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Psychology is a hyperempirical science. Psychological 
scientists receive substantial training in data analysis 
and research design and use those skills to discover 
and publish novel findings. It is not surprising that, in 
the wake of prominent failures to replicate prior results 
(Open Science Collaboration, 2015), the ways in which 
psychological scientists collect, analyze, and report data 
have been scrutinized (Benjamin et  al., 2018; Nosek 
et al., 2018; Simmons et al., 2011). But empirical practices 
are not the only ones being more closely examined. 
Building on older arguments about issues related to 
weak theories in psychology (Cummins, 2000; Gigerenzer, 
1998; Kruglanski, 2001; Meehl, 1978, 1990), many have 
pointed toward the poor state of psychological theories 
as one of the causes of the current replication crisis 
(Fiedler, 2017; Gray, 2017; Morey et al., 2018; Muthukrishna 
& Henrich, 2019; Oberauer & Lewandowsky, 2019; 
Schaller, 2016; Smaldino, 2017).

Although there is a wealth of articles identifying the 
benefits that can accrue from better theories, there is a 

lack of instruction on how to accomplish this goal. It 
is not clear what constitutes a strong theory in psychol-
ogy, how such theories should be built, and how the 
strength of the existing theories can be evaluated. With 
this deficit in mind, here we focus on the methodology 
of theory building. We highlight two existing methods: 
construct validation and computational modeling. 
These methods can be taught, learned, and used to 
produce better theories and hypotheses.

Construct validation and computational modeling 
have been a part of the psychological landscape for 
decades, and each is commonly used to accomplish 
specific research objectives. However, their broader 
utility in the service of theory development remains 
underappreciated. In the sections below, we outline the 
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points of convergence and divergence among them to 
illuminate the anatomy of a theory in psychology—what 
a well-specified theory should contain and how it 
should be continually revised through an iterative 
theory-development process. We propose that these two 
methods can be combined to achieve two characteristics 
of strong theory: mechanistic explanations of psycho-
logical phenomena and predictions with a narrow range. 
We argue throughout that theoretical and methodologi-
cal rigor are interdependent and that both are necessary 
for progress within the psychological sciences.

Theory in Psychology: Weak 
Explanations and Wide Predictions

A scientific theory consists of a set of connected state-
ments that work together to explain and predict observ-
able phenomena. Explanations offered by a theory lead 
to testable predictions, often resulting in theory revi-
sion. This process leads to cumulative knowledge as 
theories are iteratively modified, improved, or eventu-
ally abandoned (Meehl, 1990). This may seem like a 
straightforward recipe, but it is not. Few psychological 
phenomena are directly observable, and psychologists 
theorize about latent constructs such as neuroticism, 
working memory, or altruism. Psychological theories 
establish the existence of such constructs and postulate 
how they interact to explain and predict psychological 
phenomena (Fidler et al., 2018; Gawronski & Bodenhausen, 
2015). The fundamental challenge facing theorists in 
psychology is to create testable theories that provide 
increasingly better explanations that produce ever more 
precise predictions.1

Explanations in psychology

What does it mean to explain a psychological phenom-
enon? In physics, explanation commonly requires sub-
suming a phenomenon under a universal law. In 
contrast, psychology, and many other life sciences, 
rarely postulate such laws. Rather, explanations in these 
sciences specify parts and relationships of a system to 
explain how they give rise to phenomena. For example, 
the increased probability of performing a previously 
rewarded action can be explained by a learning mecha-
nism that tracks the expected value of actions and 
updates those values on the basis of difference between 
expected and observed rewards following different 
actions (i.e., reinforcement learning models; Dolan & 
Dayan, 2013). To offer another such example from 
another domain of psychology, the likelihood of a child 
demonstrating a relationally aggressive behavior (e.g., 
social exclusion) may be predicted by examining other 

aspects of the child’s personality, the presence of other 
forms of psychopathology in the child, and the nature 
of the child’s social relationships and functioning 
(Brandes et al., 2021).

Such explanations aim to be mechanistic and are 
commonly found in psychology and biology. These 
types of explanations rely on the precise specification 
of the component parts, the operations performed by 
these parts, and dynamic patterns of change in the 
properties of the components and their operations 
(Bechtel & Abrahamsen, 2005, 2010; Craver, 2006). A 
good mechanistic understanding provides an explana-
tion by detailing the system that gives rise to the phe-
nomenon. In psychology, many theoretical explanations 
attempt to do this but fall short because of imprecisely 
specified components and imprecisely defined relation-
ships between components (Cummins, 2000; Hommel, 
2020). Psychological theories often specify weak rela-
tionships (e.g., A decreases B) between poorly under-
stood latent constructs (e.g., anxiety and inhibition).

Predictions in psychology

Strong explanations give rise to precise predictions that 
can be empirically verified. In this way, theories are 
corroborated or gradually abandoned. However, rela-
tive to other sciences, psychology progresses slowly 
toward cumulative knowledge, and this slow scientific 
progress is due in part to the difficulty of actually fal-
sifying predictions derived from most psychological 
theories (Meehl, 1978, 1990). This difficulty follows 
from two sources of imprecision. First, many theories 
yield predictions that cover a wide range of possible 
empirical outcomes (i.e., spielraum of a theory; Meehl, 
1990). For example, a theory might simply predict a 
nonzero positive correlation between constructs with-
out offering any more precise prediction about the mag-
nitude of that nonzero effect. This would be the case if 
we predict that neuroticism and depressive symptoms 
are positively related. Second, many theories are char-
acterized by vaguely defined constructs that cover a 
broad range of possible empirical operationalizations 
(Oberauer & Lewandowsky, 2019). This makes falsifying 
predictions difficult: When we fail to observe the pre-
dicted relationship between neuroticism and depression, 
we can try to use a different self-report measure for each 
of them or assess them through task-based measures. 
To be truly falsifiable and to produce the most confident 
predictions, theories in psychology should be articulated 
in a manner that tightly constrains the search space of 
operational variables that might plausibly correspond 
to hypothetical constructs. Theories should also predict 
a tightly constrained range of results.2
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Building Better Theory in Psychology: 
Two Methods

Here we introduce two existing sets of methodological 
tools and practices that can be used to construct theo-
ries that offer better explanations and more precise 
predictions. They come from two distinct research tradi-
tions: individual-differences and experimental psychol-
ogy (Cronbach, 1957). However, both methods share 
the same goal of increasing precision in the specifica-
tion of psychological constructs and their relationships. 
Both strive to achieve this goal through an iterative 
process of theory building, testing, and revision.

Construct validation

Construct validation (Clark & Watson, 2019; Cronbach 
& Meehl, 1955; Meehl, 1986) is an iterative theory-
development process based on the idea that construct 
operationalization and measurement should reflect an 
intertwined iterative process directly informing—and 
informed by—overall theory development in psycho-
logical science. Despite its widely relevant and gener-
alizable implications across psychological science, 
construct-validation approaches have been primarily 
used in individual-differences research areas such as 
clinical and personality psychology.

The construct-validation process can (and should) 
consist of many components (Clark & Watson, 2019; 
Tay & Jebb, 2018), including construct operationaliza-
tion, psychometric properties of a given scale presumed 
to measure the construct (e.g., reliability, structural 
validity), and adherence to a theoretically specified 
nomological network of other measures in association 
with the target construct (e.g., convergent/discriminant 
validity and predictive validity). All aspects of the 
construct-validation process rely on extant theory. Each 
aspect of the construct-validation process requires for-
mulating scientific hypotheses (e.g., to what other psy-
chological variables your construct of interest should 
or should not be related) and testing those hypotheses 
with data (Cronbach & Meehl, 1955). In this way, all 
scientific investigations are limited by the measures 
researchers use, and the measures used are similarly 
limited by the theoretical integrity underpinning them.

Despite the widespread citation of the classic 1955 
article by Cronbach and Meehl (Google scholar cur-
rently reports more than 12,500 citations), the process 
of construct validation is often misunderstood in mod-
ern psychological science. This misunderstanding leads 
to the creation and use of measures with little, if any, 
established evidence of construct validity. Common 
misconceptions of the construct-validation process 
include focusing on one aspect of construct validity to 
the exclusion of others (e.g., equating a satisfactory 

Cronbach’s alpha or confirmatory factor structure with 
“achieving” construct validity), misunderstanding the 
integral and foundational role of theory in the 
construct-validation process, or attributing construct 
validity to a property of an instrument rather than an 
ongoing and iterative theory-development process via 
interpretations of an instrument’s measurements (Clark 
& Watson, 2019; Cronbach & Meehl, 1955; Tay & Jebb, 
2018). These misunderstandings likely result in research-
ers in some areas of psychology viewing construct 
validation as irrelevant for them and researchers in 
other areas of psychology who identify more with con-
struct validation often approaching it incompletely and, 
thus, inaccurately.

Examples of construct-validation efforts do exist, 
although the limited scope of the current article does 
not allow an exhaustive review of these efforts. Efforts 
focused on comprehensive and thorough construct-
validation efforts in their own right are less common, 
although it is clear that such efforts have far-reaching 
implications for measurement and theory (for an exam-
ple of a comprehensive construct-validation effort, see 
Brandes et  al., 2021). A comprehensive approach to 
construct validation would also elucidate the extensive 
overlap with the steps involved in the computational-
modeling process. The common practice of ignoring 
construct validation can result in a host of problems, 
including improper construct specification, poor psy-
chometric properties of instruments, and a proliferation 
of redundant and amalgam constructs in the literature, 
all of which are likely contributors to the current crisis 
of replication in psychological science (Maul, 2017; 
Meehl, 1986). Narrative justification for scale creation 
or use is no substitute: “Rationalization is not construct 
validation” (Cronbach & Meehl, 1955, p. 291). The 
importance of construct-validation efforts is clear, but 
the field remains in dire need of more empirical dem-
onstrations of this process in the literature.

Computational modeling

Whereas construct-validation methods focus on specific 
constructs and their operationalization, computational-
modeling methods are typically used to inform research-
ers about specific processes such as decision-making or 
the evolution of altruism. Computational models formal-
ize psychological processes through mathematical mod-
els. They specify the algorithms through which inputs 
to the model (e.g., rewards following actions) are trans-
formed into outputs (e.g., selection of actions). In this 
way, computational models offer a formal account of 
the parts of psychological processes and their functions, 
as well as a set of testable predictions (Farell & 
Lewandowsky, 2018; Forstmann & Wagenmakers, 2015; 
Smaldino, 2017).
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Cognitive science has a long tradition of developing 
formal models of processes such as decision-making 
(Ratcliff, 1978, 1981), learning (Rescorla & Wagner, 
1972; Sutton & Barto, 1981), and vision (Marr & Poggio, 
1979). Such models can simulate trial-by-trial behavior 
(e.g., decisions or reaction times) and thus offer strong 
predictions that can be compared with empirical results 
(for introductions to modeling in cognitive science, see 
Farell & Lewandowsky, 2018; Heathcote et  al., 2015; 
Lee et al., 2019; Wilson & Collins, 2019). In the next 
step, computational models can be fit to data to extract 
latent variables (e.g., the expected value of different 
actions in the environment). As a result of these ben-
efits, computational models are becoming increasingly 
popular in fields outside of the strict scope of cognitive 
science. Formal models of cognitive processes are used 
to understand psychopathology (Grahek et al., 2019), 
emotion (Eldar et al., 2016), the relationship between 
emotion and cognition (Grahek et al., 2020), and the 
neural implementation of cognitive processes (Forstmann 
& Wagenmakers, 2015).

Outside of the domain of cognitive science, compu-
tational models are commonly used to identify plausible 
outcomes of evolutionary processes (e.g., the evolution 
of altruism; Fletcher & Doebeli, 2009; Hammond & 
Axelrod, 2006). Such models, often used in biology, are 
increasingly implemented in social and cultural psy-
chology to model long-term population-level processes. 
These agent-based models are used to generate testable 
hypotheses in domains that defy easy logical analysis 
(e.g., models of complex social-influence dynamics and 
their implications for cultural evolution; Muthukrishna 
& Schaller, 2020; for additional social-psychological 
applications, see Smith & Conrey, 2007; Jackson et al., 
2017).

Although computational models have recently been 
applied to a wide range of psychological research top-
ics, modeling methods remain an underused tool for 
theory development in psychological sciences (e.g., 
Jackson et  al., 2017; Muthukrishna & Schaller, 2020; 
Smaldino et al., 2015). As theory-building tools, they 
offer two benefits: First, they force the theorist to be 
explicit about all of the assumptions that go into the 
model (e.g., in construct validation, assumptions guid-
ing choices for operationalization and relationships 
specified in the nomological network); second, they 
offer the possibility to derive precise predictions from 
the model (in a construct-validation framework, guiding 
predictions around convergent/divergent and criterion 
validity). When computational-modeling approaches 
are overlaid on construct-validation approaches, as we 
detail more extensively below, resultant theories are 
substantially strengthened by leveraging the benefits of 
both.

Theory-Building Steps in Construct 
Validation and Modeling

Although construct-validation and computational-
modeling methods are typically applied to different 
kinds of research questions, these methods share some 
fundamental similarities. One important similarity is that 
both methods truly are methods—practical procedures 
that can be taught and learned and thus incorporated 
into textbooks and courses on research methods, which 
can help to overcome the lamentable deficit in theory-
oriented methodological training (Gray, 2017; Kruglanski, 
2001). These methods also share broad procedural simi-
larities. First, both methods require researchers to con-
ceptually articulate a theoretical model and specify how 
the theoretical model can be empirically assessed. Sec-
ond, both methods call for iterative revision of the 
model on the basis of empirical results. However, there 
are also important differences between these methods, 
which we review below.

Articulation of a theoretical model

Theoretical models developed through construct valida-
tion articulate the latent construct of interest by specify-
ing its measurement and positioning it within a wider 
network of related constructs. Constructs are defined 
in a way that enables the specification of the hierarchi-
cal structure of the construct (Clark & Watson, 2019) 
and the continuum of measurable responses that char-
acterize the construct (Tay & Jebb, 2018). Alongside the 
conceptualization of the focal construct, researchers 
also identify an entire universe of other constructs that 
are related to it (as causes, consequences, or corre-
lates). The theoretical core of construct validation is the 
nomological network (Cronbach & Meehl, 1955). The 
network specifies how the construct of interest is 
related to other latent constructs, relying on existing 
scientific knowledge to create testable hypotheses 
about every component of the network (and thus about 
the construct itself).

The nomological network offers a set of hypotheses 
specifying which constructs should be positively related 
to the focal construct (convergent validity) and which 
should be negatively related to the main construct (dis-
criminant validity). In doing so, the types of psychologi-
cal processes and mechanisms frequently evoked in 
computational modeling are embedded in the con-
struct-validation process. A construct-validation study 
focusing on a specific operationalization of depression 
may specify a nomological network hypothesizing a 
strong, positive association with a measure of trait neu-
roticism and a strong negative association with trait 
extraversion. Such hypotheses allow for the explication 
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of underlying mechanisms: For example, the experience 
of depression may reflect a more severe behavioral 
manifestation of underlying tendencies to experience 
high levels of negative affect as well as tendencies to 
experience low levels of reward motivation or behav-
ioral activation. In this way, each aspect of the nomo-
logical network embeds the type of mechanistic features 
of a computational model, although this is not typically 
made explicit in many construct-validation efforts. Like-
wise, articulating these hypotheses in a construct-validation 
effort produces directly testable empirical hypotheses that 
can be tested, resulting in information entered back into the 
model, revisions made, and new tests performed—another 
process that is very similar to a standard computational-
modeling design.

Computational-modeling projects are typically moti-
vated by a conceptual analysis of a specific psychologi-
cal process. This analysis determines the problem that 
a process is trying to solve and how to solve it (Farell 
& Lewandowsky, 2018; Marr, 1982; Wilson & Collins, 
2019). For example, assuming that attention is a limited 
resource, a process can solve the problem of how and 
when to allocate this resource. After determining the 
problem, the analysis proceeds to propose a good algo-
rithm that can effectively solve this problem (e.g., weigh 
the costs and benefits of allocating attention in a certain 
way). The specification of the goal of a process is a 
crucial step in selecting an algorithm through which 
the process can achieve that goal.

In computational modeling a theoretical model is 
implemented by a set of algorithms that specify the 
components of the model (which would align with 
“constructs” in a construct-validation sense) and the 
interactions between them. These algorithms transform 
inputs to the model (e.g., rewards and costs associated 
with different ways of allocating attention) into outputs 
(e.g., the allocation of attention in a specific way). In 
this way, the model produces behavior that can then 
be compared with the empirically observed behavior 
in experiments (Heathcote et al., 2015; Lee et al., 2019; 
Wilson & Collins, 2019). This step commonly includes 
simulating the results from the model by varying inputs 
(i.e., experimental conditions) and parameter values of 
the model (i.e., components of the model) to simulate 
experimental conditions. These procedures also allow 
researchers to systematically vary the model inputs and 
parameter values to simulate outputs that are predicted 
to occur under different experimental conditions. In this 
way, the model produces precise quantitative results 
that can then be compared with the empirical results 
generated by conceptually analogous experiments.

Although both approaches begin with the conceptual 
articulation of a construct under investigation, they do 
so in different ways. Construct validation defines the 

construct of interest (e.g., neuroticism) and positions it 
within a wider network of related constructs. In this 
approach the construct under investigation is of pri-
mary interest, whereas the specification of the relation-
ships between latent constructs is secondary. In contrast, 
computational modeling focuses primarily on specify-
ing the formal relationships through which constructs 
interact to solve a problem (e.g., how much cognitive 
resources to invest). In this approach the relationships 
between constructs are of primary interest, whereas the 
specification and measurement of the included con-
structs often come second.

Appraisal of evidence and consequent 
conceptual revision

Both of these methods involve testing and revising 
theory on the basis of empirical data. The construct-
validation approach tests aspects of the theoretically 
specified operationalized construct and the hypothe-
sized nomological network. This involves testing the 
measurement of constructs, the relationships between 
them, and the operationalization of the main construct 
of interest. All of these aspects of the theory are further 
revised on the basis of the data, and the nomological 
network is elaborated and the theoretical understanding 
of the main construct of interest is increased.

Many—although not all—computational-modeling 
projects also involve the collection and critical appraisal 
of empirical data. This step involves comparing the 
simulated and observed data as well as the fitting of 
the model to the empirical data. Further, in this step the 
parameters of the different latent constructs are extracted 
after the fitting to the empirical data and then validated 
against other relevant constructs such as self-report 
measures of psychopathology (Rouhani & Niv, 2019) or 
neural data (Daw et  al., 2011; Fischer & Ullsperger, 
2013). The model is further refined on the basis of the 
results of this step; unnecessary components can be 
removed from the model, and new components can be 
added (a parallel step to refining the nomological net-
work). Finally, in both approaches different competing 
models can be compared in their goodness of fit to the 
data.

Both construct-validation and computational-modeling 
methods have an iterative quality. Neither methodology 
is static, and rarely will the end product of either 
method be a simple falsification and abandonment of 
a theory. Rather, both methodologies are dynamic and 
highly constructive sets of tools designed for theory 
building. When considered together, these tools can 
lead to more highly elaborated research programs 
(Lakatos, 1976) and can guide psychological scientists 
toward more refined understandings of latent constructs 
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and their relationships, as well as better ways of mea-
suring them.

Toward an Integrated Method: How to 
Develop a Psychological Theory

Building a theory starts with a question. To build a good 
theory, we need to ask good questions and imagine 
what satisfying answers would look like. Thinking 
about questions and answers allows us to set the appro-
priate level of abstraction of our theory. For example, 
if our goal is to understand the reasons behind indi-
vidual differences in job performance, we will probably 
want to generate a theory at the level of personality 
traits, motivation, and social interactions. That would 
be the correct level of abstraction that will likely gener-
ate good and useful predictions. The process of accu-
mulating visual evidence toward a decision bound is 
definitely a process involved in job performance; how-
ever, this level of abstraction is unlikely to be useful 
for our theory. Of course, the reverse is also true: If we 
want to understand the properties of stimulus-driven 
attention, including the construct of work motivation 
in our explanation is unlikely to be helpful. Both con-
struct validation and computational modeling can be 
helpful tools regardless of our chosen level of abstrac-
tion. What is important is that our theory can offer 
satisfying explanations and useful predictions at the 
level of abstraction at which it operates.

Once we have determined the appropriate level of 
abstraction of our theory, we can start thinking about 
how to create good explanations and generate good 
predictions. This is where construct validation and com-
putational modeling have unique strengths and weak-
nesses, and this is precisely where an integrated 
approach to theory building, leveraging the strengths 
of both methods, can be useful. The quality of explana-
tions and predictions offered by our psychological 
theory depends on its anatomy: the clarity of its parts 
(latent constructs) and the precision of relationships 
between the parts (interactions between latent con-
structs). Construct validation can help us better define 
our constructs, and computational modeling is a great 
tool for developing a precise understanding of the rela-
tionships between constructs. Here we detail these 
advantages and how they can be integrated.

Better explanations

A complete explanation of a psychological phenome-
non requires an understanding of underlying mechanisms. 
To provide a good description of such a mechanism, we 
need to precisely specify its component parts and stipulate 

how they interact to produce the phenomenon of inter-
est (Bechtel & Abrahamsen, 2010; Craver, 2006). Theo-
ries developed through construct validation and 
computational modeling both attempt to do so but have 
complementary strengths and weaknesses in their abil-
ity to provide mechanistic explanations. In practice, 
construct validation is often more focused on determin-
ing and defining the components, whereas computa-
tional modeling is more focused on how the components 
interact to produce phenomena of interest.

Detecting the parts: lessons from construct valida-
tion.  Computational models are characterized by the 
structure that parallels mechanistic explanations: They 
specify components of a process and the nature of rela-
tions between components. However, although all com-
putational models have this kind of structure, models 
differ in the quality of their explanations. An important 
part of these differences comes from the extent to which 
the components of a model are well defined and can be 
reliably measured.

For instance, in some areas of biology, computational 
modeling commences after researchers have already 
accumulated substantial knowledge about the compo-
nents, their operations, and the organization of a mech-
anism (see Bechtel & Abrahamsen, 2010; Servedio et al., 
2014). Further, in these biological disciplines, there 
often exist well-established, highly reliable, and demon-
strably valid means of measuring the essential compo-
nents (e.g., sex ratio) or mechanistic processes (e.g., 
protein synthesis). Although this is sometimes the case 
in psychological science, it very often is not. Psycho-
logical scientists often create models of processes that 
are difficult to measure and include components that 
have only face validity. Many modeling projects begin 
with assuming the components and their interactions, 
and models are usually validated by demonstrating that 
the model can simulate the relevant phenomena exhib-
ited by humans or other animals. This is especially true 
in areas outside of the strict scope of cognitive science, 
such as clinical psychology, affective science, or social 
psychology. For example, let us go back to our task of 
creating a theory to explain individual differences in 
job performance. One can easily create a model with 
many interacting parameters (e.g., Job Performance = 
Ability + Level of Education + Motivation / (Anxiety × 
Hostility)). This model will be able to generate a num-
ber of predictions, some of which will likely resemble 
empirical data (e.g., job performance will improve with 
an increase in work motivation). However, this model 
is useless because it operates on ill-defined constructs 
that have undefined measurement properties and an 
unclear hierarchical structure.



Anatomy of a Psychological Theory	 809

A part of this problem can be addressed by applying 
construct-validation methods along with computational 
modeling during theory development and revision. 
Construct validation offers a systematic methodology 
that can be used to define a construct at a conceptual 
level of analysis—including its hierarchical structure 
and the continuum of stimuli or responses that might 
characterize it (Clark & Watson, 2019; Tay & Jebb, 
2018). In this way, the components included in the 
computational model can be validated. Before starting 
to simulate findings from our model of job perfor-
mance, we will need to conduct a construct-validation 
study aimed at creating a refined nomological network 
of this construct. This network can include all of the 
abovementioned components, but it will iteratively 
revise the network until a satisfying set of connections, 
hierarchical structures, and measurement properties are 
defined. For example, this means spending time on 
testing whether anxiety and hostility can be explained 
by one factor in the network or not. This will also 
include developing reliable measures for each of these 
constructs.

The focus of construct validation on quantifying and 
reducing measurement error can be very useful in 
developing and testing theories. For example, if our 
model of stimulus-driven attention predicts a 20-ms 
difference between experimental conditions but the 
measurement error on a behavioral task assessing the 
relevant construct is 100 ms, a researcher might be wise 
to delay model testing until a more sensitive and reli-
able measure can be developed. This can be particu-
larly useful in those domains of experimental psychology 
in which researchers have historically paid relatively 
little attention to measurement issues, especially when 
applied to individual-differences research with behav-
ioral tasks (Hedge et al., 2018; Rouder & Haaf, 2019).

Detecting the relationships: lessons from computa-
tional modeling.  Construct-validation methods, espe-
cially in the domains of personality and clinical psychology, 
can be used to develop theoretical models—nomological 
networks—that establish the existence and measurement 
of constructs, as well as directional and hierarchical rela-
tionships between constructs (e.g., DeYoung, 2015; Kotov 
et al., 2017). Such networks systematically specify the 
universe of other constructs—causes, consequences, 
correlates—that might plausibly be related to a construct 
of focal interest. In our example this would correspond to 
a well-developed nomological network of job perfor-
mance. However, in practice, nomological networks com-
monly lack the formal specification of the exact causal 
mechanisms, such as explicit statements about the quanti-
tative aspects of the association (e.g., a positive correlation 
between .40 and .60) or full elucidation of the dynamical 

operations and interactions between constructs in the 
nomological network.

Computational modeling begins with the question 
about the problem that a process is trying to solve. 
From that starting point, a modeler thinks about the 
potential sets of components and their relationships 
that can solve the posed problem. For example, we can 
pose the question of what determines how well people 
perform on their job. One proposal could be that peo-
ple are trying to balance the costs (e.g., effort, work 
hours, stress), benefits (e.g., great colleagues, a sense 
of purpose, salary), and their own abilities (e.g., level 
of education) to determine their level of performance. 
Modeling can then proceed to search for different algo-
rithms that could plausibly be useful in modeling this 
complex decision-making process. Once such algo-
rithms are found, computational models can rely on 
construct-validation efforts for the specification and 
testing of the included components. However, modeling 
methods will push construct-validation efforts to move 
beyond vague unspecified hypotheses (e.g., external 
motivation is positively related to job performance).

Computational models generate a clear articulation 
of the relationships through which components of a 
model interact. In this way, computational models pro-
vide very specific predictions at both the conceptual 
and numerical level. For example, a computational 
model can suggest that the relationship between exter-
nal motivation and job performance depends on previ-
ous learning history related to received rewards on 
other jobs. In this way, the developed theory can be 
conceptually strengthened, which will translate into a 
constrained empirical space for hypothesis testing (e.g., 
the theory will need to be revised if it predicts a cor-
relation between .40 and .60 but the observed correla-
tion is .15). It is this kind of additional conceptual 
development—the transparent and precise mechanistic 
articulation of each individual strand within a nomo-
logical network—for which computational-modeling 
methods are ideally suited (Oberauer & Lewandowsky, 
2019; Smaldino, 2017). In this way, the theories devel-
oped through construct validation could capture the 
more dynamic picture of the underlying psychological 
processes.

Better predictions

Good theories produce increasingly narrow predictions 
that can be tested against empirical data. This is the 
main route to cumulative knowledge in science: Theo-
ries are corroborated, modified, or abandoned on the 
basis of empirical evidence. If our theory predicts that 
job performance will be positively related to the moti-
vation of a worker, our theory is practically worthless: 
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This is an extremely wide prediction that is difficult to 
reliably test. To improve our theory, we need to narrow 
the prediction range of our model and specify the ways 
of measuring the components of the model. Computa-
tional modeling and construct validation play comple-
mentary roles in achieving these goals and thus 
improving the precision of predictions derived from 
psychological theories.

Narrowing the prediction range: benefits of com-
putational modeling.  A crucial characteristic of a 
good theory is that it produces predictions that can be 
corroborated or falsified. This is the case only when the 
predictions of a theory have a narrow range relative to all 
possible empirical outcomes (i.e., spielraum; Meehl, 
1990). When constructing a theory, or analyzing one, we 
should detect the entire range of possible outcomes of 
the crucial variables. Then we should analyze how much 
of that space is restricted by the prediction made by the 
theory. For example, our weak theory can predict that 
job performance will improve as a function of motiva-
tion. The entire range of possible empirical outcomes 
ranges from the maximal negative correlation to maximal 
positive correlation. The directional prediction of our 
theory covers 50% of that space. Thus, our theory is not 
doing better than a coin flip in predicting psychological 
phenomena.

The main advantage of computational-modeling 
methods is that they push researchers to formalize their 
models. Formal models constrain the prediction range 
in at least three useful ways. First, they specify interac-
tions between multiple parameters that are commonly 
beyond simple linear relationships between constructs. 
In this way, predictions from a theory can be more 
specific (e.g., an inverted U-shape relationship between 
job difficulty and performance), and thus the prediction 
range is narrowed. Second, formal models can simulate 
psychological phenomena (Wilson & Collins, 2019), 
allowing for the generation of numerical predictions 
from the model. Indeed, this is one of the primary 
benefits of computational-modeling methods. They 
enable researchers to produce numerical predictions 
that are far superior to the directional predictions that 
characterize many verbal theories. Third, these methods 
compel researchers to transparently specify the logical 
components of a hypothesis—including underlying 
assumptions, logical derivations from those assump-
tions, and the sequence of psychological events through 
which one construct is hypothesized to influence 
another construct. When these logical components and 
mediating mechanisms are made transparent, research-
ers are more likely to consider them critically and to 
appraise their generalizability. A key assumption may 
hold in some cultural contexts, for instance, but not 
others; and a presumptive sequence of psychological 

events may readily occur under some conditions but 
be disrupted under others (Klatzky & Creswell, 2014; 
Schaller, 2016). By compelling researchers to transpar-
ently specify the mechanistic logic underlying a hypoth-
esis, computational modeling provides a systematic 
means through which researchers can more readily 
discover—and therefore make more precise predictions 
about—specific conditions under which a hypothesized 
effect is likely, or unlikely, to occur.

Better specification of predictions: benefits of con-
struct validation.  The narrow prediction interval of a 
theory is not useful unless the ways of testing that predic-
tion are precisely specified. For example, a narrow pre-
diction interval about the level of correlation between 
two constructs is useless if those two constructs can be 
measured with several different measures that will pro-
duce different results. Our computational model specify-
ing the process through which people set their level of 
performance at work will be of little use if it includes 
components that have large measurement error relative 
to the prediction interval.

A necessary step in improving the predictions arising 
from a theory is to precisely specify the ways in which 
the relevant constructs can be measured (Oberauer & 
Lewandowsky, 2019). Construct-validation methods 
provide a systematic method through which the mea-
surement of latent constructs can be specified. A 
construct-validation study would aim to directly specify 
the measurement of each of the constructs within the 
nomological network of job performance. This limits 
researchers’ degrees of freedom when testing the 
underlying theoretical model, thus allowing that theory 
to be more truly falsifiable.

Putting These Principles Into Practice

This article has attempted to explain why construct-
validation and computational-modeling methods can 
be an asset to theory development in psychology, but 
we have not directly addressed the question of how 
these principles can be put into practice. We do not 
have space here to provide a fulsome and detailed 
answer to that question. Instead, we briefly identify 
some potentially useful points of departure.

One step in the right direction requires no technical 
expertise whatsoever. It is simply to adopt the habit of 
asking conceptual questions of the sort that are associ-
ated with construct-validation and computational-
modeling methods. Consider first the kinds of questions 
associated with construct validation. For any psycho-
logical construct of interest (e.g., embodied cognition, 
relational aggression, parental caregiving motivation), 
it is valuable to ask questions that help to define the 
conceptual space occupied by that construct, such as: 
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What exactly is it? What isn’t it (i.e., in what ways is it 
conceptually distinct from other similar-seeming con-
structs)? Is it truly a single coherent psychological con-
struct, or might multiple meaningful constructs be lurking 
here that might best be conceptually defined, and opera-
tionalized, as separate psychological entities? These 
questions are complemented by additional questions—
about causes, correlates, and consequences—that are 
necessary for constructing a nomological network. As 
with all scientific endeavors, these questions are best 
addressed in a systematic way. For instance, deeper 
insights into the causes of many psychological con-
structs may be achieved through deliberate consider-
ation of distinct questions about underlying mechanisms, 
development, adaptive function, and phylogenetic his-
tory (i.e., “Tinbergen’s four questions”; Nesse, 2013). 
Questions about correlates and consequences can also 
be systematically subdivided into separate questions 
pitched at different levels of psychological analysis 
(e.g., behavioral manifestations, cognitive operations, 
neural processes). These are just examples. The broader 
point is that when researchers make an effort to sys-
tematically consider questions that characterize the 
“conceptualization” phase of construct validation (Clark 
& Watson, 2019), the effort can pay off in the form of 
more precise conceptual definitions of constructs (and, 
consequently, better measures of those constructs), 
more carefully articulated theories about those con-
structs, and more nuanced hypotheses that make accu-
rate predictions.

A complementary set of questions are associated 
with computational-modeling methods. Because these 
methods require that constructs be implemented in 
terms of algorithmic operations, researchers are faced 
with questions about how best to do so (e.g., “Which 
of these possible algorithmic operations corresponds 
most closely to the conceptual definition of this con-
struct?”). Researchers are thus compelled to more pre-
cisely define the conceptual space occupied by a 
construct. In addition, because computational models 
require researchers to specify computational steps 
through which each construct exerts a hypothesized 
effect on another construct, researchers are confronted 
with questions about the mechanistic logic of the 
hypothesized relation (e.g., “What precise sequence of 
intervening psychological events might plausibly 
account for the hypothesized effect?”). Consequently, 
after specifying these sequences of operations, 
researchers are in a better position to ask additional 
questions that probe the robustness of each hypoth-
esized relation (e.g., “What assumptions must one 
make to be confident about the plausibility of this 
particular sequence of psychological events? Under 
what conditions might this particular sequence of 
events be less plausible?”).

To more fully avail oneself of the benefits of construct-
validation and computational-modeling methods, one 
needs to acquire some expertise in these methods. It 
would be great if construct-validation and computational-
modeling methods were part of every psychological 
scientist’s formal education, but the absence of formal 
instruction need not be a barrier. A little reading goes 
a long way. Clark and Watson (2019) provide an excel-
lent introduction to construct-validation methods, and 
Brandes et al. (2021) offer an illustrative example show-
ing how construct-validation methods can be systemati-
cally used to achieve a better understanding of one 
particular construct (relational aggression). As for com-
putational modeling, Smaldino (2020) provides guid-
ance on specific steps that researchers can follow to 
translate an imprecise verbal theory into a more precise 
formal model, and Jackson et  al. (2017) provide an 
excellent introduction—including examples, tips, and 
a step-by-step guide for beginners—to one particular 
modeling methodology (agent-based models) and its 
applications within social psychology. For the future 
modelers interested in cognitive psychology, Wilson and 
Collins (2019) provide an excellent step-by-step intro-
duction. And although some computational-modeling 
articles are highly technical and difficult for beginners 
to decode, there also exist more approachable examples 
that, with a minimum of technical detail, illustrate how 
computational-modeling methods can aid theory build-
ing in domains of “soft” psychology—such as personal-
ity, social, and cultural psychology (e.g., Muthukrishna 
& Schaller, 2020; Smaldino et  al., 2015; Smaldino, 
Lukaszewski, von Rueden, & Gurven et al., 2019).

Conclusion

Psychology is a hyperempirical science, but this was not 
always the case. Early textbooks in the field, such as James 
(1892/1961) and McDougall (1908), were strong on ideas 
but weak on evidentiary support for them. The early his-
tory of psychology is full of bold theoretical models pro-
posed to explain perception (Fechner, 1987; Helmholtz, 
1866/1962), learning (Skinner, 1965; Thorndike, 1933; 
Tolman, 1925), and personality (Freud, 1920/1959). In 
the intervening decades, the field was much more 
focused on creating a large body of empirical results. 
However, the increased empirical focus of psychology 
was rarely paralleled with theoretical progress. Rather, 
many fields of psychology experienced a proliferation 
of weak and increasingly narrow theories that are dif-
ficult to refute or corroborate. This is especially true 
for theories in “soft psychology.” Decades ago, Meehl 
(1978) observed that theories in clinical, social, and 
personality psychology were “scientifically unimpres-
sive and technologically worthless” (p. 806). However, 
these are not the only areas of psychology that are 
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experiencing such issues. Similar concerns about the 
weakness of theories have been raised in cognitive 
psychology (Gigerenzer, 1998; Hommel, 2020).

Meehl (1978) suggested that weak theories lead to a 
myopic overreliance on the empirical tools that psy-
chological scientists use to analyze and draw inferences 
from empirical data. Instead of engaging in theory test-
ing, psychologists seek to establish the statistical sig-
nificance of effects, and this practice does not lead to 
cumulative knowledge. These concerns have been 
echoed many times since (e.g., Cohen, 1994; Gigerenzer, 
1998; Greenwald, 2012; Higgins, 1992), most recently in 
the wake of the “replication crisis” (e.g., Fiedler, 2017; 
Gray, 2017; Klein, 2014; Morey et al., 2018; Muthukrishna 
& Henrich, 2019; Oberauer & Lewandowsky, 2019; 
Schaller, 2016). Despite the recognition of the poor 
state of theory in many fields of psychology, and the 
problems associated with such a state, it remains 
unclear what steps should be taken to improve psycho-
logical theories.

Here we have argued that there is a need for more 
clearly articulated methods that can be used to build 
better theories with increased explanatory and predic-
tive power. Despite the poor overall state of theory in 
psychology, certain subfields have a long tradition of 
research focused on theory development and testing. 
We have described computational modeling and con-
struct validation—two systematic methods for theory 
development. Both methods include a close relation-
ship between theory development and theory testing 
and represent dynamic workflows through which a 
theory is iteratively refined on the basis of empirical 
data. We have shown how they can complement each 
other and be combined to develop strong psychologi-
cal theories. Only when combined can these methods 
produce process models that include precisely speci-
fied psychological constructs and clear algorithms 
through which they interact to give rise to psycho-
logical phenomena. These methods represent a set 
of teachable tools that can produce theories that offer 
better explanations, make more precise predictions, 
and more fully satisfy the standards of scientific 
practice.
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Notes

1. Evaluation of theory strength is a matter of debate among 
philosophers of science. Although there is no agreed-on set of 
criteria, there is broad agreement that the quality of explana-
tions and predictions offered by a theory are crucial for evalu-
ating the strength of a theory (Fidler et al., 2018; Gawronski & 
Bodenhausen, 2015).
2. This narrow prediction range does not necessarily have to be 
numerical. Predicting a rank order, a shape of a function, or a 
nuanced set of multiple orthogonal directional predictions are all 
ways to constrain the range of predicted results (Meehl, 1990).
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