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Ideal observers, real observers, and the return of Elvis

Ronald A. Rensink

(Commentary on Chapter 6: “Implications of a Bayesian formulation of visual
information for processing of psychophysics”, DC Knill, D Kersten, P Mamassian)

Knill, Kersten, & Mamassian (Chapter 6) provide an interesting discussion of how the

Bayesian formulation can be used to help investigate human vision.  In their view,

computational theories can be based on an ideal observer that uses Bayesian inference

to make optimal use of available information.  Four factors are important here: the

image information used, the output structures estimated, the priors assumed (i.e.,

knowledge about the structure of the world), and the likelihood function used (i.e.,

knowledge about the projection of the world onto the sensors).  Knill & Kersten argue

that such a framework not only helps analyze a perceptual task, but can also help

investigators to define it.   Two examples are provided (the interpretation of surface

contour and the perception of moving shadows) to show how this approach can be

used in practice.

As the authors admit, most (if not all) perceptual processes are ill-suited to a

"strong" Bayesian approach based on a single consistent model of the world.  Instead,

they argue for a "weak" variant that assumes Bayesian inference to be carried out in

modules of more limited scope.  But how weak is "weak"?  Are such approaches

suitable for only a few relatively low-level tasks, or can they be applied more

generally?  Could a weak Bayesian approach, for example, explain how we would

recognize the return of Elvis Presley?

The formal modelling of human perception

To help get a fix on things, it is useful to examine the fate of an earlier attempt to

formalize human perception:  the application of information theory.  It was once

hoped that this theory—a close cousin of the Bayesian formulation—would provide a

way to uncover information-handling laws that were largely independent of physical

implementation.  In this approach, the human nervous system was assumed to have
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communication channels of limited bandwidth; if data transfer were sufficiently slow,

delays in reaction times would be measurable.  By mapping out delays as a function

of the probabilities of alternative inputs (i.e., the information they contained), it was

hoped that the channel bandwidths could be determined, along with the amount of

information associated with each stimulus (see, e.g., Gregory, 1986; Pierce, 1980).

As it turned out, information theory did not live up to these hopes.  Although in

principle it provided a general framework in which to explore information handling,

in practice it was relevant only for highly-constrained tasks where relatively little

practice was allowed, where stimuli were simple, and where strategy could not be

used (see, e.g., Gregory, 1986).

What went wrong?  In retrospect, it is clear that at least three factors were at play:

(i) The basic units in the perceiver were ill-defined.  Not only were these units

entirely internal, but they were unstable: new, more efficient units could be learned with

practice (i.e., "chunking").

(ii) The probabilities attached to these units were ill-defined.  If something occurred

only once, what probability would it be assigned?  How would probabilities be updated

when new input was received?  Frequencies might be used, but under what condition

were the counts "reset"?

(iii) The structures actually used could not be controlled.  Although the members of

the input set might be clearly defined, attentional effects could restrict the units being

used or even bring in extraneous ones (Gregory, 1986).

Looked at more generally, it is evident that formalisms such as those based on

information theory (or on Bayesian inference) implicitly constrain a process, since its

structure must conform to the structure of the formalism if relevance is to be

maintained (see, e.g., Pierce, 1980).  In particular, at least three conditions must be

met:

(i) The basic terms can be reliably mapped to structures in the perceiver.

(ii) The relations between the terms (including probabilistic ones) match the relations

between the corresponding structures in the perceiver.

(iii) The resulting structures are independent of all other factors (i.e., independent of

context).
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From the ideal to the real

Knill et al manage to avoid many of the difficulties that plagued information-theoretic

approaches, since unstable subjective quantities are now replaced with stable

objective ones.  But this alone does not guarantee the suitability of their ideal

observer, for a real observer is constrained by much more than just available

information.  First of all, physical limitations on available time and space constrain the

amount of information that can be stored and transformed.  Next, biological factors

(both developmental and phylogenetic) constrain process formation--it might not be

possible to have priors and likelihoods wired into the neural hardware, much less

learn them from experience.  Finally, ecological factors limit the kinds of tasks that are

carried out.  It is only important that an organism do the right thing; this does not

necessarily require Bayesian inference.

Given these considerations, what kinds of perceptual process might be suited to an

ideal-observer analysis?  To begin with, "ideal" inputs and outputs must correspond

to structures in the real observer.  But such correspondences can be difficult to

establish.  For example, the external world might serve as its own representation,

being sampled whenever detailed information is required (O'Regan, 1992).  If the

return of Elvis were recognized in this way (e.g., by verifying a few key image

properties), it would be difficult to determine exactly what was involved.

Furthermore, the combinatorial explosion of possible objects and events (see e.g.,

Tsotsos, 1987) means that—for the most part—increasingly complex structures are

increasingly rare.  If input and output structures are formed via learning, large

differences could then arise between observers with different histories.  Space

limitations might also force rarely-used structures to be discarded, leading to history-

dependent differences within observers.  The existence of stable, well-defined

structures common to all observers is therefore not guaranteed, especially at higher

processing levels.

It can also be difficult to determine the kind of inference actually used.  Optimal

information usage does not necessarily imply Bayesian inference:  other techniques

exist (such as those based on signal-detection theory), and these cannot be easily (if at

all) reconciled with Bayesian inference (Gigerenzer et al., 1989).  Thus, for example, it

would be necessary to show that recognizing the return of Elvis does not simply

require Elvis-detection of some kind, but requires determining the posterior

probability of this event.  And because Bayesian priors are based on event frequencies,

it would also be necessary to explain how priors would be assigned to a once-only

event never observed before.  Furthermore, there is also the matter of computational

resources.  The lowest levels of visual processing involve the detection of photons, a
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relatively simple task best analyzed using signal-detection theory (see, e.g., Barlow,

1962).  Indeed, detection tasks are common in low-level vision, and it may be that the

time and space limitations typical of these levels prohibit the use of (more

sophisticated) Bayesian inference.

A final consideration concerns the priors.  Given some well-defined prior

probability of encountering Elvis, this value would certainly be higher in Tennessee

than in Finland.  More generally, priors are often functions of several variables--

indeed, Kersten & Knill use such a "conditional" prior in their analysis of contour

interpretation.  Unless the prior is a true invariant, information will be thrown away

by use of a context-free prior (essentially an average over all conditions).  But using a

context-dependent prior requires knowing the context.  If this involves other inferred

properties, further inference will be required, which in turn might require still more

inference, and so on.  This could lead to a set of strongly-coupled equations in which

nothing can be determined until everything has been determined.  The application of

ideal observers must therefore be limited to tasks involving priors that are invariant,

or at least that depend upon each other in a non-recursive way.

Problems and possibilities

Insofar as a task avoids ill-defined structures and resource-limited processes, and has

well-defined priors that are relatively invariant (at least under some set of conditions),

there is a chance that it can be analyzed by a weak Bayesian approach.  The tasks

discussed by Knill & Kersten are exactly of this type.  Subjects in their experiments are

given ample time to respond, and the structures involved are relatively simple ones

(transparent or painted surfaces, shadows) that are meaningful and that the subjects

have often seen before.

But notice that complications arise even here.  For example, even the task of

interpreting surface contours is too complex to be handled in its most general form.

Instead, analysis is restricted to a few "modes" corresponding to special contexts that

are particularly easy to handle.  Knill & Kersten make the important point that their

approach allows generality to be gradually increased,  but it is not clear how much

generalization can be done in practice.  The authors also show how knowledge about

the priors can be gradually refined by use of "well-formed" constraints, but again, it is

not clear how far this can be taken.  Their approach therefore runs the risk not only of

being unsuitable for processes at the upper and lower ends of the processing stream,

but also of being unsuitable for many interesting processes in between.

However, all is not lost.  Although time and space limitations may intrude upon

some processes, these are not always arbitrary "tricks", but rather can be graceful
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adaptations that make good use of available resources (see e.g., Enns & Rensink,

1991).  Many take the form of rapid processes specialized for particular modes of the

priors.  Thus, although it might not always be possible to generalize computational

models in the way envisioned by Knill & Kersten, it might still be possible to make

use of their framework.  In particular, a Bayesian analysis of a world might uncover

modes corresponding to common contexts (e.g., direction of lighting from above)

which could then be used as bases for the specialized processes.  It is important to

notice the shift of emphasis here--specialized problems (and processes) would no

longer be convenient methodological stages, but would be true entities in their own

right.  In other words, ontology would recapitulate methodology.

Similar considerations apply to the variations in individual observers.  These

variations could be captured in a natural way by relatively coarse devices, such as the

monotonicity relationship used by Knill & Kersten in their model of contour

interpretation, or the lattice framework of Jepson & Richards (1992).  Again, this

coarseness would not just be a methodological convenience, but would reflect the true

variability of the process (due to accidents of history, variations in values, etc.).  Note

that this variability could be more than simple variation in the values of priors and

likelihoods--it could also include variation in the structures used, or the procedures

applied.  Taking this view, of course, does not rule out a progressive refinement of

priors.  But such refinement will often stop well short of a quantitative formulation.  A

systematic comparison of the variations present at different levels might then serve as

a new source of insight into the relation between the observer and its environment.
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