CONTENTS

Foreword ix
Preface xi
Acknowledgements xv
Contributors xvii

PART ONE ■ General Background

1. Faking: Knowns, Unknowns, and Points of Contention 3
MATTHIAS ZIEGLER, CAROLYN MACCANN, AND RICHARD D. ROBERTS

PART TWO ■ Do People Fake and Does It Matter? The Existence of Faking and Its Impact on Personality Assessments

2. People Fake Only When They Need to Fake 19
JILL E. ELLINGSON

3. The Rules of Evidence and the Prevalence of Applicant Faking 34
RICHARD L. GRIFFITH AND PATRICK D. CONVERSE

4. Questioning Old Assumptions: Faking and the Personality–Performance Relationship 53
D. BRENT SMITH AND MAX MCDANIEL

5. Faking Does Distort Self-Report Personality Assessment 71
RONALD R. HOLDEN AND ANGELA S. BOOK

PART THREE ■ Can We Tell If People Fake? The Detection and Correction of Response Distortion

6. A Conceptual Representation of Faking: Putting the Horse Back in Front of the Cart 87
ERIC D. HEGGESTAD
Contents

 NATHAN R. KUNCHEL, MATTHEW BORNEAN, AND THOMAS KIGER
 Pages 102-102

8. Searching for Unicorns: Item Response Theory-Based Solutions to the Faking Problem
 MICHAEL J. ZICKAR AND KATHERINE A. SLITER
 Pages 113-113

9. Methods for Correcting for Faking
 MATTHEW C. REEDER AND ANN MARIE RYAN
 Pages 131-131

10. Overclaiming on Personality Questionnaires
 DELROY L. PAULHUS
 Pages 151-151

11. The Detection of Faking Through Word Use
 MATTHEW VENTURA
 Pages 165-165

PART FOUR ■ Can We Stop People from Faking? Preventive Strategies

12. Application of Preventive Strategies
 STEPHAN DILCHERT AND DENIZ S. ONES
 Pages 177-177

13. Social Desirability in Personality Assessment: Outline of a Model to Explain Individual Differences
 MARTIN BÄCKSTRÖM, FREDRIK BJÖRLUND, AND MAGNUS R. LARSSON
 Pages 201-201

 STEPHEN STARK, OLEKSANDR S. CHERNYSHENKO, AND FRITZ DRASGOW
 Pages 214-214

15. Is Faking Inevitable? Person-Level Strategies for Reducing Faking
 BRIAN LUKOFF
 Pages 240-240
PART FIVE ■ Is Faking a Consequential Issue Outside a Job Selection Context? Current Applications and Future Directions in Clinical and Educational Settings

 RYAN C. W. HALL AND RICHARD C. W. HALL

17. Intentional and Unintentional Faking in Education 282
 JEREMY BURRUS, BOBBY D. NAEMI, AND PATRICK C. KYLLONEN

PART SIX ■ Conclusions

18. Faking in Personality Assessment: Reflections and Recommendations 309
 CAROLYN MACCANN, MATTHIAS ZIEGLER, AND RICHARD D. ROBERTS

19. Faking in Personality Assessment: Where Do We Stand? 330
 PAUL R. SACKETT

Index 345
In this chapter, the term faking will be interpreted in the broader sense of self-presentation, that is, motivated distortion of self-reports. At the private level, self-presentation is typically labeled self-deception (Paulhus, 1984) or self-enhancement (Baumeister, 1982). At the public level, self-presentation is most commonly labeled impression management (Paulhus, 1984). I will treat them together because both forms of positive self-presentation constitute a threat to the validity of personality scales. Moreover both forms of positive self-presentation can be measured with the overclaiming technique (OCT).

The OCT was designed to measure knowledge exaggeration and knowledge accuracy simultaneously and independently (Paulhus, Harms, Bruce, & Lysy, 2003; Paulhus & Harms, 2004). Respondents are asked to rate their familiarity with a set of topics relevant to a content domain (e.g., academic facts, workplace items, consumer products). Critical to the technique is the inclusion of some items that do not actually exist (i.e., foils).

A respondent’s knowledge exaggeration and accuracy are calculated from two values: (a) the proportion of real items rated as familiar and (b) the proportion of foils rated as familiar. Exaggeration is indexed by the respondent’s tendency to claim familiarity with items (especially foils) whereas accuracy is indexed by the respondent’s ability to distinguish real items from foils. To the extent that an audience is salient, exaggeration can be interpreted as impression management; otherwise, it is best interpreted as self-deceptive enhancement.

Details about the history, psychometrics, and applications of the OCT are fleshed out in the following sections. For illustrative purposes, Table 10.1 provides an example of the OCT format: It includes familiarity ratings provided by two hypothetical respondents.

HISTORY OF THE TECHNIQUE

There are several historical precedents for the notion that claiming familiarity with foils is a face-valid indicator of knowledge exaggeration. The earliest published example is a 25-item test included in the omnibus appendix of instruments developed by Raubenheimer (1925), a student of Lewis Terman. Respondents were asked to check off which books they had read. Out of 25, 10 were nonexistent. Whereas “Robinson Crusoe” was a genuine book, “The Prize-Fighters Story” was used as a foil.
Although failing to acknowledge that precedent, two subsequent studies proposed and applied a similar notion (Anderson, Warner, & Spencer, 1984; Phillips & Clancy, 1972). More recently, Stanovich and West (1989) used fictitious items as a covariate for self-reports of books read. None of those studies, however, considered foil claiming as a meaningful variable in its own right.

Inspired by the Phillips and Clancy paper, my students and I launched into a comprehensive research program that began with a 1990 conference presentation by Paulhus and Bruce. About the same time, Randall and Fernandes (1991) developed a set of 10 foils for use in ethics research. Since that time, further critiques of social desirability scales have escalated the need for an alternative approach to measuring self-presentation in surveys.

PROBLEMS WITH PREVIOUS MEASURES

Self-presentation on questionnaires is typically referred to as *socially desirable responding* (SDR). Over the years, a host of SDR measures have been targeted specifically at the detection of faking on self-reports of personality. Currently the two most popular are the Marlowe–Crowne scale (Crowne & Marlowe, 1960) and the Balanced Inventory of Desirable Responding (BIDR) (Paulhus, 1998). Unfortunately, some researchers continue to indict the validity of self-report instruments if they show high correlations with SDR measures (e.g., Davis, Thake, & Vilhena, 2010). Other researchers continue with attempts to control faking post hoc by including SDR scales as covariates in prediction equations.

Critics of SDR scales have complained that SDR measures confound fact with fiction (e.g., Block, 1965; McCrae & Costa, 1983). After all, some people actually are blessed with an abundance of socially desirable attributes. Without faking, they

TABLE 10.1 Sample Page from the Academic Overclaiming Questionnaire

(If You Are Familiar with the Item, Please Check the Box)

<table>
<thead>
<tr>
<th>Fine Arts</th>
<th>Respondent 1</th>
<th>Respondent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozart</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>A cappella</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>The Pullman paintings*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Art deco</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paul Gauguin</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Mona Lisa</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>La Neige Jaune*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Mario Lanza</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Verdi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Jan Vermeer</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Windermere Wild*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grand Pooh Bah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botticelli</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Harpsichord</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dramatis personae</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Note: The three foils are marked with asterisks.
can record high scores on SDR scales. To address this confounding, some researchers turned to an approach based on departure from reality (e.g., John & Robins, 1994). Specifically designed to incorporate a criterion, it requires a contrast of self-evaluations with intrapsychic or external criteria. For example, self-reports of personality can be residualized on informant reports to provide an index of self-presentation (e.g., Paulhus & John, 1998).

To avoid the confound problem entirely, Holden and colleagues have developed a reaction-time technique (Holden, Kroner, Fekken, & Popham, 1992). That method exploits the fact that the response times of fakers exhibit a pattern distinct from those of individuals who respond honestly. For detailed examples, see Paulhus and Holden (2010).

Each category of methods entails a tradeoff of advantages and disadvantages. SDR scales offer easy administration but lack a criterion to distinguish distortion from valid personality variance. Criterion discrepancy measures tap departure from reality but are impractical in standard administration settings because they require collection of the criterion. The response-time method is objectively scored but requires an elaborate laboratory procedure.

In sum, the diagnosis of faking has been hampered by the difficulty of distinguishing accuracy from bias. The failure to find significance with group-level statistics does not rule out the possibility of some individual-level faking (Holden, 2008). On other hand, allegations of faking against individuals actually possessing positive traits would be—not merely unjust—but contrary to the goal of optimal personnel selection. Extant techniques do not seem capable of correcting personality scores post hoc, that is, after faking has occurred (Griffith & Peterson, 2008).

RATIONALE FOR THE OVERCLAIMING TECHNIQUE

The OCT was designed as an optimal compromise between earlier approaches. It captures departure from reality, but in a more concrete fashion than does the criterion discrepancy method. Respondents are asked to rate their familiarity with a set of persons, places, items, or events. A proportion (typically 20%) of the items are foils: They do not actually exist. In Table 10.1, for example, the historical item "Paul Gauguin" refers to an actual nineteenth-century post-impressionist painter. By contrast, the item "Windermere Wild" seems as it could be genuine but, in fact, refers to a poem known only to the present author and his college girlfriend: It does not appear in a Google search.

Respondents are assigned high accuracy scores to the extent that they claim greater familiarity with real items than with foils. A high exaggeration score ensues from an overall tendency to claim items—especially foils. The intuitive appeal of this index follows from the assumption that claiming familiarity with nonexistent items is a face valid index of faking.

In short, the goal of developing the OCT was to unravel the typical interweaving of fact and fiction in self-descriptions. The rates of claiming real and foil items are used to create independent indexes of accuracy and exaggeration via signal detection analysis. Details of those calculations come next.
People are often called upon to make “yes” or “no” decisions regarding the existence of stimuli that are enveloped in noise. To model the human ability to process such information, Swets (1964) developed a framework called signal detection analysis. His two key performance parameters were accuracy (the ability to distinguish real stimuli from false alarms) and bias (the overall tendency to say “yes”). This signal detection framework can be applied to people’s familiarity ratings of real items and foils (Paulhus & Bruce, 1990). People assign familiarity ratings on the basis of a fuzzy memory trace rather than a clear recollection. The large samples of such ratings collected on overclaiming questionnaires are summarized by two values. First is the proportion of hits (PH), that is, real items claimed. Second is the proportion of false alarms (PFA), that is, foils claimed. These two values can be analyzed with standard formulas to yield indexes of accuracy and exaggeration (Paulhus & Petrusic, 2010).

Note that in the signal detection model, accuracy and exaggeration are not opposites but are scored independently. As a result, there is no inherent cross-contamination of the OCT accuracy and exaggeration indexes. Of course, this independence does not preclude the two indexes from being correlated across individuals.

A variety of signal detection formulas are detailed by Paulhus and Petrusic (2010). Of these, the most intuitively compelling are the so called common-sense measures. Accuracy is simply the difference between the hit rate and the false-alarm rate (i.e., PH – PFA). Knowledge exaggeration is indexed by their mean: (PH + PFA)/2. The inclusion of PH in the latter formula is based on the assumption that those who exaggerate on the foils also exaggerate on the reals: Such respondents inflate their familiarity ratings on both sets of items. Alternatively, PFA can be used directly as an index of exaggeration: If so, then PH should be partialed out (Paulhus et al., 2003).

To illustrate, Table 10.2 presents the values calculated for the hypothetical respondents in Table 10.1. Respondent 1, for example, claimed familiarity with most of the items, including two out of three foils. As a result, this respondent received a relatively high exaggeration score of 0.80. Respondent 2 claimed only

<table>
<thead>
<tr>
<th>Hits (out of 12)</th>
<th>Respondent 1</th>
<th>Respondent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>False alarms (out of 3)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Proportion of hits (PH)</td>
<td>(11/12) = 0.92</td>
<td>(4/12) = 0.33</td>
</tr>
<tr>
<td>Proportion of false alarms (PFA)</td>
<td>(2/3) = 0.67</td>
<td>(1/3) = 0.33</td>
</tr>
<tr>
<td>Accuracy index</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>(PH – PFA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exaggeration index</td>
<td>0.80</td>
<td>0.33</td>
</tr>
<tr>
<td>(PH + PFA)/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Alternatively, PFA can be used directly as an index of exaggeration. If so, PH must be partialed out.
five items (including one foil) resulting in an exaggeration index of 0.33. In fact, Respondent 1 scored higher than Respondent 2 on both accuracy and exaggeration, thereby illustrating that accuracy and bias are not polar opposites within a signal detection framework.

Users preferring more sophisticated signal detection formulas may opt for indexes such as \(d \)-prime and criterion position. A comprehensive comparison of 10 accuracy and 8 bias measures is provided by Paulhus and Petrusic (2010). Their analyses indicated that, with a few exceptions, indexes within the accuracy (or bias) category yield similar results and are relatively orthogonal to those across categories.

Reliability Assessment

A special approach to reliability assessment is required for overclaiming indexes. Because there are two types of items (reals and foils), the individual item ratings do not form meaningful responses. At least one real and one foil are required to calculate either index. Instead, the appropriate method is to calculate correlations of the accuracy scores across topics (e.g., philosophy, life sciences). The topics become the elementary units and the usual reliability indexes (e.g., \(\alpha \)) can be calculated on the resulting correlation matrix. This process is then repeated to calculate the reliability of the exaggeration index.

In the studies reported here, that procedure resulted in reasonable \(\alpha \) values (in the 0.70 to 0.94 range) for both accuracy and bias. Such values are not unlike those of standard personality scales: Thus it appears that two coherent individual differences are being tapped.

Validation of the Two Indexes

Knowledge Exaggeration

The exaggeration index has been validated both as a state and a trait measure of self-presentation. Its utility as a state measure has been demonstrated by its ability to track the level of self-presentational demand across situations. In one study, participants asked to “fake good” scored significantly higher than a group asked to respond honestly (Paulhus et al. 2003, Study 2): On average, participants inflated their familiarity ratings 2.1 points on a 7-point Likert scale. Other studies have corroborated this ability of the exaggeration index to track public self-presentation demand (Roeder & Paulhus, 2009; Tracy, Cheng, Robins, & Trzeszniewski, 2009).

The exaggeration index also correlates positively with trait measures of self-presentation. These criteria include the Narcissistic Personality Inventory (Paulhus & Goldberg, 2008; Paulhus & Williams, 2002; Paulhus et al., 2003; Tracy et al., 2009), Self-Deceptive Enhancement (Paulhus et al., 2003; Randall & Fernandes, 1991), and global self-reports of knowledge (Paulhus & Bruce, 1990). These validities ranged between 0.19 and 0.46. In sum, it appears that the exaggeration index has trait-like properties. It captures meaningful individual differences when all respondents are measured in the same context.
Knowledge Accuracy

Scores on knowledge accuracy have been validated against credible alternative measures of knowledge. In one study, for example, general knowledge of psychology was measured with three formats: OCT accuracy, multiple choice, and short answer (Nathanson, Westlake, & Paulhus, 2007). After disattenuation for unreliability, the alternative methods correlated 0.66 and above with the OCT accuracy index.

When the questionnaire topics include a range of academic content, OCT accuracy scores appear to tap global cognitive ability (Paulhus & Harms, 2004). This conclusion is supported by validation against standard objective measures such as the Wonderlic IQ test, Raven’s matrices, and, especially, the UBC Word test. These correlations range from 0.31 to 0.50 (Paulhus & Harms, 2004; Bertsch & Pesta, 2009). Similar associations were obtained with Chinese versions of a general overclaiming questionnaire and Chinese IQ test (Liu & Paulhus, 2009). The fact that its strongest correlate is the UBC Word test (a measure of verbal ability) suggests that the academic accuracy index taps a crystallized form of verbal intelligence (see Ackerman, 2000).

The Role of Item Content

The OCT was designed as a methodological framework rather than a fixed set of items. In their original overclaiming questionnaire (OCQ), Paulhus and Bruce (1990) included only academic content: 15 items in each of 10 categories (e.g., science, law, philosophy, history, literature, language). The primary source was the set of items compiled by Hirsch (1987): That item set was held to circumscribe the minimal cultural literacy of an educated American.

A subsequent series of studies with the academic OCQ demonstrated that the accuracy index predicted verbal IQ scores in the 0.40–0.60 range (Paulhus & Harms, 2004). The exaggeration index correlated moderately (0.25–0.38) with trait self-enhancement measures such as narcissism and self-deceptive enhancement (Paulhus et al., 2003).

Since then, a variety of other overclaiming questionnaires have been developed. One is the music OCQ, which covers 10 types (classical, jazz, country, pop, etc.). Most elaborate is the lay OCQ, which includes topics more relevant to less educated samples. It includes 25 topics ranging from sports to fashion to world leaders (Nathanson & Paulhus, 2005).

For nonacademic items, the link between the exaggeration index and trait self-enhancement was more nuanced. For example, correlations with narcissism were significant only for topics that the respondent valued (Nathanson & Paulhus, 2005). It stands to reason that people do not invest their egos in knowledge about topics that are irrelevant (or in opposition) to their identities (Ackerman, 2000).

Interestingly, the accuracy index predicted IQ for virtually all of the lay topics. Across the board, high-IQ respondents seem to be able to distinguish real items from foils—even for topics in which they expressed little interest. (Of the 25 lay topics, only two accuracies yielded negative correlations with IQ: professional
wrestling and monster trucks.) Our curiosity about such findings led to the laboratory research described in the next section.

The Nature of Overclaiming Behavior

What would lead individuals to claim knowledge of nonexistent foils—even under anonymous circumstances? Preliminary evidence from our laboratory suggests that cognitive, motivational, and self-presentational elements are at work (Williams, Paulhus, & Nathanson, 2002).

To evaluate the degree of automaticity involved in overclaiming, our laboratory study included a manipulation of stimulus presentation time. The presentation was either speeded (1 second) or extended (3 seconds). The substantial drop in accuracy scores confirmed that less attentional capacity was available under the speeded condition. The exaggeration scores, however, were unaffected and remained correlated with narcissism. This robust pattern suggests that the underlying exaggeration process is more automatic than controlled (Williams et al., 2002).

We also addressed the possibility that overclaiming is simply a memory bias. In other words, people may vary in knowledge exaggeration because they differ in the “feeling of knowing.” For some people, everything looks familiar; for other people, the sense of familiarity with stimuli is calibrated with actual exposure to those stimuli. Both phenomena may be explained by the concept of perceptual fluency (Bernstein & Harley, 2007; Yonelinas & Jacoby, 1996). To index individual differences in the cognitive component, we collected standard measures of memory bias. Results confirmed that individuals with high OCT exaggeration scores also showed a global memory bias. In regression analyses, however, narcissism retained its association with knowledge exaggeration after controlling for memory bias. In short, overclaiming has a motivational component (narcissism) along with a cognitive component (memory bias).

As noted earlier, exaggeration scores are subject to situational demand (Paulhus et al., 2003). However, narcissists exaggerate their knowledge even under anonymous conditions. Hence, overclaiming is not entirely a matter of conscious impression management: Compared to nonnarcissists, narcissists sense that many (even novel) items are familiar. This hindsight effect appears in narcissists even under speeded conditions, where participants cannot accurately distinguish real items from foils. In short, there remains a self-deceptive element to the narcissistic tendency to overclaim.

ADVANTAGES OF THE OVERCLAIMING TECHNIQUE OVER CONVENTIONAL DETECTION METHODS

The advantages of the OCT approach include simplicity, practicality, and robustness across contexts. Its robustness encompasses several important contexts. Under fake-good instructions, for example, exaggeration scores increase but the validity of accuracy scores is sustained (Paulhus & Harms, 2004). Under warning conditions (“some items don’t exist.”), mean exaggeration scores decrease (Calsyn, Kelemen, Jones, & Winter, 2001; Hughes & Beer, 2010), although their validities...
(correlations with narcissism) are sustained (Paulhus et al., 2003). Understandably, warning about foils also introduces a correlation of exaggeration with impression management scores (Randall & Fernandes, 1991).

A singular advantage of OCT is the minimization of stress during test administration. Respondents are simply asked to rate their familiarity with items; no ability testing is implied and no time limit is imposed. Compare that framing with the stress induced by standard ability test instructions: “Get as many correct answers as you can before we stop you.” The minimization of pressure also reduces the motivation to cheat. As a result, overclaiming questionnaires can be administered without supervision. We have confirmed this feature by showing valid results even when participants are allowed to complete the questionnaire at home or on the web (Paulhus et al., 2003).

In sum, the OCT offers a practical and efficient method for indexing exaggeration and accuracy in a targeted knowledge domain. It is robust across a variety of administration conditions. Finally, the method is largely nonthreatening and unobtrusive because the apparent purpose is a survey of idiosyncratic familiarities.

APPLICATIONS

In this section, I describe how the OCT has been applied to address questions in the domains of education, survey research, and personnel evaluation. By dint of their success, these studies also contribute to the construct validity of the two OCT indexes.

Personnel Selection

Among those most concerned with faking on personality tests are psychologists involved in personnel selection (see Griffith & Peterson, 2006). This concern is growing with accumulating evidence that personality is a useful predictor in applicant evaluations (Barrick & Mount, 1991; Hogan, Hogan, & Roberts 1996).

Because of the optimal properties detailed above, the exaggeration index has potential for use as a moderator or suppressor in application contexts. A recent study by Bing and colleagues has confirmed this promise (Bing, Kluemper, Davison, Taylor, & Novicevic, 2009). They administered the academic OCQ to 408 business students along with self-reported achievement motivation and actual GPA. Results showed a suppressor effect of the OCQ exaggeration index on the association between self-report motivation and actual GPA. In short, controlling for exaggeration improved the predictive validity of the self-report measure.

If this result holds up in future studies, the overclaiming technique may provide a valuable research tool for personnel selection. With a few exceptions (Berry, Page, & Sackett, 2007; Schmitt, Oswald, Kim, Gillespie, & Ramsay, 2003), researchers have had difficulty in establishing either suppressor or moderator effects for SDR measures. As noted earlier, the fundamental weakness in traditional SDR scales is the confounding of content and style. As Paulhus and Holden (2010) pointed out, overclaiming avoids that confound because of the objective scoring procedure. Claiming familiarity with nonexistent items is a more face-valid, concrete indicator
of distortion compared to SDR scales, which simply accumulate claims to possess desirable characteristics.

Educational Contexts

In the previous section on knowledge accuracy, I noted a study that compared the validity and efficiency of three educational test item formats, namely, multiple choice, short essays, and overclaiming accuracy (Nathanson et al., 2007). These formats competed head to head in predicting the final course grades. The performance of the OCT accuracy index proved exceptional in two ways. First, it was the most efficient based on validity per unit time. Second, students reported that overclaiming induced less stress than did the other two formats. Interestingly, the OCT exaggeration index also contributed independently to the prediction of final course grades. This index may contribute by tapping a student’s overall sense of confidence about expertise in the field of psychology.

A similar result was recently reported by Pesta and Poznanski (2009) who demonstrated the broader utility of the exaggeration index. Along with predicting IQ, the exaggeration index predicted several indexes of MBA student success. The authors suggested that this predictive power derives from the fact that the optimism implicit in overclaiming promotes success in business.

Finally, OCT has proved useful in tapping knowledge about mental health (Swami, Persaud, & Furnham, 2011). These findings point to the serious consequences of assuming that the general public is sufficiently educated about important social issues.

Marketing Research

Another practical application is to the field of marketing surveys (Nathanson et al., 2007; Roeder & Paulhus, 2009). In traditional measurement of product familiarity, a survey with a list of product names is administered. But foils are rarely included. To control for overclaiming in the study by Nathanson and colleagues, we developed a consumer OCQ with 10 items for each of 12 product categories (e.g., wine, cars, fashion designers, cosmetics brands). Following the standard OCT procedure, 20% of the items in each category served as foils.

In both studies, participants responded under one of three instructional sets: honest responding, fake good, and sabotage. As expected, respondents in the fake-good condition showed the highest exaggeration scores. However, the validity of the accuracy index (i.e., its correlation with IQ scores) held up even under instructions to fake good. Validity was largely undermined in the sabotage condition.

In our more recent study (Roeder & Paulhus, 2009), we expanded the consumer OCQ to 180 items. The newer version includes more topics relevant to women’s consumer interests (e.g., fashion, cosmetics). The survey package also included a measure of cynicism about advertising. Results confirmed the robustness of the accuracy measure under conditions of purposeful exaggeration. Interestingly, cynical consumers were more knowledgeable and overclaimed less than noncynics.
Together, these two studies suggest that the overclaiming technique is a promising tool for characterizing two parameters of product recognition. Although it cannot prevent sabotage, the method does help counter impression management.

ETHICS RESEARCH

Another domain in which it would be naive to accept self-reports is in the measurement of ethical behavior. It is not surprising, then, that the overclaiming technique has been applied to that domain (Joseph, Berry, & Deshpande, 2008; Randall & Fernandes, 1991). In self-reports of business ethics, Randall and Fernandes (1991) showed that overclaiming scores were associated with two forms of socially desirable responding, that is, both impression management and self-deceptive enhancement. That finding was recently clarified by showing that overclaiming is associated with self-reports of ethical behavior but not with reports of ethical behavior by others (Joseph et al., 2008).

FUTURE DIRECTIONS

Although we encourage the application of the OCT to other domains, a number of caveats should be heeded. First, the OCT is a method rather than a fixed questionnaire. The original academic version of the OCQ (Paulhus & Bruce, 1990) proved successful in research 1990s-era North American college students. That version should remain valid because there is reasonable stability in the content of a liberal education. By contrast, the lay versions of the OCQ may quickly lose validity because of instability in the content of popular culture. Researchers must revise (and, if possible, pretest) item sets to suit their sample.

In this process, the selection of foils is a vital step. In principle, researchers should perform a Google search to verify (the nonexistence of) foils immediately before administration of an overclaiming questionnaire. Whereas real items are relatively stable, the status of foils can change overnight.

Nor can the original item set be assumed to work in other cultures. Despite a shared language, the ideal item sets may differ for Scottish university students, Australian bus drivers, and Indian civil servants. Needless to say, translations to other languages require special sensitivity to linguistic issues. Although Liu and Paulhus (2009) had considerable success in comparing Mandarin and English college samples, it may well be that the technique cannot be applied to some languages.

Another recommendation is to consider the ego-relevance of the items (Ackerman, 2000). Our work with the lay OCQ, for example, showed that the exaggeration index works (i.e., correlates with trait self-enhancement) only in knowledge domains valued by the respondent. No matter how narcissistic, those who despise country music will not be inclined to exaggerate their familiarity with the topic. A failure to ensure ego-relevance may impair the detection of individual differences in exaggeration. This floor effect should not be an issue in high-stakes contexts such as scholastic testing and job interviews because all candidates value the job knowledge—at least for the duration of the interview.
A remaining challenge is to determine if the overclaiming method can be applied to moralistic biases as well as egoistic biases (see Paulhus & John, 1998; Lonnqvist, Verkasalo, & Bezmenova, 2007). Knowledge exaggeration is certainly relevant to egoistic bias—the form that distorts self-reports of agentic traits such as intelligence, power, autonomy, and creativity (see Calsyn et al., 2001). It is harder to see how knowledge overclaiming can ever capture the moralistic bias that distorts self-reports of communal traits (e.g., nurturance, cooperation, and self-sacrifice). Nonetheless, research continues on that problem.

A recent development is the use of the OCT to determine the neuropsychological processes underlying self-enhancement. Using neuropsychological methods, Hughes and Beer (2010) demonstrated the activation of the prefrontal cortex when participants are warned about the presence of foils. Presumably, such participants are actively trying to suppress their typical overclaiming tendencies. Another study found that transcranial magnetic stimulation of the prefrontal cortex tends to reduce OCT exaggeration (Kwan et al., 2007). Such studies suggest that faking is best framed as an inhibition process that can be mapped onto neurocognitive substrates.

SUMMARY

The over-claiming technique (OCT) shows promise as a method of identifying fakers while simultaneously measuring their expertise in specific knowledge domains. The procedure is straightforward: Respondents are asked to rate their familiarity with a range of items relevant to a faking domain (e.g., academic facts, workplace items, consumer products). Knowledge accuracy is indexed by a respondent's ability to distinguish real items from nonexistent items (foils). Exaggeration can be measured either by (1) the tendency to claim familiarity with foils or (2) the overall tendency to claim familiarity.

These OCT indexes have proved their utility in a variety of assessment contexts. The exaggeration index has been validated against trait measures of self-enhancement. It has also been shown to track self-presentational demand across situations. Thus, the utility of the OCT appears to extend to both private self-enhancement and conscious impression management.

The accuracy index has been validated against IQ scores and objective measures of knowledge. It retains its validity under varying levels of self-presentational demand. Applications of the OCT have expanded to include marketing research, educational measurement, and ethics research, as well as personnel selection.

The construct validation reviewed in this chapter suggests that the OCT is a powerful framework for self-report assessment. Although application to the faking of personality self-reports remains preliminary, the prospects are exciting.

References

162 New Perspectives on Faking in Personality Assessment

Overclaiming on Personality Questionnaires

10 Paulhus, D. L., & Bruce, M. N. (1990, June). Claiming more than we can know: The Overclaiming Questionnaire. Presented at the meeting of the Canadian Psychological Association, Ottawa.
New Perspectives on Faking in Personality Assessment