Visual Attention

Brandon Tomm

Rensink (2011) The Management of Visual Attention in Graphic Displays Ware (2013) Chapter 11

Outline

- What is attention?
 - How attention is situated in the visual system
 - Types of attention
- Attention and visual design
 - How to guide attention
 - How to increase attentional efficiency

What is attention?

- A set of processes that guide visual perception
- Processes are largely independent (Allport, 1993)
- Operate on raw outputs from early vision

Attention in the visual system

- Early vision
 - Rapid, parallel
 - Builds proto-objects
 - Unique objects pop-out (salience)
 - Is considered pre-attentive
- The relatively rough outputs of early vision start to guide attention

Types of visual attention

- Selective integration
 - Integrates features at a specific location into an object file (Wolfe 2000)
 - Serial
 - Slow if target is not salient

Types of visual attention

- Selective coherence
 - Proto-objects are selected together by coherence
 - Resulting structure is called a *coherence field* or *nexus*
 - Construction of coherence fields is rapid

Types of visual attention

- Selective experience
 - Salient information may not be experienced
 - Inattentional blindness (Mack & Rock 1998; Simons & Chabris, 1999)

Nonattentional processing

- Not all processing requires attention
- Some processes that can be done automatically:
 - Statistical summary
 - Scene gist/layout

How to guide attention

- Using low-level salience
 - Unique featural cues (e.g., orientation, length)
 - Increased illuminance
 - Increased level of detail
 - Configural focus (e.g., intersection of lines, paths of motion)

How to guide attention

• Using high-level interest

How to guide attention

- Using a combination of low-level and high-level mechanisms
 - Exploit learned associations

How to increase attentional efficiency

- In visual design, the goal is to reduce effort, avoid fatigue
- Use low-saliency design
 - Minimize salience of targets to avoid fatigue
 - Minimize salience of non-targets to avoid distraction
- Use perceptual organization (reduce clutter)

How to increase attentional efficiency

- Maximize compatibility with attentional mechanisms
 - Use a restricted set of values (limited colours, sizes, orientations)
 - Use restricted positioning
 - Use restricted number of elements

Unrestricted

Restricted (b)

How to increase attentional efficiency

- Offload attentional processing onto nonattentional systems
 - Pattern detection for visual analytics
 - Statistical estimation

Conclusions

- A set of attentional mechanisms select low-level outputs for higher-level processing
 - But not all processing requires attention
- Low-level and high-level processes can be used to guide attention
- Visual design can increase attentional efficiency and minimize viewer fatigue