; 11; 87 Pers Soc Psychol Rev

Eliot R. Smith and Frederica R. Conrey 
 Agent-Based Modeling: A New Approach for Theory Building in Social Psychology

http://psr.sagepub.com/cgi/content/abstract/11/1/87
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Society for Personality and Social Psychology, Inc.

 can be found at:Personality and Social Psychology Review Additional services and information for 

 http://psr.sagepub.com/cgi/alerts Email Alerts:

 http://psr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.com/journalsPermissions.navPermissions: 

 http://psr.sagepub.com/cgi/content/refs/11/1/87 Citations

 at Universitaetsbibliothek on June 17, 2009 http://psr.sagepub.comDownloaded from 

http://www.spsp.org/
http://psr.sagepub.com/cgi/alerts
http://psr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://psr.sagepub.com/cgi/content/refs/11/1/87
http://psr.sagepub.com


87

Agent-Based Modeling: A New Approach
for Theory Building in Social Psychology

Eliot R. Smith
Frederica R. Conrey
Indiana University, Bloomington

each party is confident that its own incremental escala-
tion will cause the other to back down and give up, but
the dynamics of the situation mean that conflict instead
spirals to an extreme. It can also occur in situations of
bystander intervention, where everyone assumes that
someone else will offer help, but the outcome is that
nobody does. And it can occur when people “free ride”
or use a freely available resource (such as public radio)
without paying for it, which can destroy the desirable
resource.

For social psychologists, the goal of characterizing
and theoretically understanding social and psychological
phenomena requires a detailed understanding of such
dynamic and interactive processes. Yet as we argue, the
most commonly used theory-building and modeling
techniques in our field are less than ideal for this type
of task. This article describes an alternative approach to
theory building, termed agent-based modeling (ABM;
also called multiagent modeling). We believe that the
ABM approach is better able than prevailing approaches
to capture the types of complex, dynamic, and interac-
tive processes that are so important in the social world.
The ABM approach is not new in social psychology or in
the social sciences more generally; well-known and
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Most social and psychological phenomena occur not as
the result of isolated decisions by individuals but rather
as the result of repeated interactions between multiple
individuals over time. Yet the theory-building and mod-
eling techniques most commonly used in social psychol-
ogy are less than ideal for understanding such dynamic
and interactive processes. This article describes an alter-
native approach to theory building, agent-based model-
ing (ABM), which involves simulation of large numbers
of autonomous agents that interact with each other and
with a simulated environment and the observation of
emergent patterns from their interactions. The authors
believe that the ABM approach is better able than pre-
vailing approaches in the field, variable-based modeling
(VBM) techniques such as causal modeling, to capture
types of complex, dynamic, interactive processes so
important in the social world. The article elaborates
several important contrasts between ABM and VBM
and offers specific recommendations for learning more
and applying the ABM approach.

Keywords: evolutionary psychology; metatheory; research
methods

Most social and psychological phenomena—from
attitude polarization in group discussion, to esca-

lation of intergroup conflicts, to stereotype formation,
to large-scale social trends in aggression or unhealthy
behavior—occur not as the result of explicit choices by
isolated individuals but rather as the result of repeated
interactions between multiple individuals over time. In
fact, in many cases, the overall collective outcome is
vastly different from what any party expects or desires
(Flache & Macy, 2004). This paradox can occur in an
escalating interpersonal or intergroup conflict, where
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important contributions by Axelrod and Hamilton
(1981) and by Nowak, Szamrej, and Latané (1990),
among others, exemplify the approach. But we believe
that it deserves to be more widely applied in our field.

This article has several goals. First, we introduce
the ABM approach in general terms and with concrete
examples. We then draw out several important contrasts
between ABM and the typical approach used in theoreti-
cal modeling within our field, variable-based modeling
(VBM). We describe examples of ABM in social psychol-
ogy as well as related fields to convey a sense of the range
of topics to which it can be applied and to suggest how
ABM can both build on the results of empirical studies
and inspire and guide new research. Finally, we discuss
some limitations of the ABM approach and obstacles to
its adoption, together with some specific recommenda-
tions for overcoming those obstacles and going further in
understanding and applying the ABM approach.

INTRODUCING ABM

Definitions

The term agent is used in a variety of ways in cogni-
tive science and computer engineering. As the term is
used in modeling, an agent tends to have a number of
characteristics, although a range of variability exists
on many of these dimensions (Macal & North, 2005;
Flache & Macy, 2004):

Discrete. An agent is a self-contained individual with iden-
tifiable boundaries.

Situated. An agent exists in and interacts with an environ-
ment that generally includes other agents and may include
other (nonagent) resources, dangers, and so forth.

Embodied. An agent may be embodied (robotic) or a purely
software-simulated entity; the latter is more common.

Active. An agent not only is affected by the environment
but also is assumed to have a behavioral repertoire that
it can use proactively.

Limited information. An agent is usually assumed not to be
omniscient but to be able to gather information only
from its own local environment—for example, agents
can see only their neighboring agents (not all agents) and
only their behaviors (not their internal states, goals, etc.).

Autonomous goals. An agent has its own internal goals
and is self-directed in choosing behaviors to pursue
those goals, rather than being simply a pawn under the
command of some centralized authority.

Bounded rationality. Agents ordinarily are assumed to gather
information and generate behaviors by the use of rela-
tively simple rules, rather than being capable of extensive
computations such as maximizing expected utility.

Adaptation. Some models assume that agents use fixed, pre-
specified rules to generate their behavior; others use
agents that can learn or adapt, changing their rules based
on experience.

A simple example is a simulated agent that moves
around in a simulated environment seeking food and
consuming the food when it finds it. In most models of
concern to social psychology, an agent is a simplified,
abstract version of a human being. However, other lev-
els of agents are also possible; an agent could represent
a neuron in a simulated neural network or a large-scale
economic actor such as a corporation. We briefly dis-
cuss these possibilities at the end of the article.

A multiagent system, then, is a system that contains
multiple agents interacting with each other and/or with
their environments over time. Thus, many simple food-
seeking agents may coexist, interacting with each other
either indirectly (by competitively consuming the food
resource) or directly (e.g., by fighting for control of
food sources or by cooperating to increase the avail-
ability of food). It is important that these forms of inter-
action mean that the outcomes of individual agents’
behaviors are interdependent: Each agent’s ability to
achieve its goals depends on not only what it does but
also what other agents do.

An ABM is a simulated multiagent system con-
structed with a particular goal: to capture key theoreti-
cal elements of some social or psychological process (for
a review of simulation approaches in social psychology
generally, see Hastie & Stasser, 2000). In such a system,
each agent typically represents an individual human act-
ing according to a set of theoretically postulated behav-
ioral rules. These may involve simple heuristics or more
complicated mechanisms that may involve learning,
constructing internal representations of the world, and
so forth. In an ABM, many simulated agents interact
with each other and with a simulated environment over
time. This approach allows for the observation of the
large-scale consequences of the theoretical assumptions
about agent behavior when the behaviors are carried
out in the context of many other agents and iterated
dynamically over an extended period of time.

In essence, ABM is a tool to conceptually bridge
between the micro level of assumptions regarding indi-
vidual agent behaviors, interagent interactions, and so
forth and the macro level of the overall patterns that
result in the agent population. As we illustrate repeat-
edly, the value of such a tool is based on the fact that in
many cases, and even for extremely simple behavioral
rules, the consequences of multiple-agent interactions
over time fail to match what might be expected based
on the properties of an individual agent (Epstein, 1999;
Macy & Willer, 2002; Resnick, 1994). Recall the exam-
ples of conflict escalation, failures of bystander inter-
vention, and free riding introduced at the beginning of
this article. This quality of defying intuitions is true of
complex dynamic systems in general (Holland, 1992;
Wolfram, 2002).
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Social Psychological ABM: Segregation

To concretize these definitions, we begin by present-
ing two particularly simple examples of ABM. The
economist Thomas Schelling (1971), in one of the earli-
est multiagent investigations in the social sciences,
explored how segregation can arise in diverse popula-
tions through the actions of individual agents even
when no agent specifically desires segregation. Schelling
distributed agents of two different types (red and green)
randomly in a lattice. His model assumed that each
agent used a single, simple rule: Do not be in the minor-
ity in your local neighborhood. Agents moved to empty
spaces if the proportion of same-color agents surround-
ing them (e.g., in the eight squares surrounding each
square in the lattice) fell below a threshold, such as
30% or 50%. This rule was repeatedly applied until all
agents stopped moving. The final result (under a wide
range of assumptions, such as the particular values of
agent thresholds) generally was a pattern of near-com-
plete segregation, with clear boundaries between groups
and virtually no mixed neighborhoods.

Schelling’s (1971) model demonstrates that even when
no agents specifically desire extreme segregation—
instead, each has a moderate and understandable desire
not to be in a minority in its own neighborhood—
extreme segregation still arises as an all-but-inevitable
outcome. As Epstein (2005) has observed, the importance
of this demonstration is not that the model is right in all
its details—it certainly does not claim to be, and humans
obviously have a far more complex set of race-related
attitudes, motives, behaviors, and so on. “It’s important
because—even though highly idealized—it offers a pow-
erful and counter-intuitive insight” (Epstein, 2005, pp.
12-13). The insight allows us to understand, first, that
segregation does not force the inference that the individ-
uals involved actually hate out-groups and want to com-
pletely avoid them. Second, it makes clear that a highly
organized spatial pattern of segregation need not be a
product of a central, directing body (such as “steering”
by housing authorities or real estate agents) but can arise
in self-organized fashion from agent-level goals. Third,
the model calls attention to a variable whose importance
might not otherwise be recognized: the spatial scope of an
agent’s definition of neighborhood. When agents care
about a small, local neighborhood, segregated patterns
robustly emerge. But if agents care about a more spatially
extended neighborhood, or about the composition of the
population as a whole, segregation is much less inevitable.
To see this, consider that if each agent wanted to avoid
being in a minority in the whole population (rather than
in a local neighborhood), all agents would always be sat-
isfied with a 50-50 mix and none would move. The ini-
tial randomly intermixed (completely integrated) pattern

would prevail, rather than segregation. As Epstein
observed, the power of the Schelling model to provoke
such insights stems from its great simplicity, rather than
from a detailed match to real-world data (which the
model obviously cannot claim).

Social Psychological ABM: Date Choice

A model by Kalick and Hamilton (1986) is another
early example of the ABM approach. Their simulation
was motivated by a simple and well-replicated empirical
fact: When the attractiveness of members of heterosex-
ual dating or married couples is measured, the partners’
attractiveness levels tend to correlate. Attractive people
tend to pair up with other attractive people, and less
attractive people also tend to pair with their counter-
parts, with r typically in the .5 to .6 range (e.g., Critelli
&Waid, 1980). To explain this observation, theorists in
the 1980s often assumed that people actively sought
partners with relatively similar levels of attractiveness to
their own. This was assumed to result either from a fear
of rejection if they made offers to far more attractive
others (Berscheid, Dion, Walster, & Walster, 1971) or
from a simple preference for partners with similar levels
of attractiveness—after all, similarity in many other
domains (e.g., social background, attitudes) is well
known to lead to liking. However, repeated studies find
no evidence for this hypothesized preference for others
with matching attractiveness levels but rather a strong
preference for the most attractive potential partners
(e.g., Curran & Lippold, 1975).

Kalick and Hamilton (1986) constructed a multia-
gent simulation in an attempt to resolve this paradox.
Their model aimed to shed light on how the individual-
level psychological processes of a number of agents
interact to generate the aggregate-level correlation.
They created a simulated population of 1,000 individ-
ual agents, 500 males and 500 females, each with a ran-
domly assigned attractiveness level ranging from 1 to
10. At each time step, a male and a female agent were
randomly selected, and each assessed the other’s attrac-
tiveness and decided whether to extend the other an
offer to date. If both made offers, they formed a couple
and were removed from the dating pool. The process
continued for many time steps, until all agents were
matched. The researchers ran two versions of this simu-
lation. In one, agents followed a similarity-matching
rule in selecting potential mates, being most likely to
make offers to another agent with attractiveness close to
their own. In the other version, agents followed an
attractiveness-seeking rule (making an offer with prob-
ability 1.0 to a partner with attractiveness 10, 0.9 to a
partner with attractiveness 9, and so forth).
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Two main results emerged from Kalick and
Hamilton’s (1986) model runs. If each agent was
assumed to seek a partner similar to its own attractive-
ness level, the resulting couples showed an unrealistically
high correlation in the .8 to .9 range. However, if each
agent was assumed to seek highly attractive partners, the
resulting couples matched the empirically observed level
of correlation (.5 to .6). How does this correlation come
about? In the model, the most attractive agents tend to
pair up early and, thus, to be removed from the popula-
tion. As time passes, the average attractiveness of the
remaining dating pool (and, thus, the attractiveness of
the couples that are formed) decreases. This over-time
trend constitutes a new and empirically testable predic-
tion from Kalick and Hamilton’s model.

In short, Kalick and Hamilton (1986) demonstrated
that a particular postulated rule for an agent’s behavior
(e.g., seeking the most attractive possible partner) can
have strikingly counterintuitive consequences when it is
(a) implemented in the context of multiple interdepen-
dent agents simultaneously following their own behav-
ioral rules and (b) iterated over time. As with the
Schelling (1971) segregation model, the power of this
demonstration does not require that the model be a fully
realistic reproduction of human mate preferences—in
fact, the elegance of the demonstration depends on the
model’s very abstractness and simplicity.

Summary

These two simple examples illustrate key properties of
the multiagent approach (Macy & Willer, 2002). First,
agents are autonomous. Schelling’s (1971) agents seek
to avoid being in a local minority, and Kalick and
Hamilton’s (1986) agents seek attractive partners; they
independently pursue those individual goals based on
their own local information. There is no central author-
ity, controller, or planner—for example, nobody explic-
itly assigns attractive individuals to pair up with other
attractive ones. This property means that population-
scale patterns or structures that emerge from a multi-
agent system are because of processes of self-organization
rather than centralized design and planning (Kauffman,
1995; Resnick, 1994).

Second, agents are interdependent. The actions of
each agent influence the others, whether directly (by
accepting or rejecting another’s offer to form a couple)
or indirectly (by altering the group composition of a
new neighborhood by moving there; by altering the
pool of available partners that remain for other agents).

Third, agents in these models follow extremely simple
rules. One frequent goal of ABM is to identify the sim-
plest and best supported assumptions about individual
agent behavior (such as the motive to seek the most

attractive partner) that will generate the overall pattern
or outcome of interest. One hallmark of ABM is that it
typically assumes that the overall system’s complexity
emerges from the interaction of many very simple com-
ponents, rather than from great complexity in the behav-
ior of individual agents (Kauffman, 1995). In other
models illustrated later in the article, we will see some-
what more complex assumptions about agent behaviors,
such as agents that learn and adapt over time. For
instance, one might modify the Kalick and Hamilton
(1986) model by assuming that an agent who has been
refused several times when making offers to attractive
partners might “lower its sights” and start making offers
to less attractive partners (cf. Todd, 1997).

Finally, in each case, the interest value of the model is
in the surprising nature of the results that are obtained.
Perhaps the key lesson from ABM in general is that indi-
vidual agent behavioral rules do not allow direct or
simple predictions of large-scale outcomes: “We get
macro-surprises despite complete micro-level knowl-
edge” (Epstein, 1999, p. 48). The term emergence is fre-
quently applied to this sort of surprising, unpredicted, or
counterintuitive outcome from multiagent simulations
(Kauffman, 1995; Resnick, 1994; Wilensky & Resnick,
1999). However, one caution regarding this term is
essential: If emergent means essentially surprising, we
must remember that what is surprising may change from
one observer to another or may change with time as the-
ories in a topic area become more sophisticated and
comprehensive (see Epstein, 1999).

History of ABM

To put the ABM approach in context, we briefly
describe its history and relationships to other concepts
and techniques. One intellectual ancestor is the “complex
adaptive systems” approach (Gell-Mann, 1994; Holland,
1992; Kauffman, 1995). This approach focused initially
on biological rather than psychological or social systems
and emphasized the role of adaptation and the “bottom-
up” rather than “top-down” construction of complex
systems. A paradigm example is the way termites build
large, elaborately structured nests out of hardened mud—
obviously, there is no “architect” termite giving orders
and overseeing the construction; thus, researchers and
theorists sought to describe simple behavioral rules
(simple enough to be implemented by insect brains) that
could account for such large and complex structures. The
complex adaptive systems approach, like the more recent
ABM approach, emphasizes the ways dynamic and non-
linear combinations of simple behaviors can result in the
construction of emergent, complex patterns.

A related development is “cellular automata,” which
can be viewed as a simple, restricted form of ABM
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(Wolfram, 2002). Cellular automata were developed in
computer science and popularized by John Conway’s
Game of Life (Gardner, 1970). A cellular automaton is
a gridlike arrangement of simple agents that are fixed in
place and can change their state from one discrete value
to another (e.g., alive or dead in the Game of Life) using
a simple rule based on the states of their neighbors.
Wolfram (2002) has demonstrated that even in the sim-
plest possible form of cellular automaton, where the
agents are fixed along a single line (rather than a two-
dimensional grid), specific rules can produce a remark-
able range of complex, patterned behavior. Some ABM
approaches in the social sciences are essentially instances
of cellular automata (e.g., Nowak et al., 1990; Stauffer,
2001).

A third important precursor of ABM is the field
of “distributed artificial intelligence” within cognitive
science (e.g., Gasser, Braganza, & Herman, 1987).
Workers in this field sought to build computational
agents (whether robotic or software implemented) that
could work together cooperatively to perform significant
tasks (Beer, 1990; Wooldridge, 2002). An example is the
“swarm intelligence” model (Eberhart, Shi, & Kennedy,
2001) in which many simple agents explore potential
solutions to a particular problem and communicate with
each other about the quality of the solutions they have
identified. The communication enables the entire set of
agents to converge rapidly on high-quality solutions.
Related research in cognitive science also examines how
communication can aid multiple agents in solving prob-
lems (Mason, Jones, & Goldstone, in press).

Paralleling all these developments, interest in ABM
began to grow in the 1980s in the social and behavioral
sciences. As noted above, Schelling (1971) provided a
very early example of agent-based thinking in the social
sciences, and other early models are those of Axelrod
and Hamilton (1981) on the emergence of cooperation,
Kalick and Hamilton (1986) on mate choice, and Nowak
et al. (1990) on social influence in groups. The econo-
mists Epstein and Axtell (1996) developed the influential
Sugarscape model, which is profoundly interdisciplinary,
involving agents that engage in mate selection, sex, and
reproduction; group formation, war, and conflict; and
trade and the accumulation of wealth. Some of these and
other examples of the ABM approach in areas close to
social psychology are described below.

CONTRASTING ABM WITH VBM

ABM, with its emphasis on dynamic interactions
among agents over time, contrasts with the dominant
approach to theory building in social psychology: VBM.
There are two major types of VBM. The first is the

dynamical systems approach, which uses differential
equations to describe changes in variable values over
time. This approach has been uncommon in social psy-
chology (see Vallacher, Read, & Nowak, 2002) but is
influential in other scientific fields. We will illustrate its
central ideas below. The second is the popular causal
modeling approach, represented by path diagrams show-
ing causal flows among variables, which can be esti-
mated by multiple regression or related techniques. In
all VBM approaches, the focus is on relations among
variables, not on interactions among agents.

Contrasting Conceptions of “Explanation”
in ABM Versus VBM

The ABM approach differs from VBM approaches in
several ways, but one is the most fundamental: The
models are associated with basically different ways of
thinking about causality and explanation.

Most psychologists, indeed most social scientists in
general, endorse a positivist “covering-law” or “statisti-
cal regularity” notion of causation and explanation,
broadly deriving from David Hume (Bechtel &
Richardson, 1993; Cederman, 2005; Doreian, 2001).
Causation is identified with a consistent covariation
between two variables (i.e., whenever the cause occurs,
the effect does as well). Thus, in their search for causal
explanations, scientists seek such regular covariations
between variables, usually through the application of
statistical analyses. In physics, for example, one might
discover that all massive bodies attract each other with
a force that is proportional to the product of their
masses and inversely proportional to the squared dis-
tance between them. Then one might explain the orbit
of the moon around the earth, or the trajectory of a can-
nonball, by demonstrating that they mathematically fol-
low as consequences of that universal law.

However, despite the lip service paid to the physicslike
covering-law model of explanation by most social and
behavioral scientists, laws of such precision and regular-
ity are found only rarely within our fields (among the few
examples might be laws relating to sensory transduction).
And there is a deeper issue. Following the covering-law
model of explanation, one might observe that attractive-
ness correlates at about .50 in a sample of couples and
explain that observation by noting that it is subsumed
under the general law that such correlations are generally
in that range (cf. Kalick & Hamilton, 1986). But this
would seem to be a profoundly unsatisfying type of
explanation that gives no real insight into the phenome-
non, despite its formal resemblance to the covering-law
explanations used in physics and other fields. Bechtel
(1998) observed that in fact, most research in the behav-
ioral and cognitive sciences does not actually seek to
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subsume specific phenomena under universal laws but
instead aims to uncover the specific processes that account
for the observed behavior of a system.

This second goal reflects a completely different con-
ception of explanation, which is being advanced by
philosophers of science as an alternative to the covering-
law conception (e.g., Bechtel & Richardson, 1993).
“Generative” or “mechanistic” explanations seek to
explain an observed phenomenon by postulating a
process or set of mechanisms that generate the phenom-
enon. In other words, the phenomenon is explained as
emerging from the ongoing interaction of assumed (and
in psychology, often unobserved) underlying processes.
This focus on mechanisms and processes is congenial to
most social psychologists. As shown below, the genera-
tive explanations offered by ABM provide a deeper
understanding of the phenomenon than do statistical
explanations that simply observe that in general, across
a large number of empirical investigations, a particular
regularity (e.g., a correlation) is found.

To further clarify the distinction between the statistical
regularity and generative approaches to explanation, con-
sider the example of group polarization. This is the ten-
dency of people’s attitudes in a group discussion to move
further in the direction of the initial majority position over
time. A variable-based, statistical approach to group
polarization would seek to discover a general law describ-
ing the pattern of change in an initial majority over time.
Such a law might be expressed as an equation that could
yield the prediction, for example, that an initial majority
of 8 in a group of 12 would end up as an increased major-
ity of 10 out of 12 after N minutes of discussion. But such
a statistical regularity (even if one could be identified)
would not provide much insight into the underlying rea-
sons the initial majority increases—other than to summa-
rize the fact that in a large number of studies it has been
found to do so. In contrast, an agent-based generative
approach to explaining this phenomenon might involve
assumptions about how one individual’s expressions of
opinion affect others through conformity processes and
how members of a majority exert more influence on oth-
ers than do members of a minority (cf. Nowak et al.,
1990). This could occur simply because of their larger
numbers or because for various reasons, majority opin-
ions exert more persuasive impact (e.g., people may
assume that replication of an opinion indicates its valid-
ity). Overall, a generative explanation would demonstrate
that group polarization emerges as a higher level conse-
quence of processes assumed to occur within individual
agents and in agent-to-agent interactions.

As all these examples illustrate, the generative
approach explains phenomena by postulating processes
of interaction among agents or other entities, whereas the
statistical or regularity approach does so by identifying

patterns of covariation among variables (Epstein, 1999;
Wilensky & Reisman, 2006; Wilensky & Resnick, 1999).
Doreian (2001) wrote that “one [approach] tries to cap-
ture the generative mechanism of social phenomena while
the other seeks a numerical summary in the form of a set
of linked equations and their estimated parameters” (pp.
95-96). Generative explanations, of course, acknowledge
the existence of covariational regularities, but “even in
those cases where they can be said to exist, process theo-
rists would regard them as insufficient and superficial
substitutes for the deeper understanding yielded by a gen-
erative explanation” (Cederman, 2005, p. 868). Cederman
(2005) traced the generative approach to explanation back
a century to the sociologist and philosopher Georg Simmel
and noted that it is widespread in the natural sciences
(McMullin, 1984).

We believe that the generative approach to explana-
tion, which is highly congenial with ABM, comports
well with current empirical and theoretical practices in
social psychology. Based on their behavior, it is fair to
say that researchers generally find it more satisfying to
understand how underlying entities interact to produce
some phenomenon of interest than to account for the
phenomenon by showing that it is an example of some
more general statistical regularity expressed as a typical
relationship between variables. The generative mode of
explanation enabled by ABM is also consistent with our
typical styles of theoretical thinking in social psychol-
ogy. We are used to thinking conceptually about the
underlying cognitive and affective processes that give
rise to a particular judgment or behavior or the inter-
personal processes that give rise to phenomena such as
group polarization or correlations between romantic
partners in their attractiveness. For this reason, it seems
unnatural that social psychologists generally express
our theories in terms of relations among variables rather
than processes of interaction among entities.

Contrasting Roles for ABM and VBM

Besides the fundamental difference in the conceptions of
explanation that they support, there are a number of other
contrasts between ABM and VBM approaches. In most
cases, the contrasts are actually complementarities, which
means that each approach is particularly suitable for a
specific set of goals and objectives. To describe these con-
trasts, we use a simple example of a predator–prey system,
which (although it is not a social psychological example)
has the advantage that it is conceptually well understood
and can be easily modeled using both ABM and VBM
(dynamical systems) approaches (Epstein, 1999; Wilensky
& Reisman, 2006; Wilensky & Resnick, 1999).

An ABM approach would involve numerous individ-
ual agents of two types, predators and prey (let us call
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them wolves and sheep, for concreteness). There are
behavioral rules for the agents: Sheep move around, eat
grass to gain energy, reproduce if they gain enough
energy, and die if they do not have sufficient energy.
Wolves move around, eat sheep to gain energy, repro-
duce and die, and so forth. It is interesting that even this
simple model exhibits counterintuitive properties. For
example, under some parameter values, starting the
model with a larger sheep population leads to the
extinction of sheep at an earlier time compared to start-
ing with a smaller sheep population.

The VBM approach summarizes the predator/prey
dynamics in two quantitative variables: the sizes of the
wolf and sheep populations. A pair of coupled differen-
tial equations describes the rates of change in wolf and
sheep population sizes as a function of the current pop-
ulation sizes. In such a model, the effect of one popula-
tion (e.g., wolves) on another (e.g., sheep) is summarized
and represented as a numerical coefficient, without ref-
erence to the details of the underlying interactions that
contribute to that effect (wolves eat sheep). One stan-
dard version of such a differential equation model,
termed the Lotka–Volterra equations, is the following,
where s and w are the variables representing the popula-
tion sizes of sheep and wolves, respectively, and A, B, C,
and D are model parameters:

ds/dt = As – Bsw
dw/dt = Csw – Dw

The left side of each equation (e.g., ds/dt) is the rate
of change over time of the respective population size.
The first term of the first equation says that the sheep
population will naturally increase exponentially
(because of births) with parameter A if there is no pre-
dation. The second term says that the sheep population
will decrease as a function of the number of encounters
between wolves and sheep (which is proportional to the
product of the two population sizes) with predation
parameter B. (This version of the equation does not pro-
vide for natural death of sheep; their population size is
limited solely by predation.) The second equation says
that the wolf population increases in proportion to the
number of encounters between wolves and sheep with
a different parameter C because the more sheep the
wolves eat, the faster the wolves can reproduce. And the
second term describes exponential decline of the wolf
population through natural death.

With these two approaches to this simple example in
mind, here are several respects in which the approaches
may be contrasted:

1. Variable-based equations often offer concise, quantita-
tive descriptions of phenomena. If one’s goal is to predict

the population sizes at any time point, the differential
equations offer a much more compact and precise way
to make such predictions, compared to ABM.

2. ABM offers insights into generative processes. If the
variable-based equations excel in making numerical
predictions, ABM seems to be superior in offering an
accounting of the underlying processes that generate the
changes in population sizes (e.g., wolves eat sheep).

3. Equations may allow formal proofs of important prop-
erties. In some cases, capturing the behavior of a system
in variable-based equations allows for mathematical and
logical proofs of significant properties (Epstein, 1999)—
for example, it might be possible to prove that the sheep
population will inevitably go to extinction or that the
populations will oscillate within a given range forever.
An ABM approach cannot offer the logical certainty of
such proofs; at best, one can run the model numerous
times with random starting points and observe that in
x% of cases, a particular outcome occurs.

4. VBM often requires simplifying assumptions of rational-
ity. Economic modeling techniques generally require the
assumption that economic agents (individuals or firms)
are rational profit maximizers. These assumptions are
required to make the models analytically tractable (solv-
able by mathematical techniques; Doreian, 2001;
Sawyer, 2003). Many models in the social sciences
beyond economics have adopted comparable assump-
tions: that individuals are self-interested, rational utility
maximizers. But these assumptions are becoming less
defensible as knowledge advances, and ABM approaches
generally do not require such simplifying assumptions.
Instead, they can assume that agents are smart or stupid,
self-interested or altruistic, in accordance with whatever
theory is guiding model construction.

5. Causal models often require strict causal-ordering
assumptions. The types of causal models generally used
in social psychology require the assumption that causal-
ity is unidirectional—that if X causes Y, Y does not cause
X (even indirectly through other variables).1 Of course,
real-world systems rarely match this assumption (Clogg
& Haritou, 1997). In contrast, multiagent models as well
as dynamical system approaches can readily incorporate
multiple causal directions. For example, wolf and sheep
population sizes influence each other, although with dif-
ferent time scales. If the numbers of wolves increase, they
eat more sheep, reducing the sheep population in days or
weeks. If the numbers of sheep increase, more wolf repro-
duction results over a period of a year.

6. ABM allows incorporation of nonlinear, conditional, or
qualitative effects. ABMs can easily incorporate all sorts
of nonlinear effects, which are technically difficult to han-
dle within VBM approaches. An example is a threshold
effect, specifying that an agent will adopt a new attitude
only when at least half of its neighbors have done so,
rather than assuming that the probability of adoption is a
linear function of the number of adopting neighbors. The
ABM approach also makes it easy to incorporate condi-
tional effects, for example, to assume that an agent might
either assimilate to or contrast away from a social norm,
depending on certain factors such as its current motiva-
tional state. In a similar manner, agents can be assumed to
make random decisions among qualitatively different
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alternatives (e.g., pick 1 of 10 available products). In con-
trast, although nonlinear specifications of effects are pos-
sible in regression or other VBM approaches, they are
rarely used within psychology.

7. VBM and ABM focus on different levels of abstraction.
ABM focuses on a more concrete level than does the
VBM approach. In our example, ABM specifies partic-
ular interactions among agents (e.g., a wolf eats a sheep
at a particular point in time and space), rather than
abstract relations among highly aggregated variables
such as population sizes. ABM can also generate pre-
dictions for relations among aggregate-level variables as
part of its output, of course. But the reverse is not true:
VBM is inherently highly aggregated and cannot predict
details of individual agent behaviors and interactions.

8. Causal modeling can offer insight into relations of vari-
ables within a specific data set. As typically used in social
psychology, causal modeling is not a theory develop-
ment tool but rather a data-analytic approach used to
estimate causal parameters (path coefficients) based on a
specific data set. As noted above, this can be done only
with the aid of stringent a priori assumptions about the
causal ordering of the variables involved, the linear and
additive nature of relationships, and so forth. But even
with these restrictions, the technique has proven useful,
and many researchers have learned many interesting
things by applying it. ABM is not well suited for this
goal; it is a technique for developing theory and gaining
general insights into the implications of postulated the-
oretical processes, rather than a technique for under-
standing what happened in one particular data set.

In summary, the respective strengths and weaknesses
of the dynamical systems approach, the causal modeling
approach, and the ABM approach tend to be generally
complementary, as the techniques are aimed at different
(although related) goals. Dynamical systems analyses
should appeal to researchers seeking concise, quantita-
tive descriptions of system behavior and the possibility
of mathematical proofs about that behavior; they are
applicable even to systems with multidirectional causa-
tion. Causal modeling is valuable to researchers seeking
to understand variable relationships within a particular
set of data, if they are willing to endorse the required
assumptions. ABM is particularly suited for those who
seek to explain how a system’s behavior is generated
by underlying processes or mechanisms, with a special
focus on the linkage between micro and macro or aggre-
gate levels, and who wish to avoid having to make sim-
plifying assumptions such as that agents are rational or
causation is unidirectional.

ABM FOR SOCIAL PSYCHOLOGY

The ABM approach offers, we argue, a good match
for the theoretical concerns of social psychology. In our
field, usually an agent will be assumed to represent an

individual person. Multiagent simulation provides a nat-
ural vehicle for incorporating all of the diverse types of
processes that social psychologists study. These include
intrapersonal processes (accessibility, decision making,
heuristics, memory effects, schema-based interpretation,
personality differences, etc.), interpersonal processes (rec-
iprocity in dyadic interchange, interpersonal liking and
mate choice, social influence, emotional contagion, etc.),
group processes (norm formation, leadership, status dif-
ferentiation, etc.), intergroup processes (intergroup bias,
discrimination, intergroup anxiety, etc.), and social and
cultural processes (allocation of groups to social roles, cul-
tural transmission of concepts, innovation diffusion, etc.).

This is one of the key advantages of ABM, that it
does not restrict a theorist to a single level of analysis.
In many cases, the whole point of a multiagent model is
to bridge theoretical levels. A study of interpersonal
attraction might discover what factors make one indi-
vidual prefer one potential mate as opposed to another.
But only multiagent modeling (e.g., Kalick & Hamilton,
1986; Todd, 1997; Todd, Billari, & Simao, 2005) can
put attraction in its context to determine the patterns
that will emerge when many individuals in a population
simultaneously evaluate each other. A successful model
explains the aggregate patterns as resulting from a
process of emergence and self-organization; the patterns
come into existence without any central controller or
executive in a way that is not known, anticipated, or
sometimes even desired by the individual agents.

Social psychology is, by definition, concerned with
both the psychology of the individual and the individ-
ual’s relationships to the social environment. But these
levels interact in complex ways that call into question
any simple analysis in terms of unidirectional causal
paths. Recognizing this fact, relationship researchers
(Reis, Collins, & Berscheid, 2000) have recently called
for a reexamination of the traditional approach to
explaining relationship outcomes in terms of properties
of individuals. Based on the complex adaptive systems
perspective (Capra, 1996), Reis et al. (2000) observed
that from the time of conception, individuals are nested
within relationships, those relationships are in turn
nested within social systems, and all these systems
evolve and influence each other over time, making the
use of causal analyses dubious. For example, it may
seem straightforward to assume that innate brain sys-
tems (e.g., systems governing affective responding) exert
a causal influence on relationships, but the causal
pattern is actually “transactional” (Reis et al., 2000,
p. 852), with reciprocal influences at every moment dur-
ing the entire course of development. ABMs are, in prin-
ciple, capable of describing the properties of such
multilevel interactive systems and lending insights into
their implications for the phenomena under study.
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The key feature of multiagent simulation is that it
allows the examination of outcomes when, as in real
social life, multiple interdependent agents engage in
dynamic, reciprocal interaction over time. Each agent
is affected by its environment, which is made up largely
of other agents’ behaviors. The environment acts as a
source of both constraints and opportunities for that
individual. But at the same time, each agent’s actions
affect its environment and other agents. Thus, instead of
decontextualizing a single aspect of agent interaction,
such as how one agent responds when it sees another
agent consuming a desired resource, multiagent models
permit assessment of the outcomes when multiple inter-
dependent agents, each serving both as perceiver and
perceived, behave in interactions that extend over time.

Unlike real social life, however, the values of para-
meters in a multiagent model can be set to arbitrary val-
ues. We can test the consequences of varying the ratio
of males to females, the time to agent maturity, or the
variance in food acquisition over time. There are no eth-
ical or practical concerns to constrain how we explore
our simulated worlds, and this exploration in turn allows
us to approach testing our theories in the real world
with a much better understanding of what we are look-
ing for and how to interpret our findings.

To illustrate the particular suitability of the ABM
approach for social psychology, we present brief descrip-
tions of several such models in related areas.

Stasser’s model of the common knowledge effect in
group discussion. Stasser (1988) introduced a simula-
tion model to help make sense of the common knowl-
edge effect in group discussion. Stasser and Titus (1985)
provided group members with a mixture of uniquely
held and shared information about the discussion topic.
Discussion tended to focus on the shared information,
despite the fact that depending on the initial distribution
of information, this focus might lead to suboptimal out-
comes for the group decision. Stasser’s DISCUSS model
simulates several stages in the group discussion process,
beginning with memory for the provided information,
proceeding through listening to others and making
one’s own contributions to the discussion, and ending
at the eventual group decision. Work with the model
has provided information about which features of the
discussion environment are most important for produc-
ing the common knowledge effect.

DISCUSS represents a valuable early example of an
ABM with several of the key features we have discussed
here. First, it can be and has been employed in conjunc-
tion with empirical work to shed light on a complex
process. Second, it crosses levels of analysis, mapping
out processes both within individual minds (memory,
cuing by others’ statements, inferences of validity from

repetitions of a statement) and simultaneously, in the
group as a whole. Finally, Stasser and his colleagues
(Stasser, 1988; Stasser, Kerr, & Davis, 1989; Stasser &
Vaughan, 1996) have explored the model by systemati-
cally varying parameters to determine which features
are most important and how they affect the simulated
discussion outcomes.

Nowak, Szamrej, and Latané’s model of group polar-
ization. Social influence is a core social psychological
topic that has received a substantial amount of attention
from ABM theorists in several disciplines including soci-
ology, economics, and even physics (Friedkin, 1999;
Hegselmann & Krause, 2002; Janssen & Jager, 2001).
In one influential multiagent simulation of social influ-
ence, Nowak et al. (1990) formalized Latané’s (1981)
theory of social impact. This work was intended to
address a failing in theories of social influence and per-
suasion that had been noted by Abelson and Bernstein
(1963) years before but had gone unaddressed: Almost
all conventional theories of social influence assume
purely linear, assimilative influence. That is, any persua-
sion that occurs produces a shift in the direction of the
delivered message. Abelson and Bernstein pointed out
that if such a rule is applied in a social group and
allowed to iterate, the group inevitably converges on the
group mean position—dissent cannot persist.

Nowak et al. (1990) built a model in which agents
located on a fixed grid begin with a random position on
an issue. Each agent receives attitudinal support from
nearby others who share their attitude and persuasive
force from nearby others who take the opposite side.
The authors demonstrated that given only a few
assumptions, it was possible to maintain attitudinal
diversity in the population over time. Specifically, they
found that (a) an initial majority tends to increase in
size over time (i.e., group polarization occurs under
their assumptions) but (b) agents holding the minority
opinion persist indefinitely in self-organized spatial
clusters that help protect the minority agents from being
converted by the global majority.

Kenrick’s evolutionary models. Evolutionary psychol-
ogy is another domain in which ABM has proven useful.
The evolutionary psychology perspective is fundamen-
tally dynamic and situated; its theories concern how
humans think and act as a result of multiple generations
interacting with other humans and with an environment
during long periods of time. Evolutionary psychology is
also limited in its ability to employ traditional methods
such as experimentation. These features have led some
evolutionary psychologists to explore the potential con-
tribution of ABM to the field. Kenrick, Li, and Butner
(2003) presented several cellular automaton models,
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including analyses of human aggression and mating
strategies. In these models, agents determine their own
strategies by observing the strategies of their immediate
geographical neighbors. If many other agents in a given
agent’s neighborhood are engaging in aggressive behav-
ior, for instance, it may be adaptive for the agent to
engage in aggressive behavior of its own. These models
allow us to explore the relationship between overt
behavior (e.g., a current aggressive state) and underlying
psychological decision rules (e.g., a rule that if there are
three aggressive neighbors, go into an aggressive state).

Axelrod’s model of the evolution of cooperation.
Psychologists and representatives of many other social
science disciplines have been interested in understanding
how autonomous, self-interested individuals can come
to cooperate when cooperation offers potential advan-
tages but also leaves one open to exploitation by an
uncooperative other. The Prisoner’s Dilemma, perhaps
the most studied game in the field of game theory, has
often been used to formalize this general issue. In this
game, mutual cooperation by two players gives a high
pay-off, but cooperating when the partner defects has
the lowest pay-off. In a single game, defection is always
the most rational strategy, but when the game is played
repeatedly, other strategies become more adaptive.

Axelrod (1984; Axelrod & Hamilton, 1981)
employed ABM to determine the most successful strat-
egy in the iterated Prisoner’s Dilemma. He solicited
strategies from expert game theorists and added a few
obvious ones (always cooperate; always defect; play ran-
domly) and pitted all the strategies against each other in
a round-robin computer tournament. It is surprising that
the simplest submitted strategy won. This strategy—
dubbed tit-for-tat—begins by cooperating and after that,
copies the previous move of its partner. Tit-for-Tat suc-
ceeds because it is responsive to a partner’s defection
(punishing the partner by defecting on the next trial)
and, therefore, is not indefinitely exploitable, but tit-for-
tat will never initiate defection. ABM approaches allowed
Axelrod (1984) to offer informed speculation about how
cooperation could evolve through agents cooperating
with their kin, or interacting repeatedly with their geo-
graphic neighbors, even when surrounded by a sea of
noncooperative agents.

Other Areas of Recent Models
Relevant to Social Psychology

Besides the classic contributions described in the pre-
vious section, and in many cases building on them, ABMs
are being actively developed in many areas of great inter-
est to social psychologists (although in most cases the
modelers themselves are from other fields).

Emergence and maintenance of cooperation. Building
on Axelrod’s seminal work, many modelers are exam-
ining the conditions under which autonomous, self-
interested agents can manage to cooperate (see Gotts,
Polhill, & Law, 2003). For example, what if in a “noisy”
environment, an agent’s move might sometimes be
misperceived—a cooperative move misread as a defection,
for instance? With some strategies, this can lead to a long
spiral of attacks and retaliations, and researchers have
studied strategies that are more robust in the presence of
noise (e.g., Macy, 1996). Another recent focus is on situ-
ations where an agent has the option to exit the situation
rather than continuing to play with a specific partner.
This allows for additional strategies, such as sticking with
a partner until he or she defects, then leaving to seek an
alternative, perhaps more cooperative, partner (Schüssler
& Sandten, 2000). Finally, an interesting model by
Takahashi (2000) examines the emergence of what he
termed “generalized exchange”—cooperation directed at
anonymous other agents (similar to a donation to charity
that will be used to help unspecified individuals) rather
than cooperation with a specific, individual other.

Evolutionary analyses. A significant proportion of
ABMs incorporate evolutionary assumptions, and there
have been great recent advances in the depth and sophis-
tication of these assumptions. “Evolutionary game
theory” (Gintis, 2000; Maynard Smith, 1982) examines
the outcomes as a changing and adapting population of
agents interacts with each other and with an environment
over many simulated generations and analyzes the agent
strategies that fare best in such competition. A key con-
cept is an “evolutionarily stable strategy.” A strategy X is
an evolutionarily stable strategy if a population all using
strategy X can outcompete a small number of “invading”
individuals using any other strategy. If this is true, then
strategy X, once it has evolved, will remain stable. In
some cases, logical proofs can be used to demonstrate
that a particular strategy is an evolutionarily stable strat-
egy; in other cases, researchers apply evolutionary multi-
agent simulations. Models using such evolutionary
analyses include investigations of cooperation in large
groups (Liebrand & Messick, 1995) and the emergence
of norms favoring communal sharing of resources,
including an analysis of the issue of who will enforce such
a norm when enforcement carries costs to the enforcer
(Kameda, Takezawa, & Hastie, 2003).

“Cognitive agents.” Several modelers (Sallach, 2003;
Sun, 2001) have argued that ABM of human behavior
needs to go beyond simple rules to incorporate relatively
sophisticated models of individual agent cognition. Sun’s
(2001) model, CLARION, contains a neural network
model of the mind of each agent, with learning rules that
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allow the agent to adapt and change its behavior with
time. Cognitive scientists have been developing agent lan-
guages that permit agents to communicate statements,
requests, negotiating demands, and so forth (Wooldridge,
2002). It is obvious that such agents have behavioral
potential far beyond that of agents who follow simple
and fixed behavioral rules (e.g., the tit-for-tat strategy
in a cooperation game). However, two points must be
raised. First, the question of whether the increased com-
plexity actually furthers or impedes a deep conceptual
understanding of a model’s behavior must always be kept
in mind. Second, serious arguments can be made that
adaptive human behavior actually results from the appli-
cation of cognitive simple heuristics rather than exten-
sive, resource-demanding cognitive processes (e.g.,
Gigerenzer, Todd, & the ABC Research Group, 1999).

In a related vein, studies by Macy (1996) compared
the effects of individual-level adaptation (learning) and
population-level adaptation (evolution) in studies of the
emergence of cooperation. It is interesting that under
the assumptions Macy implemented, evolution was
more powerful than adaptation in that “smart” individ-
ual agents were unable to learn a class of powerful
strategies that could emerge through evolution.

Communication and cognition. As noted above, mul-
tiagent models of interagent communication in group
problem solving have been developed (Eberhart et al.,
2001; Mason et al., in press; Stasser, 1988). Social psy-
chologists have recently been interested in other ways
communication interacts with social cognition, for
example, in the effects of communication on the stereo-
types or other mental representations that individuals
hold (Brauer, Judd, & Jacquelin, 2001; Lyons &
Kashima, 2003; Ruscher, 1998). The empirical findings
from such studies could be modeled by multiagent sys-
tems in which individuals construct and maintain mental
representations that are affected by communications
from other agents. Indeed, models of this sort have been
developed to explain other types of communication-
cognition interaction, notably the development of lan-
guage (Hazlehurst & Hutchins, 1998; Steels & Belpaeme,
2005)—a theoretically central issue because it touches on
both individual psychological processes (e.g., syntax acqui-
sition, vocabulary learning) and processes of social coor-
dination (e.g., developing shared names for objects).

In considering the effect of communication on individ-
ual cognition, how much reliance should an agent place
on information communicated by a specific other agent?
The sender might be misinformed or ignorant or might
even be a competitor and provide intentionally mislead-
ing information. The general solution seems to be for
agents to adaptively change the weights they give to
information from others based on their experience, and

van Overwalle and Heylighen (2006) developed a model
of this. Agents maintain and update “trust” weights for
each other agent, for each potential topic of knowledge
(i.e., one might trust Jim’s opinions about baseball but
not about fine wines). The trust weights are increased (or
decreased) as the other agent communicates information
that is similar (or dissimilar) to what one already knows.
Thus, trust is in a sense “earned” by providing apparently
truthful communications. van Overwalle and Heylighen
demonstrated that their model accurately reproduces the
results of several social psychological experiments on
group discussion, social influence, and related topics.

Obstacles and Limitations

Our purpose in this article is to highlight the value
and potential utility of ABM for social psychologists,
but we would be remiss if we did not also discuss some
obstacles to its adoption and potential limitations to the
approach.

Is modeling just unconstrained game playing? One
activity that people can engage in with a multiagent
model is to “play around,” unsystematically trying dif-
ferent parameter values to see what happens. This
approach can lead to important insights (e.g., when
changing a parameter has an unexpected, counterintu-
itive effect on the outcome; see, e.g., Axelrod, 1997),
but the activity itself is easily dismissed as game playing
rather than doing science. For ABM to be a scientific
tool (specifically, a theory-building tool) it must, of
course, be subject to empirical validation. As Epstein
(1999) noted, the key question is

Does the hypothesized microspecification suffice to gen-
erate the observed phenomenon . . . ? The answer may be
yes and, crucially, it may be no. Indeed, it is precisely the
latter possibility—empirical falsifiability—that qualifies
the agent-based computational model as a scientific
instrument. (pp. 45-46)

Of course, social psychology’s familiar empirical meth-
ods, especially laboratory experimentation, will be
essential in testing and perhaps falsifying hypotheses
deriving from ABM.

Lack of training in modeling. Our students learn
ANOVA, regression, and causal modeling as a precondi-
tion for entry to the field and, almost without exception,
do not learn computational modeling techniques. Indeed,
in most cases, they have no access to such training even if
they want it. Patterns of professional training inevitably
are a source of conservatism in any field, for they encour-
age the continued exploitation of techniques that have
proven useful in the past and hold back the adoption of
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conceptual or methodological innovations (not only
ABM but also other techniques such as fMRI imaging).
This is, of course, a real and meaningful obstacle to one
who is interested in exploring the potential of ABM for
his or her own research. All we can say is that ABM (in
contrast to dynamical systems modeling, for example) is
quite accessible for researchers with no background in
high-level mathematics. Some level of computer pro-
gramming skill is essential for constructing an ABM, but
a system such as NetLogo (described below; Wilensky,
1999) makes programming quite simple and painless. In
fact, NetLogo is used in elementary and middle school
classrooms. In addition, the conceptual discipline of pro-
gramming agent behaviors is closely akin to thinking in
terms of theoretical processes and mechanisms, which is
common in social psychology. Overall, we believe that
ABM, aside from its relative unfamiliarity, is less demand-
ing of technical and mathematical skills than are multiple
regression and causal modeling, which virtually every
social psychologist successfully masters.

Difficulty of identifying the correct balance between
simplicity and complexity. Perhaps the most fundamental
issue in fruitfully applying ABM is that of finding the
right level of complexity at which to specify a model. Let
us once again take Kalick and Hamilton (1986) as our
example. The first reaction of many people on learning
about the model is to want to add complexities: What if
some percentage of agents want same-sex rather than
opposite-sex partners? What if mating is not permanent
and, thus, some couples break up and reenter the dating
pool? What if the sexes differ in the importance they
attach to a partner’s attractiveness? Obviously empiri-
cally or conceptually motivated complexities such as
these could be multiplied almost indefinitely. Should
Kalick and Hamilton be criticized for not incorporating
these “refinements” into their model? Our answer is no;
we think that the modelers got it precisely right. Adding
complexities such as these might be reasonable in a model
whose goal is a close match to a specific set of empirical
data. But closer fit to data comes at a cost: Additional
processes obscure the fundamental elements of the gener-
ative theory, while adding nothing that is conceptually
critical. In the case of the Kalick and Hamilton model,
their goal was not to closely fit a data set but to provide
a compelling, crystal clear demonstration of a counterin-
tuitive principle (that individual agent preferences can
generate population patterns that superficially look quite
different). Adding more theoretical components to the
model, however well each one could be empirically justi-
fied, would only have interfered with that goal.

But how is a modeler (especially a novice modeler) to
make these judgments? Our best advice is KISS (keep it
simple, stupid). The logic behind this advice is that an

ABM is a representation of a theory about social behav-
ior, not a representation of some slice of complicated
social reality. Our best (most insightful, generative,
compelling, etc.) theories in social psychology tend to
relate two, three, or four highly abstract constructs:
Negative affect increases aggression; self-esteem indi-
cates how our relationships are faring; identification
with a group increases adoption of the group’s goals;
and behavioral intention is a function of attitude and
subjective norm. It is notable that our best theories are
not collections of 15 or 20 “factors” that are empiri-
cally known to affect some phenomenon. In a similar
manner, the most elegant experiments that our field
offers as classics and inspiring exemplars tend to involve
manipulations of 2, 3, or 4 factors—not 15 or 20. An
ABM should be more like a theory or an elegant exper-
iment than like a long list of “relevant factors.” Thus,
we suggest as a guideline that one should strive to
include no more than 2, 3, or 4 fundamental theoretical
principles in a model. More than that runs the risk of
obfuscating what is really going on.

Resistance to expressing human behavior in computer
code. Finally, some may feel that programming theories
about human behavior into computer-simulated agents
implicitly likens humans to computers (logical, emotion-
less, etc.). The premise is mistaken; simulating human
behavior on a computer does not restrict the assump-
tions we can make about that behavior. If we can
describe an agent’s emotional responses with simple
rules, those can be simulated by a computer. The overall
goal of psychology is to describe human behavior using
relatively simple theoretical assumptions, and computer
code is just an alternative way to express those assump-
tions—with advantages in some respects, such as preci-
sion and the ability to run and show us the consequences
of our assumptions, and disadvantages in others, such as
the easy (if imprecise) understanding afforded by tradi-
tional verbal formulations of theory.

HOW TO GET STARTED WITH ABM

Tool Kits and Resources

General conceptual introductions and broad reviews
of the ABM approach that are particularly likely to be
accessible for social psychologists include Flache and
Macy (2004), Wilensky and Resnick (1999), Epstein
(1999), Resnick (1994), and Epstein and Axtell (1996).

Several programming languages and tool kits have
been developed to facilitate constructing an ABM. Swarm
(Minar, Burkhart, Langton, & Askenazi, 1996), Repast
(North & Macal, 2005), MASON (Luke, Cioffi-Revilla,
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Panait, & Sullivan, 2004), and NetLogo (Wilensky,
1999) are prominent examples. We focus on NetLogo
for one simple reason: Its originators explicitly maintain
a philosophy of “low threshold” for starting to use the
system. In practice, this means that with NetLogo, a
social psychologist modeler can construct and interact
with the model himself or herself, rather than through
the mediation of a hired professional programmer
(which is the more likely scenario with the other tool
kits mentioned).

Our single most heartfelt recommendation for anyone
interested in ABM is to download the NetLogo system
from http://ccl.northwestern.edu/netlogo/ and to spend
some time interacting with it. This free software system
runs on Windows, Mac OS X, or Linux and includes
extensive documentation and a library of hundreds of
ready-to-run models illustrating different types of multi-
agent systems. Specific library models, including Wolf–
Sheep Predation, Party (Schelling’s [1971] segregation
model), and Prisoner’s Dilemma, illustrate points dis-
cussed in this article. NetLogo is not only easy and
engaging to experiment with (e.g., it contains clear visual
depictions of the model as well as numerical plots and
graphs summarizing results) but also offers advanced
users the ability to modify existing models and to con-
struct new models by programming them from scratch.

Step-by-Step Recommendations
for Modeling Practices

For social psychologists who may be motivated by
our arguments to explore ABM, we offer step-by-step
recommendations and advice (see Flache & Macy, 2004,
for a similar viewpoint):

1. Think theoretically in terms of entities and interactions,
not in terms of variables. The ABM approach encour-
ages theorists to think in terms of entities and their
interactions over time, rather than in terms of statistical
relationships among variables. In some sense, this
approach should be natural for social psychologists,
who typically work with process-oriented theories.
However, it may require some unlearning because we
have long taught ourselves to express process-oriented
theoretical conceptions in the somewhat incompatible
language of variable-oriented models. Thus, the first
step in producing an ABM is to identify the relevant
entities (depending on the theory), which will usually
but not always be individual people.

2. Formulate the model using the chosen tool kit. Next,
based on theory from social psychology or other disci-
plines, specify the behavior of the agents as simple rules,
which can be translated into computer code within
NetLogo or whatever programming environment is
being used. It is obvious that the more precise the
theory, the easier the model development process will
be. ABM encourages us to think especially about two

aspects of a model: the behavioral rules for individual
agents and the nature and patterning of agent-to-agent
interactions. Various assumptions can be made about
the latter, including (a) agents occupy fixed positions
and interact only with their neighbors (e.g., Nowak et
al., 1990), (b) agents can interact with any others, with-
out geographical or other restrictions (e.g., Axelrod’s
Prisoner’s Dilemma tournament; wolf–sheep preda-
tion), and (c) agents have enduring connections to spe-
cific other agents, constituting a social network, and can
interact with other agents to whom they are linked. The
latter is probably the most realistic if one is modeling
real human social behavior.

3. Keep it simple. In the model development process, the
overriding goal should be simplicity and elegance. In
VBM, the general approach to understanding complex
psychological systems has been to increase the complex-
ity of causal models—to add more variables. But that
approach sometimes leads in unproductive directions—
to the generation of unwieldy catalogs of variables that
explain small amounts of variance without promoting
satisfying conceptual understanding of the phenomena.
In developing an ABM, elegance and simplicity should
be the chief goals. In many cases, apparent complexity in
a large-scale system may be found to arise as an emer-
gent result of extremely simple underlying behaviors and
interactions—just as, in mathematics, the supremely
complex Mandelbrot Set object emerges from iteration
of a simple algebraic equation. In other words, if a phe-
nomenon examined at a particular level of analysis
seems so complex that it seems to require 24 variables to
explain it, one should consider the possibility that it is
actually an emergent result of much simpler processes
operating at a lower level (Resnick, 1994; Wolfram,
2002). As we have said, it is crucial to keep in mind that
ABM is a representation of a theory (typically with fewer
than a half dozen fundamental principles), not a repre-
sentation of messy social reality. As Flache and Macy
(2004) commented, “Analysis of very simple and unre-
alistic models can reveal new theoretical ideas that have
broad applicability, beyond the stylized models that pro-
duced them” (p. 295).

4. Debug the model. Any significant piece of computer code
is likely to contain bugs. Because ABMs often produce
“emergent” or unexpected results, it becomes even more
important to check and recheck the code to be sure that
the result does not simply reflect a bug (Gilbert & Terna,
2000). It can be valuable to have a second programmer
generate an independent implementation of the same
model—which is unlikely to contain the same bugs, and,
thus, convergence of results between the two implemen-
tations offers good reassurance. In some actual cases,
independent reimplementation has demonstrated that
originally published results depended on a highly specific
detail of the original implementation and changed dra-
matically when that detail was altered; see the case study
by Galan and Izquierdo (2005).

5. Explore the model systematically. An ABM should be an
object of systematic investigation, a means to investigate
the space of possible outcomes generated by varying the-
oretical assumptions. As we have repeatedly emphasized,
ABMs are often too complex, and too likely to produce
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surprising or emergent behavior, for their implications to
be grasped intuitively. Therefore, developing a picture of
a model’s implications is very much a matter of experi-
mentation, of systematically and rigorously testing differ-
ent assumptions within a plausible range (Epstein, 1999;
Flache & Macy, 2004). The Behaviorspace facility of
NetLogo facilitates this process, conducting automatic
runs with all combinations of a specified set of parameter
values and recording the results. In this way, a simulation
model becomes the subject of focused investigation, with
the ultimate goals of (a) understanding the consequences
of different theoretical assumptions and, hence, (b) ulti-
mately identifying the simplest and most empirically vali-
dated assumptions that generate the overall patterns of
observed behavior.

6. Validate the model by matching results to data. Valida-
tion of ABMs can be done at both the micro and macro
levels (Moss & Edmonds, 2005), so their falsifiability is
really of two separate kinds. Using the Kalick and
Hamilton (1986) model as a simple example, one can
ask both (a) Does their assumption about individual
agent preferences match what is known about human
mate preferences? (Answer: Yes; many studies show that
people do prefer highly attractive partners.) and (b) Does
their model’s generated outcome match what is observed
in human populations? (Answer: Yes; correlations in
attractiveness between partners are generally found in
real populations.). Virtually all of the ABMs described
in this article similarly can be validated or compared to
data at both of these levels. Of course, a match at both
levels increases confidence in the validity of the model.
Validation of the micro rules describing individual agent
behavior is a task that is especially well suited for social
psychology’s most familiar and powerful research tech-
nique, lab-based experimental studies.

The tightness or looseness of the model–data compar-
isons involved in validation (at either the micro or macro
level) is a more difficult issue. A model may be asked to
match what Epstein (1999, p. 46) called “stylized facts”
or qualitative, generic empirical regularities, such as that
residential segregation exists (Schelling, 1971) or that
partner attractiveness correlates (Kalick & Hamilton,
1986). These are the kinds of broad empirical general-
izations that might be the chief results of a meta-analysis
of a research area—general summaries of what is empir-
ically known rather than detailed results of a single, spe-
cific study. We believe that in many cases, this level of
empirical validation is sufficient for the main purposes
of ABM: the attaining of basic insights such as those
offered by the models just mentioned (or many other
examples in this article). But in other cases, a much tighter
and more precise match to data is demanded. Epstein
cited several examples of economic ABMs that have
been developed to explain highly specific patterns in
data, such as the distribution of firm sizes in the econ-
omy. Whether one seeks to validate relatively general,
qualitative patterns or to match data in exact quantita-
tive detail depends on the overall goals of a model and
on the availability of suitable data sets.

7. Test hypotheses within the model. ABM allows for the
familiar (to social psychologists) activity of testing
hypotheses in a direct way. Say a model has several

distinct principles, such as a set of rules for generating
behavior and a learning rule, which changes the behavior-
generating rules based on feedback. If the model as it
stands fits data adequately, it is possible to test the
hypothesis, for instance, that the learning rule con-
tributed to that success. The modeler would do this by
“turning off” the learning component and determining
whether the resulting limited model could also fit data.
It is clear that this approach offers a way to test the con-
ceptual hypothesis that the learning rule contributes to
the model’s success in a particular domain. Conversely,
models can also provide a test of the hypothesis that a
particular process is not necessary for the model’s suc-
cess. If a model lacking process X can fit data (especially
data that had previously been thought to require
process X for an adequate explanation), that counts as
a powerful demonstration that X is in fact unnecessary.
The Kalick and Hamilton (1986) model is an example,
showing that the assumption of preference for partners
similar to oneself in attractiveness is not necessary to
account for partner correlations in attractiveness.

8. Move back and forth between models and empirical
investigations. The relationship between model and
empirical research is not one way. Models not only can
be subject to empirical validation but also can suggest
new hypotheses for empirical study. For example,
Kalick and Hamilton’s (1986) model predicts that the
pairs that form will decline in attractiveness level with
time, a hypothesis that would not be generated under
the alternative theoretical idea that people seek partners
with similar levels of attractiveness. Without a theory,
one does not know what to look for, so ABM can
heuristically guide empirical research in this way—espe-
cially research directed at the kinds of level-crossing
phenomena (relating micro- and macro-level properties)
that are the most characteristic domain of ABM.

9. Use models to compare and integrate theories. Finally,
ABM can be used for “model alignment” (Axtell,
Axelrod, Epstein, & Cohen, 1996), comparing compet-
ing theories of a particular effect. By implementing the
theories in ways that are as closely parallel as possible,
one can discover what differences in assumptions gener-
ate different behaviors in the model and what differences
are immaterial. It may even be possible to incorporate
the competing theories within a single, more general
overall model. Flache and Macy (2002) provided a case
study in using this process to compare and integrate two
models of statistical learning, and Abrahamson and
Wilensky (2005) took a similar approach in comparing
“Piagetian” and “Vygotskyan” conceptions of child
development. Even when empirically based validation of
a model is difficult or impossible (e.g., because appro-
priate data are not available), ABM can be valuable in
this way for the goal of understanding, comparing, inte-
grating, and ultimately improving theory.

FURTHER DIRECTIONS AND CONCLUSIONS

This article focuses on ABMs where agents represent
individual persons, for this is a natural level for social

100 PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW

 at Universitaetsbibliothek on June 17, 2009 http://psr.sagepub.comDownloaded from 

http://psr.sagepub.com


psychological theorizing. However, agents can be used
to represent entities at other levels, whether lower level
(neural networks) or higher (social groups, organiza-
tions, economic actors). We briefly discuss these possi-
bilities.

Lower level agents: Agents as “cognitive elements.”
Some models in social cognition propose that psycho-
logical processes such as person perception, attitude for-
mation and change, or stereotyping arise from the
interaction of multiple simple “nodes” analogous to
neurons and interconnected in simulated “neural net-
works” or “connectionist models” (Kunda & Thagard,
1996; Shoda & Mischel, 1998; Smith, 1998; van
Overwalle, 1998). One simple class of such models
implements parallel constraint satisfaction processes.
Similar to some interpretations of dissonance theory,
such models postulate that there are multiple simple
cognitive elements (e.g., beliefs, attitudes, self-identities)
interconnected with positive (excitatory) or negative
(inhibitory) links. The elements mutually adjust to each
other to achieve coherence or harmony. This means that
if any one cognitive element changes, the others will in
principle also change in response. In other words,
causality goes in all directions, so such models are diffi-
cult to encompass within the causal VBM framework.
But these are natural examples of multiagent models,
where each agent is identified with a cognitive element
that both influences and is influenced by other related
elements on the basis of simple rules. Of course, agents
representing neurons in a simulated connectionist
network or cognitive elements (beliefs, attitudes, etc.)
in a parallel constraint satisfaction system would be
assumed to have much simpler behavioral rules than
cognitive agents representing humans. On the other
hand, connectionist models most often assume that the
agents (nodes) can adapt and change their responses
through time through the application of simple learning
rules (see Smith, 1996, 1998).

The close connection between the multiagent approach
and connectionist modeling is felicitously illustrated by
Selfridge’s (1959/1988) fanciful “Pandemonium” model.
Selfridge postulated a visually based letter recognizer
composed of numerous “demons” of different types.
Feature demons each examine the visual input for a spe-
cific visual feature (e.g., a horizontal bar) and yell if they
see it. Letter demons listen to feature demons, and a spe-
cific letter demon (e.g., for H) yells in turn if it hears
yelling from the feature demons for horizontal bar and
vertical stroke (i.e., the components of that letter).
Finally, a single decision demon listens to the yells of all
the letter demons and issues as the final output of
Pandemonium the name of the letter demon who is
yelling loudest. It should be clear that Pandemonium is

(a) an instance of a multiagent model where agents
(demons) behave and interact according to simple rules
and whose overall behavior (letter recognition) is emer-
gent from those simple interactions, as well as (b) capa-
ble of being straightforwardly translated into a standard
neural network, where demons become nodes and yells
become signals sent over connections between nodes.

Higher level agents: Agents as large-scale actors. A
large-scale entity consisting of multiple individuals,
such as an army, a corporation, or a terrorist cell, can
also be considered an agent that is autonomous and
seeks to accomplish its own goals—which may be at
least potentially distinct from the goals of the individu-
als who make up the entity. Economic theory is a VBM
approach that describes interactions among economic
agents (which may be individuals or firms and are
assumed to be rationally profit maximizing). ABM can
equally well be used to describe interactions among
such large-scale agents (see review in Flache & Macy,
2004). One important and interesting question is
whether ABM can also account for the emergence or
coming into existence of such agents (Cederman, 2005).
In other words, similar to Axelrod’s (1984) discussion
of the emergence of dyadic cooperation, can ABM
account for the way people band together cooperatively
to form a group/team/corporation that can then act as a
unified autonomous agent to accomplish goals its indi-
vidual members could not? This is an intriguing direc-
tion for future research.

Agent-based thinking and cross-disciplinary integra-
tion. One of the primary features of ABM is that it
allows, even forces, theoretical thinking to cross levels, as
modelers seek to understand high-level structures and
processes as outcomes of low-level agent interactions.
Thus, ABM provides a common framework for processes
at multiple levels, making it a natural focus for cross-
disciplinary integration. In fact, in disciplines related to
social psychology, many sociologists (e.g., Cederman,
2005; Macy & Willer, 2002) have been using ABM, as
have economists such as Epstein and Axtell (1996) and
political scientists such as Axelrod (1984). The power of
ABM to offer cross-disciplinary insights can be illustrated
by Epstein and Axtell’s Sugarscape model. The model
incorporates both a biological level (reproduction, evolu-
tion) and a cultural/institutional level, permitting the
researchers to pose and answer questions such as Does a
social mechanism of inheritance (passing wealth down
from parents to offspring) alter the operation of biologi-
cal evolution? Answer: Yes; the offspring of parents who
themselves performed well are somewhat insulated by
their inherited wealth from the rigors of evolutionary
competition.
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Turning from the social science interface of social
psychology to its cognitive science interface, cognitive
science in general has begun to recognize the impor-
tance of the interactions of multiple agents for the
understanding of individual cognition as well as group
performance and group problem solving (Eberhart et al.,
2001; Mason et al., in press; Sun, 2001; Wooldridge,
2002). Productive contacts between social psychology
and these disciplines will be facilitated by a common
theoretical approach that emphasizes multiagent think-
ing. The result may be models that integrate all areas of
social/personality psychology including intrapersonal
processes (personality, cognition, attitudes) and inter-
personal processes (relationships, group processes), as
well as higher levels of populations, cultures, and social
institutions.

Agent-based thinking, situated cognition, and emer-
gence. A key message of ABM is that the implications
of a given social or psychological process cannot be
well understood if the process is studied in isolation,
removed from its context, at a frozen moment in time.
Instead, processes have effects that are often surprising
and emergent when they operate in the context of other
simultaneous and interdependent processes, in dynamic
fashion over time. This understanding is the motivating
force behind the “situated cognition” movement in psy-
chology during the past couple of decades (Clancey, in
press; Smith & Semin, 2004). Clancey (in press) noted
that for situated cognition,

The one essential theoretical move is contextualization
(perhaps stated as “antilocalization,” in terms of what
must be rooted out): We cannot locate meaning in the
text, life in the cell, the person in the body, knowledge
in the brain, a memory in a neuron. Rather, these are all
active, dynamic processes, existing only in interactive
behaviors of cultural, social, biological, and physical
environment systems.

As noted earlier, within social psychology, relation-
ship researchers (Reis et al., 2000) are making similar
appeals for viewing relationships as emergent outcomes
of interactive forces (cognitive, affective, interpersonal,
and cultural) that operate during a lifetime of devel-
opment. Cultural psychologists are making a parallel
argument regarding the mutually interdependent consti-
tution of self and culture (Adams & Markus, 2004;
Fiske, Kitayama, Markus, & Nisbett, 1998). ABM should
ultimately allow us to conceptualize all the diverse phe-
nomena of social psychology not as reflecting static
relationships among variables but rather as emergent
results of dynamically interactive processes taking place
in their contexts.

NOTE

1. Nonhierarchical causal modeling techniques can relax the uni-
directionality assumption, but they have restrictive requirements of
their own and are little used in social psychology.
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