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Abstract 

Methodological recommendations strongly emphasize the routine reporting of effect sizes and 

associated confidence intervals to express the uncertainty around the primary outcomes.  

Confidence intervals (CI) for unstandardized effects are easy to construct; However, CI’s for 

standardized measures such as the standardized mean difference (i.e., Cohen’s d), the Pearson 

product-moment correlation, partial correlation, or the standardized regression coefficient are far 

more difficult. The present manuscript develops a general approach for generating confidence 

intervals that places a single distribution – the confidence interval distribution – around an effect 

size estimate.  Confidence interval distributions for standardized effect sizes are conceptually 

simpler than traditional approaches, computationally stable, and easier to present and understand.  

Computer code permitting users to calculate confidence intervals for several standardized effect 

sizes is included.  Confidence interval distributions also provide a clear link between alternative 

conceptions such as Fisher’s fiducial intervals and Bayesian credible intervals. 
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Constructing confidence intervals for standardized effect sizes. 

 

 Following the recommendations of Wilkinson and the APA Task Force on Statistical 

Inference (1999), researchers have been encouraged to supplement the traditional null hypothesis 

test p-values with effect size estimates and corresponding confidence intervals.  Providing and 

examining effect sizes and confidence intervals helps shift the research question from solely 

asking “Is the effect different from zero?” to inquiring as well “What is the estimated magnitude 

of the effect and the precision of that estimate?” (see Ozer, 2007, for a discussion of interpreting 

effect sizes).  For statistics like a mean, creating a confidence interval is simple, straightforward, 

covered in almost every undergraduate introductory statistics textbook, and easily done by hand.  

However, for standardized effect size estimates – including the standardized mean difference, 

correlation coefficient, and the standardized regression coefficient among others – creating a 

confidence interval is complicated, conceptually convoluted, not presented in undergraduate (and 

many graduate) textbooks, and cannot be done by hand.  The conceptual and analytical 

difficulties in creating these confidence intervals are powerful barriers to the teaching, 

understanding, and ultimately the adoption of reporting confidence intervals for standardized 

effect sizes. 

 The purpose of this brief didactic manuscript is to present a more transparent, robust, and 

simpler methodology for the creation of such confidence intervals.  This manuscript first 

introduces a short empirical example and briefly reviews confidence intervals for mean 

differences.  Current approaches for generating confidence intervals for standardized effect size 

estimates are then outlined.  Finally, how these same intervals can be generated through 

randomly constructed distributions that provide a visual parallel to traditional confidence 
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intervals is illustrated.  The present manuscript develops confidence interval distributions for 

effect sizes (standardized and unstandardized) – distributions whose quantiles provide the correct 

confidence interval limits.  This approach allows the determination of a confidence interval 

based on quantiles of the same distribution provides a much cleaner and parsimonious account 

for the generation of an interval and links the approach for obtaining unstandardized and 

standardized confidence intervals. 

Illustrative Empirical Example 

 As an illustrative example, the data from Study 2A from Dunn, Biesanz, Finn, and Human 

(2007) are re-examined. In brief, participants (n=33) were randomly assigned to interact either 

with a stranger (n
1
= 16 ) or their romantic partner (n

2
= 17 ) during a surreptitiously recorded 

interaction.  Afterwards participants reported their levels of positive affect after the interaction 

on a 33-point scale.  Raters coded how hard participants were trying to self-present during the 

interaction on a 1-5 point scale.  The hypotheses were (a) interacting with a stranger would lead 

to enhanced self-presentation relative to the romantic partner and (b) in turn, greater self-

presentation would lead to enhanced levels of positive affect.  Indeed, interacting with a stranger 

led to greater rated self-presentation (M1 = 3.21, SD = .55) than with a romantic partner (M2 = 

2.20, SD = .57), t(31)=5.16, p<.0001, d=1.80, CI.95 .97, 2.60!" #$ .  In turn, self-presentation, 

controlling for condition, was strongly associated with greater positive affect, b = 5.42, b
*
=.76, 

t(30)=3.67, p<.001, df = n – p – 1 = 33 – 2 – 1, where p is the number of predictors.  Throughout 

the manuscript we denote observed standardized regression coefficients as b* to avoid confusion 

with the population regression coefficient.  Thus b and b* refer to the sample unstandardized and 

standardized regression coefficients that are estimates of population quantities ! and !*
, 

respectively. 
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Constructing Traditional Confidence Intervals 

 Confidence intervals for means and differences between means are easily 

calculated.  We examine the present example in detail to define terminology, notation, 

and to make later developments clearer.  The observed increase in ratings of self-

presentation as a function as a function of interacting with a stranger versus romantic 

partner was 1.01.  Placing a (1-! ) confidence interval around this estimate is 

accomplished using the following formulae: 

 µ
1
! µ

2( )
upper

= M
1
! M

2( ) + t(df )1!" /2 sM1 !M2
    (1a) 

µ
1
! µ

2( )
lower

= M
1
! M

2( ) + t(df )" /2 sM1 !M2
.    (1b) 

Here M
1
! M

2( ) = 1.01, t(df )  is the critical t-value given the specified level of ! (e.g., 

+/" 2.04 for !=.05, corresponding to the .975 and .025 quantiles of the t-distribution with 

31 df), sM1 !M2

= spooled 1 / n
1( ) + 1 / n

2( ) = 0.196  is the standard error for the difference 

between two means assuming homogeneity of variance, and df = n
1
+ n

2
! 2( ) = 31 .  

Consequently a 95% confidence interval for the raw mean difference in self-presentation 

is 1.01± .399 , or CI.95 [.611, 1.409].  This development makes the standard assumptions 

of equal variances and normality within the two treatment conditions in the population. 

A visual expression and rationale for this formula is often presented in a manner 

similar to Figure 1 which graphs the sampling distributions for the null hypothesis and 

the estimated alternative hypothesis.  The shape of estimated alternative hypothesis 

sampling distribution for the difference between two sample means is identical to that of 

the null hypothesis sampling distribution with the only difference being the location of 
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the mean difference.  This relationship between sampling distributions is due to the 

ability transform the mean (and differences between means) into a pivotal statistic: 

namely, the t-statistic.  Pivotal statistics are statistics whose distributions do not depend 

on the unknown population parameters (e.g., µ
1
, µ

2
, and !  in this example).  The only 

difference between the sampling distribution of M
1
! M

2( )  under the null 

(
  
H

0
: µ

1
! µ

2
= 0 ) versus under any alternative (e.g., 

  
H

A
: µ

1
! µ

2
= 1.01) is in the 

location parameter. The shape of the sampling distribution does not depend on the values 

of µ
1
 and µ

2
 in the population.  This results in our ability to use the following logic to 

form confidence intervals using the current example: 

1.  Regardless of what the population mean difference actually is, 95% of random 

samples based on the same sample sizes will produce an observed mean 

difference that is within 2.04 estimated standard errors of the population mean 

difference. 

2.  Construct an interval of ±  2.04 estimated standard errors around the observed 

mean difference. 

3.  Since 95% of observed mean differences (across different random samples) are 

within +/- 2.04 estimated standard errors of the population mean difference, 

this interval will therefore cover the population mean difference in 95% of 

random samples.  

 Precisely outlining the logic underlying confidence intervals helps convey their 

interpretation.  Whether our observed interval CI.95 [.611, 1.409] actually covers the 

population mean difference in the Dunn et al. (2007) experiment is unknown – it either 

covers it or it does not.  Our confidence in the interval stems from the long-run 
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probability across repeated random samples – we know that 95% of intervals created in 

this manner will cover the population mean difference.  This leads to the following 

formal definition of a traditional confidence interval. 

Definition:  Given observed data X and interest in fixed population parameter ! , a 

1!"  confidence interval is the interval defined by random endpoints that 

provides a 1!"( )  probability of covering !  over repeated samples.  Specifically, 

a 1!"  confidence interval is determined by the functions of the observed data 

u(X)  and v(X)  such that 

  Pr u(X) !" ! v(X)( ) = 1#$ .      (2) 

 The endpoints of the confidence interval are considered random quantities 

(statistics) as they are strictly functions of the observed data and thus change from sample 

to sample.  Equation (2) presents the construction of confidence intervals with broad 

generality.  For confidence intervals around mean differences, the endpoints u(X)  and 

v(X)  from the definition of a confidence interval represent different quantiles of the 

same distribution, namely the t-distribution multiplied by the estimated standard error.  

Figure 1 presents the .025 and .975 quantiles of this distribution which provides the 

endpoints of the confidence interval and denoted by 95% CI.  Constructing confidence 

intervals for statistics such as means and mean differences is thus straightforward, 

requiring only standard t-distribution tables and simple hand calculations. 

Confidence Intervals for Standardized Effect Size Estimates 

 In contrast, confidence intervals for standardized effect size estimates such as the 

standardized mean difference (d), correlation coefficient (r), partial correlation (pr), and 

the standardized regression coefficient (b
*
) are not amenable to such simple calculations.  
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The difficulty stems from the nature of such statistics – they are not pivotal and cannot be 

simply transformed into pivotal quantities. 

To illustrate, the standardized mean difference in self-presentation is estimated to 

be d = M
1
! M

2( ) / spooled = 1.01 / .562 = 1.797 .  The sampling distribution of the 

standardized mean difference (d) has a different form depending on the population 

parameter ! = µ
1
" µ

2( ) /# pooled .  This is seen in Figure 2 which illustrates the sampling 

distribution of d for 2 different values of !  when each group has n=8.  The variance of 

the sampling distribution increases with ! .  At the same time, the sampling distribution 

becomes more asymmetric (positively skewed).  When ! =0, 95% of observed d’s fall 

between ±1.072 .  In contrast, when ! =1.6, 95% of observed ds fall between [.605, 

3.133].  This latter interval is wider by .38.  Using the same interval width, irrespective of 

the observed value of d as in Equation (1), is no longer appropriate in this context.  The 

sampling distribution of a standardized effect size estimate depends on the value of the 

population parameter. 

 How then do we form intervals for such statistics?  Steiger & Fouladi (1997) 

consolidated a number of principles to provide a unified approach to this problem that has 

generated substantial extensions to different problems (e.g., see Algina, Keselman, & 

Penfield, 2006;  Casella & Berger, 2002; Cumming & Finch, 2001;  Kelley, 2007;  

Kelley & Rausch, 2006; Smithson, 2001, 2003;  Steiger, 2004).  The methodological 

approach outlined in Steiger & Fouladi (1997;  see Kelley, 2007, for an extensive 

discussion and historical review) is to implement two transformations in order to solve 

this problem.  We assume here that all standard model assumptions are met (e.g., for d 
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that errors are independent, and identically normally distributed; for r that both variables 

are bivariate normal). 

The first transformation is to redefine the problem to create a confidence interval 

on the noncentrality parameter of the test-statistic.  Noncentrality parameters are 

monotonic functions of the effect size and sample size.  For the independent groups t-test, 

the noncentrality parameter !  is: 

  ! =
"

1

n
1

+
1

n
2

,or " = !
1

n
1

+
1

n
2

     (3) 

 Here, !  represents the expected value of the noncentral-t distribution with 

df = n
1
+ n

2
! 2 .  From the confidence interval transformation principle (see Steiger & 

Fouladi, 1997, p. 234) if we can determine the confidence interval on the noncentrality 

parameter, then the endpoints of that interval, when converted back to the effect size 

metric (! ), provide the correct endpoints of the confidence interval for the standardized 

mean difference. 

 Determining the confidence interval for the noncentrality parameter requires yet 

another transformation and the use of the inversion confidence interval principle.  To 

illustrate using the present example, the problem now faced is to determine !
lower

 and 

!
upper  defined by the following two equations: 

 Pr t ! t
obs
| " = "

lower( ) = # / 2       (4A) 

Pr t ! tobs | " = "upper( ) = 1#$ / 2      (4B) 

where t
obs

=5.16 is the observed t-test and sample size is kept fixed.  Equation (4A) is 

read as the probability of a (non-central) t-statistic greater than the observed t-statistic 



Confidence Interval Distributions 10 

given that the noncentrality parameter is !
lower

 is equal to !/2.  The values of !
lower

 and 

!
upper  that solve these 2 equations represent the endpoints for the confidence interval on 

the noncentrality parameter.  Then, using Equation (3), !
lower

 and !upper  are transformed 

back into the metric of !  providing endpoints of the confidence interval for the 

standardized mean difference.  In the present example, solving (4) for !=.05 results in 

!
lower

= 2.7924  and !upper = 7.4739 .  In turn, these two different noncentrality 

parameters, when multiplied by 1 / n
1
+1 / n

2
= 1 /16 +1 /17 , provide the 95% CI of 

the standardized mean difference: CI.95 .97, 2.60!" #$ . 

 Solving Equations (4A) and (4B) is not trivial.  For every different value of ! , 

the probability of the observed t-test is different.  Different computer programs 

implement adaptive numerical algorithms to solve for !  with a specified degree of 

precision.  Visually the problem is presented in Figure 3a where the y-axis is 1 minus the 

cumulative probability of t
obs

=5.16 as a function of the noncentrality parameter.  The 

values of !  for which (1- cumulative probability) are .025 and .975 – corresponding to 

!=.05, two-tailed – represent !
lower

 and !upper , respectively. 

 The conceptual difficulty in understanding the process of creating confidence 

intervals for standardized effect size estimates often faced by students is that the lower 

limit and the upper limits of the interval are determined by functions of different 

distributions.  This is illustrated in Figure 3b which parallels figures in Steiger and 

Fouladi (1997, p. 238) and Smithson (2001, p. 614) and presents a graphical illustration 

of the solution to the two endpoints.  Referring back to Equations (4A) and (4B), the 

lower interval endpoint is the 97.5% quantile on the noncentral-t distribution with 
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noncentrality parameter !
lower

= 2.7924  and the upper interval endpoint is the 2.5% 

quantile on noncentral-t distribution with noncentrality parameter !upper = 7.4739 .
1
 

Neither of these distributions are centered around the observed noncentrality 

estimate – the t-statistic (tobs).  Indeed, there is no distribution that is placed around the 

estimate during the process of forming a confidence interval.  Although it produces the 

correct result, the entire process outlined thus far for creating confidence intervals is 

neither simple nor intuitive.  Confidence intervals for means within introductory 

textbooks, as far as we are aware, are never presented in this manner as Equation (1) and 

Figure 1 provide exactly the same solution for unstandardized parameters and are much 

easier to comprehend and solve.   

A Conceptually Simpler Approach: Confidence Interval Distributions 

 The approach popularized by Steiger and Fouladi (1997) relies on different 

sampling distributions for the lower and upper limits of the confidence interval.  

Although this approach produces the correct confidence interval, it is not intuitive or 

easily grasped, and departs dramatically from approaches traditionally taught where a 

single distribution is used for these limits.  Here we demonstrate how confidence 

intervals for standardized effect size estimates may be generated from a single 

distribution.  There are three key elements to this procedure: 

 1.  The construction of a confidence interval is defined from a cumulative 

probability distribution as illustrated in Figure 3A. 

 2.  A cumulative probability distribution, by definition, completely defines the 

probability distribution of a random variable. 

 3.  Intervals on the distribution defined by element 2 are confidence intervals. 
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 The first element is the argument presented by Steiger and Fouladi (1997) and 

Casella and Berger (2002).  These next two elements are not controversial and follow 

logically.  The challenge is that determining the exact distribution that generates a 

confidence interval is not obvious in many cases.  However, for commonly used statistics 

and standardized effect size measures it is possible to (a) bypass the noncentrality 

parameter in the presentation of the confidence interval and, more importantly, (b) 

directly determine the distribution of the limits of a confidence interval using randomly 

constructed distributions (e.g., Berger & Sun, 2008) that are functions of only the 

observed data and standard reference distributions.
2
  These distributions are referred to as 

confidence interval distributions (CID;  see Efron, 1998;  Schweder & Hjort, 2002).  A 

confidence interval distribution is a function of the observed data and whose [!/2, (1-

!/2)] quantiles satisfies the formal definition of a (1-!) confidence interval.  The 

interesting nuances of their interpretation will be deferred to the discussion. 

 Randomly constructed distributions fully describe the variable of interest in a 

manner that allows easy random sampling of that variable.  In the present manuscript 

these are functions of standard reference distributions and known constants such as df, 

sample size, and observed estimates.  To illustrate, the standard central t-distribution is  

t df( ) ~
z

c
(df ) / df

,

 

where z is a random standard unit normal variable (z ~ N(µ=0, #=1)), c
df( )  is the square 

root of a random chi-square variable c
df( ) ~ ! 2

(df )( ) , and z and c
!( )  are independent 

and “~” is interpreted as “has the same distribution as.”  Since z and c
df( )  are functions of 
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standard reference distributions (standard unit normal and $
2
, respectively), obtaining 

random samples (draws) from these reference distributions is straightforward as all major 

statistical packages provide the ability to generate random samples from these 

distributions.  Random sampling from these two standard distributions, when combined 

in the above formula, provides a random sample from the t-distribution with specified df. 

 Returning to the current example, the confidence interval distribution for the 

mean difference presented in Figure 1 is 

µ1 ! µ2 |M1 ! M 2( ) ~ M1 ! M 2 +
z

c(df ) / df
sM1 !M2

= 1.0097 +
z

c(31) / 31
.1956

.
  (5) 

Equation (5) presents the confidence interval distribution for the difference 

between µ1 and µ2  given the difference between the observed sample means.  This is a re-

expresssion of (1A) and (1B) as a randomly constructed distribution –  the distribution of 

(5) is precisely what is graphed in Figure 1 as the estimated alternative hypothesis 

sampling distribution.  In other words, the estimated alternative hypothesis sampling 

distribution in Figure 1 is the confidence interval distribution. 

For pivotal statistics such as means and mean differences, the confidence interval 

distribution is the same as the estimated alternative hypothesis sampling distribution of 

that statistic.  However, this is the exception, not the rule.  For standardized effect size 

measures, the confidence interval distribution will be quite different from the sampling 

distribution of that statistic except in trivial cases where d, r, pr, or b* equal 0.  To 

illustrate, the confidence interval distribution of the standardized mean difference is 

 ! | d,df( ) ~ z 1 / n
1
+1 / n

2
+
d " c

(df )

df

#

$%
&

'( ,

     (6) 
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where d is the observed standardized mean difference and df = n
1
+ n

2
! 2( ) .  By taking a 

large number random draws from the standard distributions of z and c
df( ) , the confidence 

interval distribution ! | d,df( )  shown Figure 4 is readily determined for the present 

example. 

Specified quantiles on the confidence interval distribution are the exact endpoints 

for a confidence interval – regardless of the desired level of confidence.  The 95% 

interval on the distribution defined by (6) between .025 and .975 shown in Figure 4 is the 

95% confidence interval for the standardized mean difference.  More importantly, 

pedagogically, Equation (6) allows us to determine the lower and upper limits of the 

confidence interval of the standardized mean difference with reference to the same 

function of the observed data.  Figure 4 illustrates how we are placing an interval around 

the observed estimate that reflects its imprecision.  The confidence interval distribution 

provides all of the information reflecting the imprecision or uncertainty in the effect size 

estimate. 

 Importantly, this approach is not limited to standardized mean differences but can 

be extended to any statistic whose confidence interval is uniquely determined through 

pivoting the cumulative probability distribution function as in Equation (4).  To illustrate, 

Table 1 presents the randomly constructed confidence interval distributions for a 

standardized mean difference, correlation, unstandardized and standardized regression 

coefficients, and the partial correlation.  Confidence interval distributions are presented 

separately for predictors whose values are fixed (e.g., experimentally assigned) and 

random (e.g., sampled from the population and thus represent observed values). 

Technical details are presented within the Appendix along with simple routines in R (R 
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Development Core Team, 2006) implementing this approach.  As well, simple Excel 

routines are available to examine the confidence interval distribution. 

Additional Examples:  Correlation and Standardized Regression Coefficient 

 Correlation.  Within the stranger condition of Dunn et al. (2007), coded levels of 

self-presentation correlated r(14) = .612 with reported levels of positive affect.  The 

confidence interval distribution for this observed correlation (see Table 1) is presented in 

Figure 5 and quantiles on this distribution allow us to determined readily that this 

relationship has a wide confidence interval of CI.95 .16, .84!" #$ .  Once again note the 

asymmetry in the confidence interval. 

 To provide a visual demonstration of the effectiveness of confidence interval 

distributions in providing the correct nominal coverage rate, Figure 6 presents the results 

of a brief simulation on empirical coverage for the correlation.  Sample size was n=16 

and the population correlation (%) ranged from 0 to .95 in increments of .05 based on 

bivariate normal data.  Plotted are the coverage rates for confidence intervals generated 

by (a) confidence interval distributions (CID) and (b) resampling (bootstrapping) based 

on the bias-corrected and accelerated estimates (BCa;  see Efron & Tibshinari, 1998) as 

well as percentile estimates.  CID intervals were based on 500k samples and bootstrapped 

intervals were based on 4999 resamples (see Beasley et al., 2007, for a general discussion 

of resampling the correlation coefficient);  5000 simulations were conducted for each 

value of %.   As is evident from Figure 6, and as expected, the confidence interval 

distribution maintains the correct coverage rate regardless of the parameter value.  In 

contrast, both the percentile and the BCa bootstrapped intervals’ coverage rate are 

consistently lower than the nominal rate.
3
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 Standardized Regression Coefficient.  Recall that self-presentation, controlling for 

condition, was strongly associated with greater positive affect, b = 5.42, b
*
=.76, t(30)=3.67, 

p<.001.  Using the formula in Table 1 for random predictors – as self-presentation was not 

experimentally controlled – results in a 95% confidence interval for the standardized regression 

coefficient of CI.95 .34, 1.02!" #$ . 

 Unlike other standardized effect size measures presented in Table 1, generating a 

confidence interval for the standardized regression coefficient requires knowledge of several 

parameters – specifically the population R
2
 between the other variables in the regression model 

and the dependent variable as well as the predictor of interest (i.e., multicollinearity).  Using 

sample estimates for generating the confidence interval results in an approximate CI (see 

Appendix for more details, simulation results, and discussion of the difference between the 

current approach and that presented in Kelley, 2007).  Simulations across a range of conditions 

suggest that for sample sizes ranging from 20 to 500 this approach yields correct 95% confidence 

intervals for !*  ranging from 0 to .6 (see Appendix).  Very large population standardized 

regression coefficients (e.g., >.7) may result in poor performance in interval coverage and other 

measures such as the partial correlation are instead recommended when large population effect 

sizes are suspected (see Appendix for a technical explanation). 

 

Obtaining Precise Intervals from a Confidence Interval Distribution 

 At first glance it may appear that confidence interval distributions, by requiring 

random draws from standard reference distributions, may only provide crude 

approximations to the interval endpoints – even if based on 100,000 or more random 

draws.  In reality, all current approaches for determining confidence intervals for 
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standardized effect sizes involve numerical optimization and some small degree of 

imprecision.  The question is whether the obtained estimate is sufficiently precise.  The 

precision of interval endpoints, if not already sufficiently precise, can be further refined 

by adapting stochastic approximation (e.g., see Robbins & Monro, 1951).  Tierney (1983) 

and Chen, Lambert, and Pinheiro (2000) outline the adaptation of stochastic 

approximation to the specific problem of estimating quantiles. In brief, this approach 

takes successive independent estimates of the quantile based on the same number of 

random draws from the CID (e.g., 100k) and creates a moving weighted average of these 

estimates.  This approach asymptotically converges to the exact quantile and is more 

efficient than a simple average of successive quantile estimates.  Code in R implementing 

this approach within the Appendix allows estimation of quantiles of a confidence interval 

distribution with a high degree of precision. 

Discussion 

 Confidence interval distributions provide a unifying treatment for the construction 

of confidence intervals for statistics such as the mean as well as standardized effect size 

estimates.  As well, confidence interval distributions provide a simpler and more 

transparent methodology for teaching the construction of confidence intervals.  At the 

same time, being functions of standard distributions, CIDs provide a methodology that is 

stable, robust, and not susceptible to computational difficulties at the boundaries, and can 

easily be incorporated within more complex analyses and questions (e.g., see Biesanz & 

Schrager, 2009;  Biesanz, Falk, & Savalei, 2009, for additional examples). 

How should we interpret confidence interval distributions? The confidence 

interval distributions presented in Table 1 correspond with Fisher’s fiducial distributions 
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(e.g., Fisher, 1930).  Fisher’s development of fiducial distributions, and fiducial 

probability in particular, generated substantial controversy historically (however, see 

Pitman, 1957, for a lucid discussion of this approach).
 4
  One possibility is to use the 

standard frequentist interpretation, recognizing that the procedure takes advantage of 

modern high speed computers to generate a theoretically correct confidence interval 

tailored for the problem at hand.  We are no longer restricted by the limited number of 

quantile values that could be generated by hand calculators in the first half of the 20
th

 

century which formed the basis for statistical tables for standard probability distributions.  

A confidence interval distribution is a function of the observed data that simply provides 

the correct confidence interval and presents the uncertainty associated with an estimate.  

This is exactly what is traditionally done with using the t-distribution to create the 

confidence interval around an observed mean. 

 Alternatively, the confidence interval distributions in Table 1 can be considered 

and interpreted as Bayesian posterior distributions of the parameter of interest. In a 

Bayesian analysis, the population parameter is no longer considered fixed but instead has 

a probability distribution given observed data that is a function of the likelihood function 

of the observed data and a specified prior distribution for the parameter.
5
  The challenge 

in a Bayesian analysis is in determining the prior distribution to place on the parameter.  

Different choices will result in different posterior distributions given the same observed 

data.  The past decade has seen substantial interest in determining appropriate prior 

distributions that are “objective” in that they allow the observed data to dominate the 

posterior distribution and result in intervals on the posterior distribution that correspond 

exactly to confidence intervals.  The exact confidence interval distributions in Table 1 for 
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standardized mean differences, correlation, and unstandardized regression coefficients 

can be generated explicitly through Bayes Theorem under a non-informative prior 

distribution (see Lecoutre, 1999, 2007;  Berger & Sun, 2008; and Biesanz & Schrager, 

2009, for applied extensions).  When viewed from a Bayesian perspective, intervals are 

placed on the distribution of plausible parameter values.  The probabilities (quantiles) 

have a different interpretation than in confidence intervals.  For instance, the interval on 

the standardized mean difference, CI.95 .97, 2.60!" #$ , is interpreted as the interval 

containing 95% of plausible parameter values.  Bayesian intervals are often referred to as 

credible intervals to highlight the interpretational difference from confidence intervals.  

Confidence intervals generated through the confidence interval distributions presented in 

Table 1 may be interpreted as either correct frequentist confidence intervals or as 

Bayesian credible intervals.  Regardless of the interpretation, CIDs provide all of the 

information regarding the precision with which an effect size is estimated.  

 In conclusion, confidence interval distributions represent an alternative and 

equivalent approach for generating confidence intervals that places a single distribution 

around a standardized effect size estimate.  These distributions are conceptually simpler 

than current approaches, easier to present and understand, and are computationally stable 

and robust.  Finally, confidence interval distributions provide the ability to fully visually 

present the uncertainty associated with an effect size estimate. 
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Table 1.  Definitions and distributions for the randomly constructed confidence interval 

distributions. 

Statistic Confidence Interval Distribution  

Fixed Predictors  

     t-test (! | tobs ) ~ z +
tobsc df( )

df
 

     Standardized Mean Difference ! | d( ) ~ z 1 / n
1
+1 / n

2
+
d " c

(df )

df

#

$%
&

'(
 

     Unstandardized Regression Coefficient ! | b( ) ~
z df sb

c
df( )

+ b  

     Standardized Regression Coefficient !* | b*( ) ~
A
F

1" #
Y $X( k )

2

1" #
Xk $X( k )

2

1+ A
F

2

 

      

AF ~
z

df
+
tobsc df( )

df
 

Random Predictors 

     t-test (! | tobs ) ~
z df + tobsc df( )

c
df +1( )

 

     Unstandardized Regression Coefficient ! | b( ) ~
z df sb

c
df( )

+ b  
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Table 1. Continued.

 
Statistic Confidence Interval Distribution  

     Standardized Regression Coefficient !* | b*( ) ~
A
R

1" #
Y $X( k )

2

1" #
Xk $X( k )

2

1+ A
R

2

 

      

AR ~
1

c
(df +1)

tobsc(df )

df
+ z

!

"#
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     Correlation (! | r) ~ h
z +

rc
df( )

1" r2

c
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#

$

%
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Partial Correlation (!part | rpart ) ~ h

z +
rpartc df( )

1" rpart
2

c
df +1( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

 

   

Note: z ~ N(0,1) is a standard normal variate, c
df( )  ~ ! 2

(df ) , where df are the degrees of 

freedom associated with the observed test-statistic (tobs), and z, c
df +1( ) , and c

df( )  are independent 

with “~” interpreted as “has the same distribution as.”  !
Y "X( k )

2
 is the population squared multiple 

correlation when the predictor of interest (k) is not included within the model and !
Xk "X( k )

2
 is the 

population squared correlation between the predictor of interest (k) and the remaining predictors 

in the model. 
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Figure 1.  Traditional Confidence Interval on the Mean Difference.  Note that the form 

and standard errors of the distributions are identical with the only difference being the 

location. 
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Figure 2.  Sampling distribution of the standardized mean difference based on different 

parameters with n1=n2=8.  Note that the location, form, and standard error of the 

distributions differ. 
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Figure 3.  Traditional formulation for “pivoting” the cumulative distribution function of 

the noncentrality parameter. 
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A.  Cumulative probability distribution function of the observed t-statistic as a 

function of the noncentrality parameter. 
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B.  Functions for the lower and upper endpoints of the noncentrality parameter 

based on the solution in A. 
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Figure 4.  Confidence interval distribution for the standardized mean difference d=1.80.  

Note that the distribution is asymmetric. 
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Figure 5. Confidence interval distribution for the correlation, r(14) = .61. Note that the 

distribution is asymmetric. 
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Figure 6.  95% confidence interval coverage rates for the correlation (n=16) based on 

5000 simulations per cell for confidence interval distributions (CID) and the BCa and 

Percentile bootstraps. 
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1
 The parallel to equation (4) holds when examining means and mean differences.  

That is, formally, the endpoints of the 95% confidence interval for the mean difference 

represent the solutions to the equations  

Pr M
1
! M

2
" 1.0097 | µ

1
! µ

2
= µ

1
! µ

2( )
lower

( ) = .025  and 

Pr M
1
! M

2
" 1.0097 | µ

1
! µ

2
= µ

1
! µ

2( )
upper( ) = .975 . 

2  Randomly constructed distributions have a long history.  For instance, see 

Ruben (1966) for the sampling distribution of the correlation coefficient and Hodgson 

(1968) and Gurland (1968) for expressions for the sampling distribution of the multiple 

correlation coefficient.  Without adequate computational resources their utility was 

limited at the time and transformations that resulted in standard distributions were often 

sought instead. 

3 Resampling procedures are asymptotic and do not necessarily exactly reproduce 

the nominal coverage rate for finite (and small) samples.  Nonetheless, resampling often 

can provide a useful confidence interval generating tool – particularly if model 

assumptions are not met such as with non-normally distributed data (see Kelley, 2005; 

Beasley et al., 2007). 

4 We focus here on the utility of these distributions for the generation of 

confidence intervals with exact frequentist coverage (e.g., see Hannig, Iyer, & Patterson, 

2008, for more recent extensions and developments) in light of the exact correspondence 

with objective Bayesian posterior distributions in most cases. 
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5 Specifically, for the standardized mean difference the posterior distribution of 

the parameter is defined by Bayes’ Theorem as g(! | d) = a"1
f (d |! )# (! )  where f (d |! )  

is the sampling distribution of the observed statistic given ! , ! (" )  is the prior 

distribution of the parameter, and g(! | d) = a"1
f (d |! )# (! )  is a normalizing constant 

a = f (d |! )" (! )
#$

$

% d!( ) . 
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Appendix 

Derivation of Confidence Interval Distributions 

1.  Standardized mean difference. 

Here we outline the general solution to Equation 4.  LeCoutre (2007) presents a 

version of this derivation for the standardized mean difference under a fixed predictor 

that we examine first before considering the standardized regression coefficient under 

random predictors.  Solving (4) requires determining the value of !  that satisfies the 

following equation: 

P t df( ) > tobs !{ } = 1"# ,       (A1) 

where tobs is the observed t-statistic with df degrees of freedom.  Since the sampling 

distribution of the t-statistic with fixed predictors is distributed as 

t df( ) | !( ) ~
z + !

c
(df ) / df

, (e.g., see Fidler & Thompson, 2001), (A1) is equivalent to: 

P
z + !

c
(df ) / df

> tobs

"
#
$

%$

&
'
$

($
= 1)*  

The value of ! that solves this equation (i.e., !
1"#

) results in the 1!"( ) quantile 

of the sampling distribution of the test statistics that equals the observed t-statistic.  

Specifically, 

z + !
1"#

c
(df ) / df

$

%
&
&

'

(
)
)
1"#

= tobs         (A2) 
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Here both !
1"#

 and t
obs

 are fixed quantities and 
z + !

1"#

c
(df ) / df

$

%
&
&

'

(
)
)
1"#

 denotes the 

1!"( )  quantile of this distribution.  The goal is to determine !
1"#

 by solving (A2). 

z + !
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c
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$

%
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(
)
)
1"#

= 0  

z df + !
1"# df " tobsc(df )$
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'
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= 0  

!
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(
)
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= 0  

!
1"# =

tobsc(df )
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%
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(
)
1"#

 

Thus the 1!"( )  quantile on 
tobsc(df )

df
+ z

!

"
#

$

%
&  provides the value of !

1"#
 that solves (A1).  

Converting the noncentrality parameter to the metric of the standardized mean difference 

results in !1"# =
dc

(df )

df
+ z 1 / n

1
+1 / n

2

$

%
&

'

(
)
1"# . 

Therefore the confidence interval 

distribution for the standardize mean difference with a fixed predictor is 

 ! | d,df( ) ~ z 1 / n
1
+1 / n

2
+
d " c

(df )

df

#

$%
&

'( .

 

2.  Standardized regression coefficient (random predictors). 

Determining confidence interval distributions from (A1) requires expressing the 

sampling distribution in a form that is easily manipulated algebraically.  In multiple 
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regression analyses when the predictors are random (i.e., the values of the predictors are 

randomly observed as opposed to fixed experimentally), Rencher (2000) points out that 

the sampling distribution of the test-statistic for the regression coefficient does not follow 

the noncentral t-distribution.  Expanding on Shieh (2006), the distribution of the t-statistic 

for the regression coefficient follows a t-distribution with a noncentrality parameter that 

has a stochastic component.  Expressed as a randomly constructed distribution, the 

sampling distribution of the noncentral t-statistic under random predictors has the 

following distribution: 

 t df( ) ~
z df + !c

(df +1)

c
(df ) .

       (A3) 

For the standardized regression coefficient this results in the following relationship: 

 

P t df( ) > tobs !1"#{ } = 1"# = P

z df +
$*

s
$*

c
(df +1)

c
(df )

> tobs

%

&

'
'

(

'
'

)

*

'
'

+

'
'

.

   (A4) 

The standard error for the standardized regression coefficient is commonly expressed as 

s
!*
=

1" #Y $X

2

df 1" # Xk $X( k )

2( )
 where !

Y "X

2  is the population squared multiple correlation and 

!
Xk "X( k )

2
 is the population squared multicollinearity (i.e., the variance when the variable of 

interest (k) is predicted by the remaining predictors).  Kelly (2007, p. 19) functionally 

solves (A4) directly for !* .  However, the standard error for the standardized regression 

coefficient – just like that of the correlation – is a function of that parameter.  In other 
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words, the standard error is more clearly rewritten as s
!*
=

1

df

1" #Y $X( k )

2

1" # Xk $X( k )

2( )
" !*2 .  

This expression, in the one-predictor case, results in the expression for the correlation (as 

the standardized regression coefficient is the correlation in this case). 

P

z df +
!*

1

df

1" #Y $X( k )

2

1" # Xk $X( k )
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/

0

-
--

1

-
-
-

= 1"2  

P !* >
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 where A =
1

c
(df +1)

tobsc(df )

df
+ z

!

"#
$

%&
 

Thus the confidence interval distribution is 
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!* | b*( ) ~

A
1" #

Y $X( k )

2

1" #
Xk $X( k )

2( )
1+ A

2
.      (A5) 

Equation (A5) provides the confidence interval distribution for the standardized 

regression coefficient under random predictors (see Table 1 for the expression under 

fixed predictors).  However, this expression includes population values for two squared 

multiple correlations within the overall model and the relationship between variable k and 

the other predictors.  This expression results as it is not possible to directly convert the 

noncentrality parameter directly to !*  without referencing other parameters (i.e., the t-

statistic is not pivotal for the standardized regression coefficient).  In contrast, other 

standardized measures, such as the multiple partial correlation, are derivable directly and 

yield exact confidence intervals.  Indeed, (A5) is the result for the partial correlation 

multiplied by a conversion factor.  To use (A5), simply substitute the observed estimates 

of 
1! "

Y #X( k )

2

1! "
Xk #X( k )

2( )
 within (A5) and calculate and examine the interval.  Table 2 presents 

the results of a simulation study examining the empirical coverage rates based on this 

approximation. 

 

Functions in R for Generating Confidence Intervals Through CIDs 

Note that this code is available on the author’s website 

(http://www.psych.ubc.ca/~jbiesanz/) along with Excel files for the standardized mean 

difference and correlation.  The Excel program requires Office 2008 or newer versions 

which allow more than 32k rows. 
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################################################ 

# Functions for estimating a confidence interval on standardized effect sizes. 

# Load the function by running the function first.  

# Several examples are presented at the end 

# See Biesanz, J. C. (2009).  Constructing Confidence Intervals for Standardized 

Effect Sizes. Manuscript under review. 

# for references and discussion. 

################################################# 

 

################################################ 

#CIR.r:  Function for estimating the confidence interval for an observed correlation 

or partial correlation 

#Assumes that variables are randomly sampled as opposed to a fixed predictor 

#Variable definitions: 

#  r:    observed correlation or partial correlation 

#  df:   degrees of freedom from overall analysis 

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################ 

 

CIR.r<- function(r, df, conf, iter){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 hr <- (rnorm(M,mean=0,sd=1) +r*sqrt(rchisq(n= M,df=df,ncp=0))/(sqrt(1-r*r)) 

)/sqrt(rchisq(n= M,df=df+1,ncp=0))  

 CID <- hr/sqrt(hr*hr+1) 

  

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  hr <- (rnorm(M,mean=0,sd=1) +r*sqrt(rchisq(n= M,df=df,ncp=0))/(sqrt(1-r*r)) 

)/sqrt(rchisq(n= M,df=df+1,ncp=0))  

  CID <- hr/sqrt(hr*hr+1) 

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 
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################################################ 

#CIF.d:  Function for estimating the confidence interval for an observed standardized 

mean difference 

#Assumes that the predictor is fixed. 

#Variable definitions: 

#  d:    observed standardized mean difference 

#  n1  sample size for group 1  

#  n2  sample size for group 2  

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################ 

 

CIF.d<- function(d,n1,n2,conf, iter){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 df <- n1+n2-2 

 CID <- rnorm(M,mean=0,sd=1)*sqrt(1/n1 + 1/n2) +d*sqrt(rchisq(n= 

M,df=df,ncp=0)/(df))  

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  CID <- rnorm(M,mean=0,sd=1)*sqrt(1/n1 + 1/n2) +d*sqrt(rchisq(n= 

M,df=df,ncp=0)/(df))  

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 
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################################################ 

#CIR.d:  Function for estimating the confidence interval for an observed standardized 

mean difference 

#Assumes that the predictor is randomly sampled. 

#Variable definitions: 

#  d:    observed standardized mean difference 

#  n1  sample size for group 1  

#  n2  sample size for group 2  

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################ 

 

CIR.d<- function(d,n1,n2,conf){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 tobs<- d/sqrt(1/n1 + 1/n2) 

 df <- n1+n2-2 

 CID <- sqrt(1/n1 + 1/n2)*(rnorm(M,mean=0,sd=1)*sqrt(df) +tobs*sqrt(rchisq(n= 

M,df=df,ncp=0)))/sqrt(rchisq(n= M,df=(df+1),ncp=0))  

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  CID <- sqrt(1/n1 + 1/n2)*(rnorm(M,mean=0,sd=1)*sqrt(df) +tobs*sqrt(rchisq(n= 

M,df=df,ncp=0)))/sqrt(rchisq(n= M,df=(df+1),ncp=0))  

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 
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################################################ 

#CIF.beta:  Function for estimating the confidence interval for an observed 

standardized regression coefficient 

#Assumes that the predictor is fixed. 

#Variable definitions: 

#  beta:   observed standardized regression coefficient 

#  tobs  t-test for the regression coefficient 

#  df  df for the t-test 

#  R2full R-squared from the overall analysis 

#  R2X.Xk   R-squared when the predictor of interest is predicted by the other 

variables in the model  

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################  

CIF.beta<- function(beta,tobs,df,R2full,R2X.Xk,conf, iter){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 R2change <- (tobs*tobs)*(1-R2full)/df 

 R2reduced <- R2full - R2change 

 D <- sqrt((1-R2reduced)/(1-R2X.Xk)) 

 Af <- rnorm(n=M,mean=0,sd=1)/sqrt(df) + tobs*sqrt(rchisq(n= M,df=(df),ncp=0))/df 

  

 CID <- Af*D/sqrt(1+Af*Af) 

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  Af <- rnorm(n=M,mean=0,sd=1)/sqrt(df) + tobs*sqrt(rchisq(n= 

M,df=(df),ncp=0))/df 

  CID <- Af*D/sqrt(1+Af*Af) 

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 
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################################################ 

#CIR.beta:  Function for estimating the confidence interval for an observed 

standardized regression coefficient 

#Assumes that the predictor is randomly sampled. 

#Variable definitions: 

#  beta:   observed standardized regression coefficient 

#  tobs  t-test for the regression coefficient 

#  df  df for the t-test 

#  R2full R-squared from the overall analysis 

#  R2X.Xk   R-squared when the predictor of interest is predicted by the other 

variables in the model  

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################ 

CIR.beta<- function(beta,tobs,df,R2full,R2X.Xk,conf, iter){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 R2change <- (tobs*tobs)*(1-R2full)/df 

 R2reduced <- R2full - R2change 

 D <- sqrt((1-R2reduced)/(1-R2X.Xk)) 

 Ar <- (1/sqrt(rchisq(n= M,df=(df+1),ncp=0)))*(tobs*sqrt(rchisq(n= 

M,df=(df),ncp=0))/sqrt(df) + rnorm(n=M,mean=0,sd=1))  

 CID <- Ar*D/sqrt(1+Ar*Ar) 

  

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  Ar <- (1/sqrt(rchisq(n= M,df=(df+1),ncp=0)))*(tobs*sqrt(rchisq(n= 

M,df=(df),ncp=0))/sqrt(df) + rnorm(n=M,mean=0,sd=1))  

  CID <- Ar*D/sqrt(1+Ar*Ar) 

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 
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################################################ 

#CI.b:  Function for estimating the confidence interval for an observed unstandardized 

regression coefficient 

#Predictor may either be randomly sampled or fixed -- the result is the same 

#Variable definitions: 

#  b:   observed standardized regression coefficient 

#  tobs  t-test for the regression coefficient 

#  df  df for the t-test 

#  conf: desired confidence level (two-sided) 

#  iter: how many iterations of the stochastic approximation to run.  Over 1000 may 

be quite slow. 

#Returns: 

#  1.  Estimates of the upper and lower confidence interval endpoints. 

################################################ 

 

CI.b<- function(b,tobs,df,conf, iter){ 

 M <-200000 

 alphaL <- (1-conf)/2 

 alphaU <- 1- alphaL 

 sb <- b/tobs 

 CID <- rnorm(n=M,mean=0,sd=1)*sqrt(df)*sb/sqrt(rchisq(n= M,df=(df),ncp=0)) + b 

  

 initial <- quantile(CID,probs=c(alphaL, alphaU)) 

 initialqL <- initial[1] 

 initialqU <- initial[2] 

 lastqL <- initialqL 

 lastqU <- initialqU 

 

 lastdenL <- density(CID, from= lastqL, to = lastqL +1)$y[1] 

 initialdenL <- lastdenL 

 lastdenU <- density(CID, from= lastqU, to = lastqU +1)$y[1] 

 initialdenU <- lastdenU 

  

 for (n in 1: iter){  

  CID <- rnorm(n=M,mean=0,sd=1)*sqrt(df)*sb/sqrt(rchisq(n= M,df=(df),ncp=0)) + 

b 

 

  fnL <- (1-1/n)*lastdenL + (1/n)*(sum(abs(CID-

lastqL)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnL <- lastqL + (1/(n*max(fnL,initialdenL/sqrt(n))))*(alphaL - sum(CID <= 

lastqL)/M) 

   

  fnU <- (1-1/n)*lastdenU + (1/n)*(sum(abs(CID-

lastqU)<=(1/sqrt(n))))/(2*M*(1/sqrt(n))) 

  SnU <- lastqU + (1/(n*max(fnU,initialdenU/sqrt(n))))*(alphaU - sum(CID <= 

lastqU)/M) 

  lastqL <- SnL 

  lastdenL <- fnL 

  lastqU <- SnU 

  lastdenU <- fnU 

 } 

 c(SnL,SnU) 

} 

 

#Examples from Biesanz (2009) 

CIR.r(r=.612, df=14, conf=.95, iter=200) 

 

CIF.d(d=1.80, n1=17, n2=16, conf=.95, iter=200) 
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Table 2. Empirical coverage Rates for 95% confidence interval on the standardized 

regression coefficient. 

 

Population Standardized Regression Coefficient (!
y1.2

* ) 

Condition    0 .2 .4 .6   

No Multicollinearity (!12=0) 

   !y2=0 

 n=20    95.14 95.10 95.00 94.88 

 n=100    95.18 94.98 95.36 94.92 

 n=500    94.96 95.18 94.60 94.46 

   !y2=.40 

 n=20    94.84 94.64 94.26 90.14 

 n=100    95.78 94.76 93.40 91.10 

 n=500    94.96 94.84 94.04 91.38 

 

Low Multicollinearity (!12=.2) 

   !y2=0 

 n=20    95.00 94.98 95.08 94.20 

 n=100    95.20 95.04 95.28 94.60 

 n=500    94.64 95.14 94.98 94.80 

   !y2=.40 

 n=20    95.44 94.84 94.22 91.96 

 n=100    95.08 94.66 94.30 92.24 

 n=500    94.84 94.74 94.10 93.02 

 

Medium Multicollinearity (!12=.4) 

   !y2=0 

 n=20    94.60 94.64 94.66 94.68 

 n=100    95.14 95.00 94.64 94.38 

 n=500    94.96 94.76 94.76 94.40 

   !y2=.40 

 n=20    94.90 94.30 93.88 93.28 

 n=100    94.55 94.66 94.40 93.08 

 n=500    95.55 95.30 94.30 93.04  

Note.  All simulations based on 5000 replications of a 3 variable model where 

!
y1.2

*
=
"
y1
# "

y2
"
12

1# "
12

2
.  Data were simulated as random multivariate normal. 

 


