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This theme issue has highlighted the links between sociality, health and fitness

in a broad range of organisms, and with approaches that include field and cap-

tive studies of animals, comparative and meta-analyses, theoretical modelling

and clinical and psychological studies of humans. In this concluding chapter,

we synthesize the results of these diverse studies into some of the key concepts

discussed in this issue, focusing on risks of infectious disease through social

contact, the effects of competition in groups on susceptibility to disease, and

the integration of sociality into research on life-history trade-offs. Interestingly,

the studies in this issue both support pre-existing hypotheses, and in other

ways challenge those hypotheses. We focus on unexpected results, including

a lack of association between ectoparasites and fitness and weak results

from a meta-analysis of the links between dominance rank and immune func-

tion, and place these results in a broader context. We also review relevant

topics that were not covered fully in this theme issue, including self-medication

and sickness behaviours, society-level defences against infectious disease,

sexual selection, evolutionary medicine, implications for conservation biology

and selective pressures on parasite traits. We conclude by identifying general

open questions to stimulate and guide future research on the links between

sociality, health and fitness.
1. Introduction
The papers in this theme issue address important and emerging links between

sociality, health and fitness. Many of these links have epidemiological impli-

cations, resulting in increased spread of infectious diseases through social

contact patterns [1–4] and effects of infectious disease on host behaviour [2].

Other links involve effects of sociality on buffering the stressors of social life,

including the intense competition that is observed in some species [5], with result-

ing effects on susceptibility to infectious and non-infectious diseases when these

support networks are unavailable. Some papers in this theme issue provide

examples of the mechanisms that underlie predicted interactions, such as the

effects of dominance rank, sex and stress on hormone production [6], their effects

on immune function and parasitism [7], and the role of the sympathetic nervous

system in mediating effects of social instability on immune function [5]. Other

papers in this issue have investigated the fitness consequences of sociality and

parasitism, for example in Columbian ground squirrels [8]. The papers also take

a wide range of approaches, including broad-scale comparative and meta-analysis

[3,7,9], long-term field research on food availability, stress and population density
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[10], social networks and disease spread in wild animals [4],

and experimental studies of behaviour in captive primates [5].

The studies in this theme issue also cover a wide range of

taxa, involving invertebrates and vertebrates, including

humans. This breadth is important because, for many of

these topics, clear implications exist for understanding

human health and behaviour, for example in relation to

social contact and various chronic diseases throughout the

life course [11], or in terms of how disease influences individ-

ual psychology, which can have far-reaching population-level

consequences [12]. Indeed, an important take-home message

from this theme issue is that understanding the links between

health, fitness and sociality in broad comparative perspective

has important implications for understanding human

health—a point that others have also made [13–15].

In this concluding chapter, we first synthesize the results

of these diverse studies into some of the key concepts ident-

ified in the introductory paper of this theme issue [16]. In

many cases, the studies in this theme issue both support

pre-existing hypotheses, and in other ways challenge some

of those expectations. With the maxim that ‘the exception

can prove the rule’, we explore some of the unexpected find-

ings, with the aim to place the results into a broader,

synthetic framework.

In the second part of this paper, we shift gears to consider

what is missing from this collection of papers. As with any

edited contribution, we aimed to showcase a broad range

of examples in our topic. However, we also experienced con-

straints, and thus had to focus on only a few of the topics and

example systems. We therefore wish to highlight some topics

that could have been included if space and time allowed,

including more discussion on the evolution of behavioural

defences to infectious disease that involve consumption of

medicinal plants, sickness behaviours and even society-level

responses to disease threat. We also consider sexual selection,

evolutionary medicine, implications for conservation biology

and the evolution of pathogen transmission mode and other

characteristics.

Finally, we conclude with future research directions by

considering several ways forward to better understand the

links between sociality, health and fitness. The specific future

directions that we consider involve additional studies of the

fitness consequences of parasitism [8]; a greater understanding

of behavioural and physiological responses to infectious dis-

ease, especially including their effects on individual health

and spread of infectious diseases in populations [2,17]; and

emerging links between sociality, the microbiome and health.
2. Synthesis and exceptions
(a) Synthesis
The introductory paper of this theme issue [16] provided a

synthesis of key concepts. In that first chapter, the authors

highlighted how transitions from a solitary lifestyle to group

living resulted in new health-related costs and risks, and thus

favoured the evolution of new counterstrategies to these costs

that involve behaviour, physiology and immune responses.

This evolutionary pattern is well illustrated by Meunier’s [9]

analysis of social immunity and group living in insects, where

social immunity refers to collective anti-parasitic defences,

such as systematic removal of dead animals from the nest. His

review of the macroevolutionary patterns highlights the many
diverse solutions that natural selection has discovered to control

infection after group living evolves.

Increased risk of acquiring infectious disease appears to be

one general consequence of living in groups [18–20]. However,

effects are not always as strong or consistent among studies as

one might expect [21], including in the taxonomic groups in

which social life is often viewed as most elaborate, i.e. primates

[22,23]. It is also important to consider transmission mode

in assessing links between sociality and infectious disease

(e.g. sociality may have different effects on exposure to vectors,

intermediate hosts and water-borne diseases). As demon-

strated in this issue, it is also crucial to incorporate social

structure into studies of the sociality–health–fitness nexus,

where social structure describes patterns of contact among

individuals in a social group. One paper in this issue details,

for example, how contact patterns can be critically important

for understanding parasitism in primates [4], while another

paper uses comparative analyses and meta-analyses to investi-

gate a positive association between group size and subdivision

of those groups [3]. The main point is that group size on its own

is often insufficient to explain parasitism in all species; social

contact within groups can provide significant traction on

these important epidemiological questions, as suggested by

previous researchers in the context of measuring network

structure [24,25].

Another important aspect of the transition from a solitary

lifestyle to group living concerns the origins of increased

susceptibility to disease, arising from the stress of social com-

petition for food, mates and other fitness-relevant resources.

While we might expect that animals living in a group will

experience some increased exposure to infectious disease

[18,21], the same is not true of social stress, where hetero-

geneity in responses might be more marked (e.g. in relation

to dominance rank, see [7], with possibilities for both posi-

tive and negative effects). The reasons for this difference in

exposure and social stress effects are related to reasons given

above: we only expect negative health consequences from

chronic social stress in gregarious settings in which individuals

have distinct social relationships [16]. In addition, of course,

social stress may affect patterns of social contact (i.e. exposure

to disease), and more stable bonds may reduce exposure to

infectious disease if they limit the number of interactions.

Thus, social structure is again an important element for under-

standing both infectious disease risk and chronic, stress-related

diseases, highlighting the importance of new methods to quan-

tify and analyse social interactions [1]. Similarly, dominance

rank may have important predictive capacity for measures of

health that translate into fitness.

Another major theme from the Introduction to this theme

issue [16] involved life-history trade-offs, and the integration

of sociality into frameworks in ecology and evolution that

centre on these trade-offs. The foundation of many studies

on trade-offs in evolutionary ecology is that the immune

system, growth, reproduction and maintenance activities are

costly for an organism, and that resources to sustain these

activities are limited. An emerging appreciation—illustrated

in this issue—is that sociality is an axis that is important for

understanding these trade-offs. The role of sociality in life-

history trade-offs arises in several ways. One involves

simple effects of group size on risk of infectious disease at

the individual level; this may generate selective pressure on

gregarious animals to invest more in immune defences, creat-

ing trade-offs with growth and reproduction. Another way
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that sociality affects life-history trade-offs involves the stress of

competition in groups; competition for mates, resources

and rank itself contributes to the costs involved in balancing

these trade-offs, potentially favouring different outcomes.

Finally, a good social position in a group—with reliable

social support and cooperation—can enable both behavioural

counterstrategies to some disease threats, such as greater allo-

grooming to reduce ectoparasite loads, and more effective

immune defences. In general, the social environment modu-

lates individual susceptibility to infectious and non-infectious

diseases in numerous ways related to life-history trade-offs.

In summary, within highly social mammal species—

including humans—social interaction appears to be associ-

ated with a health-related trade-off that is highlighted

across several articles in this theme issue [5,11,12]. On the

one hand, increased social contact may increase individual

organisms’ exposure to infectious diseases [12]. On the

other hand, increased social contact with conspecifics is

associated with more effective immunological and behav-

ioural responses to infection and with better long-term

health outcomes [5,11]. Similarly, in humans, individuals

who are more socially connected are more resistant to viral

infection, as are individuals who report a greater incidence

of intimate physical contact [26,27]. It remains an important

topic for future research to resolve exactly how this particular

cost/benefit trade-off is resolved within highly social species,

and to identify the conditions under which the potential costs

of social contact outweigh the benefits and vice versa.
(b) Exceptions
As noted earlier, this theme issue also uncovered several unex-

pected patterns. Notable here is the experimental fieldwork by

Raveh et al. [8], which examined the fitness consequences of

ectoparasitism in Columbian ground squirrels. Based on

theory and previous research [28], the authors expected to

find that ectoparasitism had fitness costs for the squirrels, yet

newer data and analyses suggested otherwise [29]. In a careful

and rigorous analysis, the authors failed to find compelling

evidence that ectoparasite loads covary with key fitness com-

ponents that included body condition, survival, reproductive

success and characteristics of dependent offspring. In other

words, ectoparasite loads seem unrelated to fitness.

Previous studies have found links between parasitism

and fitness in wild populations (e.g. [30,31]), and ectopara-

sites are known to transmit infectious agents, such as the

Lyme disease spirochete [32], which may negatively impact

fitness. Why did Raveh et al. [8] fail to find support for

their predictions in these ground squirrels? The answer

may have to do with the other ecological conditions faced

by these squirrels, and their ability to mount effective

immune and physiological defences to the ectoparasites

under different conditions. Given the variable conditions in

which they live, for example, the effects of parasites may

only be detectable at times of severe resource shortages [8].

In addition, neither parasitologists nor zoologists know

much about the costs of parasitism, or whether organisms

that are called ‘parasites’ are truly parasitic (meaning that

they live in and on the host, at some cost to the host). Perhaps

many of the organisms that are considered parasites should

instead be viewed as mere hitchhikers, with negligible costs

for the organisms that provide a home for them (i.e. commen-

sals). Raveh et al.’s [8] paper therefore highlights how the
effects of parasites on host fitness require careful consider-

ation of the ecological context and its variability, life-history

trade-offs across the yearly cycle, an understanding of each

parasite’s biology and awareness that different parasites

may exert different costs on the host.

Habig & Archie’s [7] meta-analysis of the effects of social

status, immune response and parasitism in male vertebrates

also failed to confirm predictions about the effects of stress

on immune function. The authors focused on heterogeneity

in immune function, and noted that two sets of predictions

have been made concerning the links between dominance

rank and immune function. On the one hand, the stress of

maintaining high rank is expected to compromise immune

function because dominant males divert much of their avail-

able energy to reproductive effort, creating a trade-off with

immunocompetence and favouring investment in less energe-

tically costly immune defence components. On the other

hand, the chronic stress of low rank is also expected to com-

promise immune function, because low-status males are

exposed to more unpredictable events or may be inherently

less able to effectively cope with stressful situations. These

perspectives are highly influential in the field of ecoimmunol-

ogy, and one might expect that after decades of research,

clear patterns would emerge for different components of

the immune system. In their analysis of 77 studies, however,

the authors failed to find compelling support for either para-

digm, which made specific predictions for the immune

components favoured in males of different rank. This is to

some extent a disappointment; it indicates that different

studies are finding different patterns, yet we currently lack

an understanding of the variability in the results. The authors

[7] note that many other factors, such as mating system, may

be needed to understand the links between social status and

immunity. In addition, they note that many of the studies in

the meta-analysis were conducted on captive animals, thus

calling for more research on wild animal populations.

Habig & Archie [7] did provide a stronger and very interest-

ing finding: in a second meta-analysis, dominant males

exhibited higher levels of parasitism with protozoan blood

parasites, gastrointestinal helminths and ectoparasites. Given

their other results that demonstrate similar immune responses

between subordinates and dominants, this suggests that other

factors are influencing the difference in parasitism. A plausible

explanation given by the authors is that dominant individuals

have different exposure to parasites, namely through priority

of access to food, mates and conspecific social partners. Thus,

social rank may have some health-related benefits involving

susceptibility to parasites, such as more social partners or

better access to resources, yet they also have costs in terms of

greater exposure to parasites [33]. Thus, the relationship

between sociality and health is clearly bi-directional and

more complex than previously thought.

A final example of surprising results comes from Chapman

et al.’s [10] contribution to the theme issue. In this paper, the

authors investigated a series of predicted links involving food

quality and availability, glucocorticoid levels as a marker of

stress, and abundance of wild red colobus monkeys. While

they found some evidence for links between food quality

and stress levels and a decline in food quality over time, the

population has remained relatively stable. One change that

has occurred involves group size and number of groups,

with larger but fewer groups existing today than in the recor-

ded past. Overall, this study is valuable for connecting
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individual-level phenomena, such as diet and stress, to popu-

lation-level phenomena. In this case, however, the underlying

mechanisms that drive the documented patterns remain

unclear; the authors propose that some aspects of behavioural

flexibility have played a role (e.g. avoidance of infected individ-

uals), again highlighting areas for more focused future research

on the sociality–health–fitness nexus.

In summary, many articles in this theme issue present

novel findings that, in some cases, fail to match the authors’

predictions. Some of these unexpected findings lead to new

insights and predictions for future research, such as beha-

viours that may be associated with parasite avoidance, and

the importance of investigating immune function in wild

animals [34]. By bringing together field, comparative/

meta-analyses, and theoretical approaches, many of the

papers provide ways to assess generality, in some cases

failing to find general patterns empirically (e.g. in meta-

analysis of immune function, [7]). These studies provide

ways forward for deepening our understanding of the links

between sociality, health and fitness. In other cases, authors

provide a combination of empirically and theoretically sup-

ported results, which offers more confidence in the strength

and generality of the findings [2,3].
3. Other aspects of the health – sociality – fitness
nexus

Several other obvious aspects of the health–sociality–fitness

nexus could not be covered in this theme issue owing to limit-

ations of space. We identify—and provide brief summaries

of—some of those topics in this section.

(a) Society-level defences against infectious disease
In group-living species, it is thought that many behavioural

strategies to reduce parasite transmission have evolved

[3,9,35]. The basic principles underlying these ‘social immunity’

strategies serve as the basis for hypotheses linking parasitism to

cross-species variation in the structure of social groups [3,19,36].

Analogous logic can be applied to within-species differences,

too. In any species distributed across a range of different habi-

tats, population-level differences in the endemic parasite load

may exist. This ecological variation could lead to differences

in behavioural anti-parasite strategies, which may have popu-

lation-level implications. These implications remain virtually

unexplored in wild animal populations, but a burgeoning

body of research applies this reasoning specifically to the

study of human cross-cultural variability.

Stimulated by a pioneering study on marriage systems in

small-scale societies [37], some correlational evidence links

ecological variation in ‘parasite stress’ to different popu-

lation-level outcomes in human societies. This research

typically treats countries and other geopolitical regions as

units of analysis. Some of these studies have focused on indi-

viduals’ behavioural traits (e.g. cross-national differences in

extraversion [12,38]). Others have focused on formal insti-

tutions and informal social structures that help to define the

nature of human societies [39]. For example, in geopolitical

regions with higher levels of parasite stress, human societies

are characterized by lower levels of philopatry, stronger

family ties, stronger societal conformity pressures, more collec-

tivistic value structures and more authoritarian government
practices—all of which may provide structural buffers against

the transmission of infections [39–41].

Although this line of research has been highly generative,

the results are correlational and inferentially complicated. Eco-

logical variation in parasite stress is highly correlated with

other ecological and economic variables that may have concep-

tually independent implications for societal outcomes [42,43].

The most compelling correlates of parasite stress are those

that persist even when statistically controlling for additional

variables. Not all of the cross-national findings meet this

standard of evidence, but many do [38,44,45]. Additionally,

a subset of these outcomes—including societal conformity

pressures, collectivistic value structures and authoritarian gov-

ernance—are more strongly predicted by historical parasite

stress than by contemporary parasite stress, a finding that ren-

ders a reverse causal explanation less plausible [44–46,38].

A further inferential complication arises because contemporary

geopolitical areas are rarely independent of other areas [47,48].

For this reason, the most inferentially compelling correlations

are those that emerge not only in cross-national analyses, but

also in analyses of small-scale societies studied by ethnogra-

phers [49,50]. It remains for future research to more fully

determine which societal outcomes are, or are not, influenced

by parasite risks [47].

Even if ecological variation in parasite stress has played a

unique role in the origin of human societal differences, it

remains unclear which explanatory mechanisms might

account for each specific outcome. Multiple mechanisms are

plausible, including those associated with genetic evolution,

developmental plasticity, context-contingent behavioural flexi-

bility and cultural transmission [41]. These mechanisms may

operate independently or in conjunction with one another.

(b) Sexual selection, mating systems and sexually
transmitted diseases

Sexual selection has pervasive effects on all components of

social systems. Behavioural traits subject to sexual selection

are proximately involved in regulating access to mates, in

actual mate choice and in defining mating patterns, and their

evolutionary consequences impact a species’ social organiz-

ation [51]. Sexual selection acts through two main processes

that also have downstream consequences for animals’ health

and, of course, for their reproductive success [52]. According

to classical sex roles, competition among males is evaluated

through intrasexual selection, whereas intersexual selection

leads to non-random mating because females exercise mate

choice to maximize direct or indirect benefits of choosing par-

ticular males [53,54]. However, it is now recognized that males

are also choosy [55] and that females compete among each

other as well [56,57].

Both inter- and intrasexual selection have several direct and

indirect consequences for animal health. First, competitive

interactions often involve fighting, for which an array of

weapons has evolved to assist males in their struggle for repro-

ductive success [58]. The use of horns, antlers, spurs, canines

and the like is associated with a risk of injury, and the resulting

wounds provide entry points for infectious agents so that even

non-lethal injuries can lead to massive health problems or even

death, and males are typically more often affected than females

[59–61]. In the case of injury, wound healing is affected by

stress and energetic costs [62], and also by the degree of

social integration of the wounded individual [63], revealing
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yet another functional relationship between sociality and

health. In addition, competitive ability is also affected by

health status, as demonstrated by experimental infections of

males that compromise their investment into morphological

traits used in competition [64].

Second, dominance relationships are thought to have

evolved as another mechanism to reduce the costs of intersex-

ual strife. Whenever access to mates and other contested

resources is mediated by ritualized signals rather than overt

fighting, the individual risk of injury is reduced [65]. It has

long been assumed that being dominant or subordinate

comes with physiological costs that enhance susceptibility

to certain types of disease and parasites [14,66], but the

meta-analyses by Habig & Archie [7] in this theme issue

revealed no consistent differences in immune function and

parasitism between these two classes of males. As noted by

the authors, however, the majority of studies available for

their analyses came from captive animals; additional research

on wild animals is sorely needed.

Third, in the context of intersexual selection, the func-

tional relationships between sociality and health largely run

in the reverse direction. Theoretical and empirical evidence

suggests that members of the choosy sex are likely to carefully

evaluate the health and condition of potential mates [67,68].

By discriminating against obviously parasitized males,

females can obtain direct benefits of mate choice by reducing

their individual risk of having parasites transmitted to them

through social contacts with males [69]. This risk may also

affect the rules of mate sampling, i.e. whether females make

their choice based on a certain threshold that potential

mates must exceed or whether they first sample a certain

number of potential mates before deciding with whom to

mate [70,71].

Fourth, healthy males may also be favoured in mate

choice because their condition indicates superior immuno-

competence, which can create indirect benefits of female

choice if the underlying immune genes can be acquired for

their offspring. In this context, it has been suggested that

females might be looking for mates with absolutely good

major histocompatibility complex genes, but the empirical

evidence tends to favour the interpretation that each female

attempts to find the best complementary genotype for her

immune genes [72]. These perspectives have been applied

to human mate preferences, for example, by investigating

the hypothesis that people strategically prefer mates who

are likely to produce offspring characterized by strong

immune systems. Empirical evidence has tested—and sup-

ported—many specific hypotheses that focus on preferences

for mates characterized by specific phenotypic cues that are

likely to be honest signals of immunocompetence [52].

Although the production of highly immunocompetent

offspring is likely to have generally beneficial implications

for fitness, these benefits are likely to be greater under eco-

logical conditions in which infectious diseases pose a more

substantial threat to health and fitness. One implication is

that the selective preference for highly immunocompetent

mates may vary depending on the threat posed by infectious

diseases. Research on humans provides some support for this

hypothesis. For instance, several experiments have manipu-

lated the temporary psychological salience of infectious

diseases, and examined its effects on people’s subjective pre-

ferences for symmetrical faces. Results reveal that facial

symmetry is especially attractive when the threat of infectious
diseases is highly salient, and that this effect shows up pri-

marily when judging opposite-sex faces [73,74]. The results

of these experiments are complemented by correlational

results from cross-national comparisons of mate preferences.

Compared to countries characterized by relatively low

levels of infectious diseases, people place a relatively higher

priority on a mate’s physical attractiveness in countries

characterized by higher levels of infectious diseases [75].

Finally, inter- and intrasexual competition also influences

the spread of disease directly by affecting patterns of mating,

i.e. who mates with whom. In particular, individuals with

the greatest number of mating partners and high mating

rates are at greatest risk of contracting sexually transmitted dis-

eases (STDs) and will also contribute disproportionately to

STD spread in a population [76–79]. A number of studies

have investigated the link between STDs and aspects of mate

choice and mating systems [78–80]. For example, Thrall et al.
[77] examined disease spread in the context of a polygynous

mating system. The authors used a simulation model to inves-

tigate the spread of STDs in males and females with respect to

variance in male mating success, dispersal of females among

groups and mortality rates. Analyses of the simulations

revealed that increasing variance in male mating success

resulted in higher STD prevalence for both males and females.

In addition, STD prevalence tended to be higher in females

than males, and this difference increased with greater variance

in male attractiveness. An intuitive explanation for these latter

findings is that as sexual selection increases, a smaller percen-

tage of males in the population actually mate, generating lower

prevalence among males than females. These highly successful

males also act as super-spreaders for disease, highlighting the

role that social network analysis [1] can have in understanding

STD risk.

(c) Sickness behaviours affect sociality and disease
spread

Sick animals act differently from healthy animals, and this can

have implications for disease spread. Most obviously, when

vertebrates mount immune responses to parasites, they exhibit

reduced motor activity, including reduced grooming and social

interaction. Rather than a simple by-product of infection, this

pattern of ‘sickness behaviour’ may actually comprise an adap-

tive response to infection [81,82]. For example, a reduction in

motor activity conserves caloric resources, which can be redir-

ected to immunological responses that fight off infection. In

group-living animals, the reduction in social interactions may

have the further benefit of inhibiting transmission of infection

to others within the group, but the difficulties of assessing

health in wild animals have hampered studies of sickness

behaviour in natural ecological and social contexts. Physiologi-

cal responses are also important, such as fever; one recent paper

took an epidemiological perspective on fever and proposed, via

a model and knowledge of how fever reduces viral shedding,

that suppression of fever results in higher numbers of influenza

cases in human populations [17].

In recent years, our understanding of the mechanisms that

underlie sickness behaviours has improved. As expected given

the proposed role of sickness behaviour in mediating adaptive

responses to infection, the immune system plays a part in these

mechanisms, particularly involving pro-inflammatory cyto-

kines [81,83]. When infection is detected, the innate immune

system produces an inflammatory response mediated by the
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production of cytokines. The physiological impact of these

cytokines is not limited to the local area of infection; via mul-

tiple pathways, they also affect the nervous system and thus

cause patterns of motor activity that characterize sickness beha-

viours [84]. Experimental research shows that the artificial

induction of a pro-inflammatory response leads to character-

istic patterns of motor inactivity and social withdrawal

among many species of animals, including humans. For

instance, compared to placebo controls, people exposed to an

endotoxin—which triggers the release of pro-inflammatory

cytokines—reported a decreased desire to be with other

people [85].

Although sickness behaviour may typically be character-

ized by the inhibition of social interaction, this is not always

the case [83]. For instance, a study of male song sparrows

revealed that, while inflammation led to reduced activity

during the non-breeding season, no such effect was observed

during the breeding season [86]. In an experimental study of

finches with conjunctivitis, uninfected males preferentially

attended food sources on sides of the cage associated with

sick individuals, probably owing to their lower competitive-

ness [87], suggesting that sickness behaviours may not

always lead to less contact. In general, the tendency for

social withdrawal may be eliminated under circumstances

in which the fitness benefits of specific forms of social behav-

iour—such as mating—outweigh the benefits of conserving

caloric resources during illness.

While cytokine-induced sickness behaviour is typically

characterized by decreased sociality, it may also be character-

ized by specific kinds of increased sociality, such as an

increase in approach-oriented attitudes towards potential

carers. In one experiment, the induction of cytokine-mediated

inflammation led laboratory rats to spend more time in close

contact with familiar cage-mates [88]. Analogous results have

been observed in humans. Compared to placebo controls,

people injected with endotoxin report greater desire for con-

tact with supportive friends or family members, and also

show greater activity in a brain region—the ventral stria-

tum—that is associated with feelings of social connection in

close relationships [89].
(d) Self-medication and social learning
Self-medication has been identified in a wide array of animals

[90], and can be seen as one of several mechanisms that pro-

mote non-immunological defences to infectious disease [91].

Self-medication has been studied intensively in the African

great apes [92], where two self-medication behaviours,

bitter pith chewing and leaf swallowing, have been observed

widely among chimpanzee, bonobos and lowland gorilla

populations [92]. While it might seem that social learning is

limited to highly intelligent animals, such as primates, it

may play a role in self-medication in other species, too [93].

In fact, evidence indicates the potential generality of this

behaviour among other taxa [33,94,95] including fruit

flies, where females respond behaviourally to parasites by

‘medicating’ their offspring [96].

An important question in the context of this theme issue

on the health–sociality–fitness nexus concerns whether

these behaviours are learned socially. Young wild chimpan-

zees have been documented to carefully observe self-

medication behaviours by others, typically their mothers,

and then attempt such behaviours immediately after [97].
These and other observations suggest the potential for

social learning of health-promoting behaviours that have fit-

ness consequences. However, experimental studies have

found that naive captive chimpanzees are capable of initiat-

ing key aspects of self-medication behaviours without the

benefit of social learning [98,99]. Such incongruent findings

highlight the need for integrated natural and manipulative

experiments to examine the importance of social learning in

the acquisition of self-medication behaviours.

Interestingly, our understanding of the role of social

learning in the initiation and propagation of most popu-

lation-specific ape behavioural patterns remains largely

unexplored despite the major focus on ‘culture’ in the study

of ape behaviour [100,101]. This process is further compli-

cated by recent evidence that genetic dissimilarity cannot

be eliminated as playing a major role in generating group

differences in chimpanzee behaviour [102]. Testable hypoth-

eses for learning have been developed in relation to social

contact patterns, emulation, social and local enhancement,

and trial-and-error learning [103–106], and researchers have

begun to identify how imitation might facilitate the propa-

gation of animal culture, while not explaining its stability

[107]. Thus, rapid improvements in our understanding at this

interface are expected. In addition, with growing evidence

of self-medication beyond cognitively advanced animals

[108,109], any concept of self-medication based solely on learn-

ing is inadequate. Mechanisms such as innate response and

adaptive plasticity will need to be examined as we re-evaluate

our assumptions concerning the importance of social learning

in the acquisition of self-medication behaviours [90].
(e) Evolutionary medicine
The emerging field of evolutionary medicine (or ‘Darwinian

medicine’, as it is sometimes called) addresses questions

about the ultimate origins of disease in humans and animals

[110–113]. Evolutionary medicine involves both understand-

ing disease, such as past selection pressures that make

humans prone to obesity, and treating disease, including new

solutions to halt the evolution of drug-resistant pathogens

and the creation of novel cancer therapies. Research in evol-

utionary medicine investigates the full gamut of diseases and

disorders that impact humans, including injury, sleep dis-

orders, emerging infectious diseases, psychiatric disorders,

autoimmune diseases, obesity, addiction and infertility.

We see many areas where research in this theme issue may

contribute to evolutionary medicine in the future. One of these

involves the ways that social contact relates to many of the

major mental health disorders in humans, such as depression.

Hidaka [114] provides one such perspective in a review

of depression from an evolutionary perspective (see also

[115–117]). He presents evidence of increasing rates of

depression over time, and an association between population

prevalence of a mood disorder over the lifetime and gross dom-

estic product, with countries as the level of analysis. Hidaka

[114] then points to several lifestyle correlates of modern

societies, such as diet and exercise, as contributing to higher

rates of depression. Important among these factors is the

social environment; specifically, ‘contemporary populations

may now be more susceptible to depression because of greater

inequality, low social support, intense individual competitive-

ness, and increased social failure’ (p. 210). The research in
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this theme issue and elsewhere provides insights to the

evolutionary origins of these drivers [11,15].

Another element of evolutionary medicine involves the

importance of comparing different species, as illustrated

with the many different organisms covered in this theme

issue. ‘Comparative medicine’ emphasizes the importance of

collaboration between veterinary medicine and human medi-

cine. Comparative approaches have been used, for example,

to investigate associations between body mass and rates of

cancer; the lack of such an association across species is termed

‘Peto’s Paradox’ and suggests that larger-bodied animals have

more effective cancer suppression mechanisms [118]. We pro-

pose that whenever comparisons are made, it is essential to

bring in a phylogenetic framework to understand species differ-

ences, for example through use of comparative methods that

control for phylogeny in understanding the adaptive basis of

traits [119]. In other words, in addition to veterinarians and

doctors, evolutionary biologists, ecologists and behavioural

biologists have much to offer comparative medicine.

( f ) Implications for conservation biology
Links between health, sociality and fitness also have important

implications for conservation biology, as highlighted by the

contribution to this theme issue by Chapman et al. [10]. Conser-

vation biologists often consider the problems that arise in small

populations, which of course is characteristic of endangered

species. Habitat loss, climate change, overexploitation, invasive

species and environmental pollution are among the important

drivers of species extinctions; the compounding effects of

health, specifically infectious disease, are now considered as

an additional driver [120]. Infectious diseases threaten conser-

vation of biodiversity through both local and global extinctions

[121–123], and health and disease should be considered in

population viability analysis and species conservation plan-

ning [124,125], as well as in reintroductions of species of

conservation concern [126].

The Allee effect represents one effect of sociality that is also

relevant to conservation biology. The Allee effect occurs when

‘under-crowding’ leads to a decrease in survival or reproduc-

tion, and can be thought of as inverse density dependence at

low densities [127]. When there are fewer individuals in a

social group, a decrease in interspecific cooperative interactions

can trigger the Allee effect [128]. Infectious diseases can reduce

population numbers below a critical group size, thereby start-

ing a cascade of negative fitness impacts via the Allee effect.

This effect has been posited as a reason for added challenges

in conserving social wild animals. Obligate cooperative breed-

ing species, such as the African wild dog and Ethiopian wolf,

might be especially vulnerable to disease-mediated extinctions

involving the Allee effect [129,130].

(g) The parasites’ perspective: sociality and selective
pressures on parasites

Sociality might also conceivably influence the evolution of

pathogen traits, such as transmission mode and virulence.

First, with regard to transmission mode, is it possible that

living in larger groups would favour the evolution of close-

contact transmission, when compared with other transmission

modes that involve less close contact? While plausible, only a

handful of studies have considered this question. One study

used a theoretical model to investigate the evolution of
sexual- versus non-sexual transmission [131]. On the basis of

the model, the authors proposed that STDs would be more

common relative to other infectious diseases in species living

solitarily or at low density. The reason for this is that mating

provides one of the few opportunities for disease transfer

among largely solitary individuals. The authors also proposed

‘a social–sexual crossover point’, or SSCP. Increased sexual

transmission is favoured when the population size was less

than the SSCP, highlighting the advantages for sexual contact

transmission at low host density; above the SSCP, non-sexual

(close contact) transmission is favoured, given that increased

social contact is expected at higher population size. Applying

this model to group size variation might be possible, although

it assumes that population size in the model is equivalent

to group size, which may be problematic if between-group

rates of migration (dispersal) are high.

Second, we can also consider how sociality influences

virulence, defined here as the harm that a parasite or patho-

gen causes to its host [132]. Understanding the evolution of

virulence requires a brief review of some key variables that

influence pathogen transmission in typical epidemiological

models; these variables include the per-contact probability

of transmission, mortality owing to infection (i.e. virulence),

and clearance rate owing to the immune system or physio-

logical and behavioural responses. Factors that positively

influence disease spread, such as per-contact probability of

transmission, are counterbalanced by correlated negative

effects on virulence and clearance, as proposed by the

‘trade-off theory’ of virulence [132]. For example, a pathogen

with a higher per contact probability of transmission may

have higher virulence, with the link driven by how increased

pathogen replication rate positively influences both trans-

mission probability and mortality owing to disease (i.e. a

mechanistic link producing a positive association between

transmissibility and virulence). With these considerations in

mind, a simple association between group size and virulence

is not forthcoming. While it might seem that living in a

larger, more interconnected group might favour higher viru-

lence, mathematical models show that simple predictions are

not always possible, as the solutions depend on demographic

and epidemiological parameters [132,133].
4. Conclusion and future directions
The authors of the papers in this theme issue provide many

ways forward for understanding the links between sociality,

health and fitness, especially in the context of their particular

systems and questions. Here, we amplify these suggestions

by identifying opportunities for future research in four

main areas.

First, there is a great need for more research on the effects

of parasites on hosts. This of course includes host fitness, but

also involves related effects on fitness, such as activity levels,

fecundity, vigilance and fat reserves. We actually know very

little about how parasites impact host fitness, or about the

parasite types that have the greatest effects in different host

taxa. Important parasite distinctions could be investigated,

such as viruses versus helminths, or ectoparasites versus

endoparasites. Equally important are aspects of co-infection,

in which infection with two or more parasites can have syner-

gistic effects on host fitness [134–136]. Moreover, as raised by
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Raveh et al. [8], it is important to investigate fitness in relation

to ecological conditions in wild populations.

A second major area involves behavioural counterstrategies

to infectious disease. Interesting new angles on this question

were raised in this theme issue, including social immunity in

insects [9] and the behavioural immune system in humans

[12]. Yet other questions arise. To what extent are some of the

behavioural responses in humans to disease risk, such as the

disgust response [137], also found in non-human primates?

How effective are behavioural defences in vertebrate systems,

in terms of both individual recovery from infection and the

epidemiological consequences of an introduced infection?

How plastic are social networks? And, does the association

between modularity and group size [3,24] represent an adap-

tive response to greater disease risk in larger groups, versus

the alternative hypothesis that it results from limited time bud-

gets in larger groups? These and many other questions will be

important for future research.

It is also important to appreciate that ‘health’ can include

central nervous system processes, with mental states such as

loneliness or sadness having implications for effective physio-

logical function. In this regard, it will be important in the

future to develop new measures to assess these mental

states in other animals, along with research paradigms to

investigate these questions across human and non-human

animals (e.g. [138]).

Finally, more research is needed on the links between the

microbiome, health and sociality. The organisms making up

the gut microbiota have multiple effects on host behaviour

and fitness [139], including benefiting the host through var-

ious metabolic functions and assisting in pathogen defences

[140]. The community structure of gut microbiota is respon-

sive to several intrinsic host characteristics [141] and at the
same time also influences host behaviour and cognitive

functions [142,143], as demonstrated by transplantation

experiments [144]. The bidirectional signalling between the

gut and the brain mediated by the vagus nerve is vital for

maintaining host homeostasis [145,146] and may therefore

play an important role in coping with stress [147]. Further-

more, as with some infectious agents, gut microbiota are

also socially transmitted among group members under natu-

ral conditions [148], providing a counterbalancing benefit to

the increased risk of social disease transmission. As particular

gut microbiota compositions are also related to various health

outcomes [144,149], their interactions with host genotype, be-

haviour and fitness should make interesting topics for future

research, especially in wild animals [150–152].

In conclusion, this theme issue has highlighted state of

the art research on the links between sociality, health and fit-

ness. We covered many exciting emerging areas on these

links, yet we also had to be selective in the topics covered.

In addition to synthesizing some of the findings in this

theme issue, here we have highlighted major areas that

also deserve further research attention, including specific

directions that amplify and add to the future research

suggested by authors in this issue. Clearly more research

remains, and we anticipate productive findings along many

current and future trends in research in biology, psychology

and medicine.
Acknowledgements. We thank three referees for their helpful comments
and suggestions.

Author contributions. The authors all contributed to writing specific
sections of this review, and to integrating those sections.

Competing interests. We have no competing interests.
References
1. Craft ME. 2015 Infectious disease transmission and
contact networks in wildlife and livestock. Phil.
Trans. R. Soc. B 370, 20140107. (doi:10.1098/rstb.
2014.0107)

2. Theis FJ, Ugelvig LV, Marr C, Cremer S. 2015
Opposing effects of allogrooming on disease
transmission in ant societies. Phil. Trans. R. Soc. B
370, 20140108. (doi:10.1098/rstb.2014.0108)

3. Nunn CL, Jordán FM, McCabe CM, Verdolin JL,
Fewell JH. 2015 Infectious disease and group size:
more than just a numbers game. Phil. Trans. R. Soc.
B 370, 20140111. (doi:10.1098/rstb.2014.0111)

4. Rimbach R, Bisanzio D, Galvis N, Link A, Di Fiore A,
Gillespie TR. 2015 Brown spider monkeys (Ateles
hybridus): a model for differentiating the role of
social networks and physical contact on parasite
transmission dynamics. Phil. Trans. R. Soc. B 370,
20140110. (doi:10.1098/rstb.2014.0110)

5. Capitanio JP, Cole SW. 2015 Social instability and
immunity in rhesus monkeys: the role of the
sympathetic nervous system. Phil. Trans. R. Soc. B
370, 20140104. (doi:10.1098/rstb.2014.0104)

6. Cavigelli SA, Caruso MJ. 2015 Sex, social status, and
physiological stress in primates: the importance of
social and glucocorticoid dynamics. Phil.
Trans. R. Soc. B 370, 20140103. (doi:10.1098/rstb.
2014.0103)

7. Habig B, Archie EA. 2015 Social status, immune
response and parasitism in males: a meta-analysis.
Phil. Trans. R. Soc. B 370, 20140109. (doi:10.1098/
rstb.2014.0109)

8. Raveh S, Neuhaus P, Dobson FS. 2015 Ectoparasites
and fitness of female Columbian ground squirrels.
Phil. Trans. R. Soc. B 370, 20140113. (doi:10.1098/
rstb.2014.0113)

9. Meunier J. 2015 Social immunity and the evolution
of group living in insects. Phil. Trans. R. Soc. B 370,
20140102. (doi:10.1098/rstb.2014.0102)

10. Chapman CA, Schoof VAM, Bonnell TR, Gogarten JF,
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152. Lizé A, McKay R, Lewis Z. 2013 Gut microbiota and
kin recognition. Trends Ecol. Evol. 28, 325 – 326.
(doi:10.1016/j.tree.2012.10.013)

http://dx.doi.org/10.1111/j.1461-0248.2010.01537.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01537.x
http://dx.doi.org/10.1016/j.jad.2011.12.036
http://dx.doi.org/10.1016/j.jad.2011.12.036
http://dx.doi.org/10.1001/archpsyc.57.1.14
http://dx.doi.org/10.1001/archpsyc.57.1.14
http://dx.doi.org/10.1017/S0033291798006710
http://dx.doi.org/10.1017/S0033291798006710
http://dx.doi.org/10.1016/j.jad.2003.08.009
http://dx.doi.org/10.1016/j.tree.2011.01.002
http://dx.doi.org/10.1016/j.tree.2011.01.002
http://dx.doi.org/10.1111/j.1469-1795.2008.00228.x
http://dx.doi.org/10.1111/j.1469-1795.2008.00228.x
http://dx.doi.org/10.1126/science.287.5452.443
http://dx.doi.org/10.1126/science.287.5452.443
http://dx.doi.org/10.1016/S0169-5347(00)89050-3
http://dx.doi.org/10.1016/S0169-5347(00)89050-3
http://dx.doi.org/10.1046/j.1523-1739.2002.00559.x
http://dx.doi.org/10.1046/j.1523-1739.2002.00559.x
http://dx.doi.org/10.1371/journal.pone.0084211
http://dx.doi.org/10.1002/9781444355833.ch9
http://dx.doi.org/10.1002/9781444355833.ch9
http://dx.doi.org/10.1016/S0169-5347(99)01683-3
http://dx.doi.org/10.1016/S0169-5347(99)01683-3
http://dx.doi.org/10.2307/3546849
http://dx.doi.org/10.1016/S0169-5347(99)01684-5
http://dx.doi.org/10.1098/rspb.1999.0672
http://dx.doi.org/10.1098/rspb.1999.0672
http://dx.doi.org/10.1086/286100
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1111/j.1420-9101.2008.01658.x
http://dx.doi.org/10.1006/jtbi.1995.0109
http://dx.doi.org/10.1093/icb/icr058
http://dx.doi.org/10.1093/icb/icr058
http://dx.doi.org/10.1073/pnas.0707221105
http://dx.doi.org/10.1073/pnas.0707221105
http://dx.doi.org/10.1086/675362
http://dx.doi.org/10.1086/675362
http://dx.doi.org/10.1353/pbm.2001.0001
http://dx.doi.org/10.1371/journal.pone.0110307
http://dx.doi.org/10.1371/journal.pone.0110307
http://dx.doi.org/10.3389/fnint.2013.00070
http://dx.doi.org/10.1016/j.tim.2007.12.008
http://dx.doi.org/10.1073/pnas.1007028107
http://dx.doi.org/10.1038/nrn3346
http://dx.doi.org/10.1073/pnas.1010529108
http://dx.doi.org/10.1126/science.1179721
http://dx.doi.org/10.1126/science.1179721
http://dx.doi.org/10.1073/pnas.0407076101
http://dx.doi.org/10.1126/science.1223813
http://dx.doi.org/10.1016/j.psyneuen.2012.03.007
http://dx.doi.org/10.1073/pnas.1110474108
http://dx.doi.org/10.1038/nri2515
http://dx.doi.org/10.1038/nri2515
http://dx.doi.org/10.1111/j.1461-0248.2012.01831.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01831.x
http://dx.doi.org/10.1016/j.anbehav.2011.05.029
http://dx.doi.org/10.1016/j.tree.2012.10.013
http://rstb.royalsocietypublishing.org/

	The sociality-health-fitness nexus: synthesis, conclusions and future directions
	Introduction
	Synthesis and exceptions
	Synthesis
	Exceptions

	Other aspects of the health-sociality-fitness nexus
	Society-level defences against infectious disease
	Sexual selection, mating systems and sexually transmitted diseases
	Sickness behaviours affect sociality and disease spread
	Self-medication and social learning
	Evolutionary medicine
	Implications for conservation biology
	The parasites’ perspective: sociality and selective pressures on parasites

	Conclusion and future directions
	Acknowledgements
	Author contributions
	Competing interests
	References


